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Nuclear Landscape:
Valley of stability & Magic numbers
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The nuclear mean field Shell Model
46 3 The Nuclear Mean Field and Many-Nucleon Configurations
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Fig. 3.3. Schematic view of mean-field potentials for protons and neutrons. The
magic numbers and shells of states are indicated with rough energies

We solve the Schrödinger equation with the complete Hamiltonian

h =
−!2

2mN
∇2 + v(r) + vLS(r)L · S

=
−!2

2mN

(
∇2

r −
L2/!2

r2

)
+ vWS(r) + vC(r) + vLS(r)L · S , (3.24)

where the radial derivative has the usual form (see e.g. [6])

∇2
r ≡

1

r2

d

dr

(
r2 d

dr

)
. (3.25)

The Woods–Saxon term vWS(r) is given in (3.20), and we use the parameter
values (3.21)–(3.23). The Coulombic part of the potential is

vC(r) =
Ze2

4πϵ0

⎧
⎪⎨
⎪⎩

3− (r/R)2

2R
, r ≤ R ,

1

r
, r > R ,

(3.26)

I Effective (phenomenological) potential for protons and neutrons
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The nuclear mean field Shell Model
3.3 Many-Nucleon Configurations 59
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Fig. 3.6. Ground-state and excited-state configurations for the 10 protons of the
neon nucleus. The symbol ε

(π)
F denotes the position of the proton Fermi level, which

is located at the last occupied single-particle level in the ground-state configuration

• In our example of proton configurations in Ne the excitation energy from
the ground-state configuration to the first excited configuration is

E
(Z=10)
1 − E

(Z=10)
0 = ε1s1/2

− ε0d5/2
, (3.82)

corresponding to a jump of one proton from the d5/2 orbital to the s1/2

orbital. The second and third excited states can be interpreted as similar
jumps of one or two protons from the ground-state configuration, as shown
in Fig. 3.6.

• Each Z-proton (N -neutron) Slater determinant corresponds to one
Z-proton (N -neutron) configuration.

• The energy of the highest occupied single-particle state in the ground-
state configuration is called the Fermi energy. In a nucleus, we have both
a proton and a neutron Fermi energy. The Fermi level, or Fermi surface,
is located at the Fermi energy.

Before closing this chapter, let us generalize the orthonormality and com-
pleteness relations (3.68) and (3.69) to many-nucleon configurations. The
Z-proton Slater determinants form an orthonormal and complete set of wave
functions. For orthonormality we have

I Closed shell core
I Effective potential for non-interacting valence nucleons:

Single-Particle energies ε
I Interactions between valence nucleons:

Configuration mixing
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The nuclear No-Core Shell Model

Given a Hamiltonian operator (in relative coordinates)

Ĥrel =
∑

i<j

(~pi − ~pj)
2

2 m A
+
∑

i<j

Vij +
∑

i<j<k

Vijk + . . .

solve the eigenvalue problem for the bound state
wavefunction of A nucleons

Ĥrel Ψ(r1, . . . , rA) = λΨ(r1, . . . , rA)

by expanding the Ψ(r1, . . . , rA) in products of
harmonic oscillator (H.O.) single-particle states
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The No-Core Shell Model: Plan for four lectures

1. NCSM and HPC
I Remainder of this lecture

2. NN and 3N (effective) interactions
I This afternoon

3. Emergence of collective motion
(plus additional topics, depending on interests?)

I Tomorrow

4. Beyond the H.O. basis
(plus additional topics, depending on interests?)

I Wednesday
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Reminder: 3D quantum Harmonic Oscillator

I Hamiltonian ĤH.O. = p2

2m + 1
2mω2r2

I Solutions of Schrödinger equation ĤH.O.φ(r) = EN φ(r)

φ(r) = Nnl

( r
b

)l
e−r2/(2b2) L

(l+ 1
2 )

n (r2/b2) Ylm(θ, φ)

with H.O. parameter b2 = ~/(mω)

I Eigenvalues EN = (3
2 + N)~ω with N = 2n + l

I Nucleons: spin-1
2 particles, spin up or down

I Single-particle quantum number in LS-scheme: |nlmssz〉
I Couple orbital motion and intrinsic spin (and suppress s = 1

2 )
to J-scheme: Ĵ = L̂ + Ŝ: |nljmj〉

I Degeneracy of major (H.O. energy) shells (N + 1)(N + 2)
I magic numbers 2, 8, 20, 40, . . .
I s-shell, p-shell, sd-shell, pf -shell, . . .
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No-Core Configuration Interaction approach

I Expand wavefunction in basis states |Ψ〉 =
∑

ai |Φi〉
I Express Hamiltonian in basis 〈Φj |Ĥ|Φi〉 = Hij

I Diagonalize Hamiltonian matrix Hij

I No-Core: all A nucleons are treated the same
I Complete basis −→ exact result

I caveat: complete basis is infinite dimensional
I In practice

I truncate basis
I study behavior of observables as function of truncation

I Computational challenge
I construct large (1010 × 1010) sparse symmetric matrix Hij
I obtain lowest eigenvalues & -vectors corresponding to low-lying

spectrum and eigenstates
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NCCI approach – Basis expansion

I Expand A-body wave function in basis functions

Ψ(r1, . . . , rA) =
∑

aiΦi(r1, . . . , rA)

I Use basis of single Slater Determinants of single-particle states

Φi(r1, . . . , rA) =
1√
(A!)

∣∣∣∣∣∣∣∣∣

φi1(r1) φi2(r1) . . . φiA(r1)
φi1(r2) φi2(r2) . . . φiA(r2)

...
...

...
φi1(rA) φi2(rA) . . . φiA(rA)

∣∣∣∣∣∣∣∣∣

which takes care of anti-symmetrization (Fermion statistics)
I Each many-body basis state Φ(r1, . . . , rA) eigenstate of Ĵz,

with fixed eigenvalue M, but not of Ĵ2 (M-scheme)
I almost trivial to implement

Ĵz|Φ〉 = M|Φ〉 =
A∑

k=1

mj k |Φ〉
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NCCI approach – Hamiltonian

I Expand Hamiltonian in basis

Ĥrel =
∑

i<j

(~pi − ~pj)
2

2 m A
+
∑

i<j

Vij +
∑

i<j<k

Vijk + . . .

I A-body problem with a-body interaction: nonzero matrix elements
iff at least (A− a) particles are in identical single-particle states

I many-body basis states are single Slater Determinants
I A-body problem with 2-body interactions

H(A)
ij = (−1)permutations δi1,j1 . . . δi(A−2),j(A−2) 〈a b|Ĥ|c d〉

I Sparse symmetric eigenvalue problem
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NCCI approach – Truncations

Complete space – exact (for bound states), but infinite-dimensional

I Nmax truncation:
Each many-body basis state Φ(r1, . . . , rA) satisfies

A∑

k=1

(
2 nk + lk

)
≤ N0 + Nmax

I exact factorization of Center-of-Mass motion
I Alternatives:

I FCI (commonly used in nuclear shell model, quantum chemistry, ...)
truncation on single-particle basis states only

I Importance Truncation Roth, PRC79, 064324 (2009)

I No-Core Monte-Carlo Shell Model Abe et al, PRC86, 054301 (2012)

I SU(3) Truncation Dytrych et al, PRL111, 252501 (2013)

I . . .
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Intermezzo: Center-of-Mass motion

I Use single-particle coordinates, not relative (Jacobi) coordinates
I straightforward to extend to many particles
I have to separate Center-of-Mass motion from relative motion

I Center-of-Mass wavefunction factorizes for H.O. basis functions in
combination with Nmax truncation

|Ψtotal〉 = |φ1〉 ⊗ . . .⊗ |φA〉
= |ΦCenter-of-Mass〉 ⊗ |Ψrel〉

where Ĥrel|Ψi, rel〉 = Ei|Ψi, rel〉
I Add Lagrange multiplier to Hamiltonian (Lawson term)

Ĥrel −→ Ĥrel + ΛCM

(
ĤH.O.

CM −
3
2
~ω
)

with Ĥrel = T̂rel + V̂rel the relative Hamiltonian
I separates states with CM excitations from states with 0s CM motion
|ΦCM〉 = |Φ0s〉
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Intermezzo: FCI vs. Nmax truncation
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I Nmax truncation
I exact factorization of Center-of-Mass motion

I Infinite basis space limit
I both Nmax truncation and FCI converge to the same results
I Nmax truncation does so much more rapidly
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NCCI approach – Main Challenge
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I Increase of basis space dimension with increasing A and Nmax
I need calculations up to at least Nmax = 8

for meaningful extrapolation and numerical error estimates
I More relevant measure for computational needs

I number of nonzero matrix elements
I current limit 1013 to 1014 (Edison, Mira, Titan)
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High-Performance Computing: Moore’s law
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High-Performance Computing

I Parallel computing
I Initially: Shared memory or distributed memory parallel systems
I Currently: Systems have shared and distributed memory

I use OpenMP within a node and MPI between nodes
I Accelerators

I GPU’s (NVIDIA), Xeon Phi (Intel), . . .
I Initially: as co-processor
I Soon: self-hosted

I Vectorization
I Xeon Phi (KNL) has 512-bit vector units (8 double precision floats)

I Increasing performance gap between processor and memory
I Available memory and memory bandwidth per PU decreases
I Data locality and data placement is crucial

Highly nontrivial to achieve good performance
I Need to collaborate with applied mathematicians

and computer scientists
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Many-Fermion Dynamics for nuclear structure

Configuration Interaction code for nuclear structure calculations
I Platform-independent, hybrid OpenMP/MPI, Fortran 90
I Generate many-body basis space

subject to user-defined single-particle and many-body truncation
I Construct of many-body matrix Hij

I determine which matrix elements can be nonzero
based on quantum numbers of underlying single-particle states

I evaluate and store nonzero matrix elements
in compressed sparse block format

I Obtain lowest eigenpairs using Lanczos algorithm (or LOBPCG)
I typical use: 8 to 12 lowest eigenvalues and eigenvectors
I typically need ∼ 300 to ∼ 500 Lanczos iterations
I some applications need hundreds of eigenvalues

I Write eigenvectors (wavefunctions) to disk
I Calculate selected set of observables
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Lanczos algorithm as implemented in MFDn

Let H be a symmetric matrix. Then H can be reduced to a symetric tri-
diagonal matrix T via orthogonal unitary transformations, H = QnTnQT

n

I For i = 1, set β1 = 0 and initial vector q1 with ||q1|| = 1
I While (not converged) do

1. compute p = H qi i.e. perform Sparse Matrix-Vector Multiplication
2. compute αi = qT

i · (H qi ) i.e. perform dot-product

3. compute k = p − αiqi − βiqi−1
4. (orthogonalize k w.r.t. qi for numerical stability) more dot-products

5. compute βi+1 = ||k || and one more dot-products

6. set qi+1 = k/||k ||
7. increment i = i + 1
8. check (convergence) diagonalize small tridiagonal matrix

I obtain eigen-values λ and -vectors v of Tn LAPACK

I compute βi | vi
λ
| for each desired eigenvalue

I Compute approximate eigenvectors of H from Tn and Qn
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Lanczos algorithm
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I dimension 252 million,
with 400 billion
nonzero matrix
elements

I runs on 124 nodes
Edison at NERSC
using 496 MPI ranks
with
6 OpenMP
threads/MPI

I total runtime
less than 10 minutes

I Lowest 5 eigenvalues of Tn after n Lanczos iterations
I Note: in MFDn we use single-precision for H and Q = {qi} but

double-precision for dot-products and Tn for numerical stability
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Lanczos algorithm – convergence criterium
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Rn ≈ βn
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j Hijaj − λai
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LOBPCG in collaboration with applied mathematicians from Berkeley

I Set initial guess for X (1) consisting of k orthonormal vectors
I ideally, consisting of approximate eigenvectors
I e.g. smaller basis space, different H.O. parameter ~ω, . . .

I While (not converged) do
1. apply preconditioner T

I preconditioning is an art . . .
I kinetic energy is likely to be efficient, but too expensive
I diagonal matrix element is cheap, but not efficient
I compromise:

diagonal tiles of H, based on many-body (n, l , j) orbitals

2. orthonormalize using Cholesky QR
3. compute H X (i) Sparse Matrix-Matrix Multiplication
4. do LOBPCG magic . . .
5. check convergence

I X (n) consists of k orthonormal eigenvectors
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LOBPCG Shao, Aktulga, Yang, Ng, PM, Vary, to be submitted
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I Blocks of 8 (12) vectors, targeting lowest 5 (8) eigenstates
I Nmax = 8: 114 iterations in 6.5 seconds (using random initial vectors)

I Nmax = 10: 67 iterations in 19.8 seconds
I Nmax = 12: 50 iterations in 109.4 seconds
I Despite doing approximately 1.6 times more work in SpMV/SpMM,

LOBPCG factor of 2 faster than Lanczos
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Efficient distributed SpMV

I Symmetric matrix
I store only half the matrix (upper or lower triangle)
I have to do SpMV and SpMVT with same data structure

I Load-balancing
I load determined by number of nonzero matrix elements
I 2-dimensional distribution of matrix
I round-robin distribution of (groups of) many-body states
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Efficient distributed SpMV

I Communication needs to be
load-balanced as well

I Vectors distributed over all
processors for orthogonalization
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Ĥ4,2w2
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Efficient distributed SpMV – MPI communication

Aktulga, Yang, Ng, PM, Vary, Concurr. Comput. 26 (2014), doi:10.1002/cpe.3129Communica&on	
  Hiding:	
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I Overlap communication with computation
I Optimize mapping onto network topology for non-overlapping

communication see also Oryspayev, PhD thesis 2016, ISU

P. Maris (ISU) The NCSM and HPC ISS28, Prague, 2016 26 / 29



Introduction No-Core CI HPC CI on HPC For further reading

Efficient distributed SpMV – single-node performance
9

0 
10 
20 
30 
40 
50 
60 
70 
80 
90 

1 4 8 12 16 24 32 48 

G
Fl

op
/s

 

#vectors (m) 

CSB/OpenMP 
CSB/Cilk 
CSR/OpenMP 

0 
10 
20 
30 
40 
50 
60 
70 
80 
90 

1 4 8 12 16 24 32 48 

G
Fl

op
/s

 

#vectors (m) 

CSB/OpenMP 
CSB/Cilk 
rowpart/OpenMP 
CSR/OpenMP 

Fig. 5: Optimization
benefits on Edison us-
ing the Nm6 matrix
for SpMM (top) and
SpMMT (bottom) as
a function of m (the
number of vectors).

the benefit of CSB variants’ blocking on cache locality is
manifested. The CSB/OpenMP version delivers notice-
ably better performance than the CSB/Cilk implemen-
tation. This may be due in part to performance issues
associated with Cray’s cluster compatibility mode, but
most likely due to additional parallelization overheads of
the Cilk version that uses temporary vectors to introduce
parallelism at the block row and block computation
levels. This additional level of parallelism is eliminated
in CSB/OpenMP by noting that the work associated with
each nonzero is significantly increased as m increases,
and we leverage the large dimensionality of input vec-
tors for load balancing among threads. Ultimately, we
observe that CSB/OpenMP’s performance saturates at
around 65 GFlop/s for m > 16. This represents a roughly
45% increase in performance over CSR, and 20% increase
over CSB/Cilk.

CSB truly shines when performing SpMMT . The abil-
ity to efficiently thread the computation coupled with
improvements in locality allows CSB/OpenMP to re-
alize a 35% speedup for SpMV over CSR and nearly
a 4× improvement in SpMM for m ≥ 16. The row
partitioning scheme has only a minor benefit and only
at very large m. Moreover, CSB ensures SpMM and
SpMMT performance are now comparable (67 GFlop/s
vs 62 GFlop/s with OpenMP) — a clear requirement as
both computations are required for MFDn.

As an important note, we point out that the increase
in arithmetic intensity introduced by SpMM allows for
more than 5× increase in performance over SpMV.
This should be an inspiration to explore algorithms
that transform numerical methods from being memory
bandwidth-bound (SpMV) to compute-bound (SpMM).

5.2.2 Tuning for the Optimal Value of β

As discussed previously, we wish to maintain a working
set for the X and Y blocks of vectors as close to the
processor as possible in the memory hierarchy. Each β×β
block demands a working set of size βm in the L2 for
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Fig. 6: Performance
benefit on the
combined SpMM
and SpMMT

operation from
tuning the value
of β for the Nm8
matrix.

X and Y . Thus, as m increases, we are motivated to
decrease β. Fig. 6 plots performance of the combined
SpMM and SpMMT operation using CSB/OpenMP on
the Nm8 matrix as a function of m for varying β.
For small m, there is either sufficient cache capacity to
maintain locality on the block of vectors, or the other per-
formance bottlenecks are pronounced enough to mask
any capacity misses. However, for large m (we show
up to m = 96 for illustrative purposes), we clearly see
that progressively smaller β are the superior choice as
they ensure a constrained resource (e.g., L3 bandwidth)
is not flooded with cache capacity miss traffic. Still,
note in Fig. 6 that no matter what β value is used, the
maximum performance obtained for m > 48 is lower
than the peak of 45 Gflops/s achieved for lower values
of m. This suggests that for large values of m, it may be
better to perform the SpMM and SpMMT computations
as batches of tasks with narrow vector blocks. In the
following sections, we always use the best value of β
for a given value of m.

5.2.3 Speedup for Combined SpMM/SpMMT Operation
Our ultimate goal is to include the LOBPCG algorithm
as an alternative eigensolver in MFDn. As discussed
earlier, the computation of both SpMM and SpMMT is
needed for this purpose. We are therefore interested in
the performance benefit for the larger (and presumably
more challenging) MFDn matrices. Fig. 7 presents the
combined performance of SpMM and SpMMT as a
function of m for our three test matrices. Clearly, the
CSB variants deliver extremely good performance for the
combined operation with the CSB/OpenMP delivering
the best performance. We observe that as one increases
the number of vectors m, performance increases to a
point at which it saturates. A naive understanding of
locality would suggest that regardless of matrix size, the
ultimate SpMM performance should be the same. How-
ever, as one moves to the larger and sparser matrices,
performance saturates at lower values. Understanding
these effects and providing possible remedies requires
introspection using our performance model.

5.2.4 Performance Analysis
Given the complex memory hierarchies of varying ca-
pacities and bandwidths in highly parallel processors,
the ultimate bottlenecks to performance can be extremely
non-intuitive and require performance modeling. In
Fig. 7, we provide three Roofline performance bounds
based on DRAM, L3, and L2 data movements and

Aktulga, Afibuzzaman, Williams, Buluç, Shao, Yang,
Ng, PM, Vary, submitted for publication

I Compressed sparse block
(CSB)

I improves data locality
and cache performance

I allows for efficient OpenMP
parallelization within nodes,
avoiding race conditions for
both SpMV and SpMVT

I Block algorithm (LOBPCG)
I SpMV on ’block of vectors’

allows for vectorization
I Performance tuning for KNL

in progress in collaboration
with NERSC, Cray, and Intel
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For further reading

I J. Suhonen,
From Nucleons to Nucleus,
Springer, 2007

I R.R. Whitehead, A. Watt, B.J. Cole and I. Morrison,
Computational Methods for Shell Model Calculations,
Adv. Nucl. Phys. 9, 123 (1977).

I B.R. Barrett, P. Navrátil and J.P. Vary,
Ab initio no core shell model,
Prog. Part. Nucl. Phys. 69 (2013) 131.
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For further reading – CI codes

I OXBASH/NuShellX
B.A. Brown, A. Etchegoyen and W.D.M. Rae, Computer code
OXBASH: the Oxford University-Buenos Aires-MSU shell model
code, MSU Cyclotron Laboratory Report No. 524, 1985;
B.A. Brown and W.D.M. Rae. Nucl. Data Sheets 120, 115 (2014).

I Antoine
F. Nowacki and E. Caurier, Acta Phys. Pol. B 30, 705 (1999);
E. Caurier et al., Rev. Mod. Phys. 77, 427 (2005).

I Bigstick
C.W. Johnson, W.E. Ormand and P.G. Krastev,
Comp. Phys. Comm. 184, 2761 (2013) [arXiv:1303.0905 [nucl-th]];
H. Shan, S. Williams, C.W. Johnson, K. McElvain and
W.E. Ormand, SuperComputing 2015.

I MFDn
should be made public this fall/winter . . .
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