The No-Core Shell Model and High-Performance Computing

Pieter Maris

Dept. of Physics and Astronomy lowa State University Ames, IA 50011 pmaris@iastate.edu

28th Indian Summer School Ab Initio methods in Nuclear Physics Aug. 29 – Sept. 2, 2016, Prague, Czech Republic

Introduction	No-Core CI	HPC	CI on HPC	For further reading
Outline				

Introduction

No-Core Configuration Interaction approach

High-Performance Computing

CI calculations on HPC platforms

For further reading

Valley of stability & Magic numbers

Introduction No-Core CI HPC CI on HPC For further reading
The nuclear mean field Shell Model

Effective (phenomenological) potential for protons and neutrons

P. Maris (ISU)

- Closed shell core
- ► Effective potential for non-interacting valence nucleons: Single-Particle energies *ϵ*
- Interactions between valence nucleons: Configuration mixing

P. Maris (ISU)

< 47 ▶

Given a Hamiltonian operator (in relative coordinates)

$$\hat{\mathbf{H}}_{\text{rel}} = \sum_{i < j} \frac{(\vec{p}_i - \vec{p}_j)^2}{2 \, m \, A} + \sum_{i < j} V_{ij} + \sum_{i < j < k} V_{ijk} + \dots$$

solve the eigenvalue problem for the bound state wavefunction of *A* nucleons

$$\hat{\mathbf{H}}_{rel} \Psi(r_1, \ldots, r_A) = \lambda \Psi(r_1, \ldots, r_A)$$

by expanding the $\Psi(r_1, ..., r_A)$ in products of harmonic oscillator (H.O.) single-particle states

Introduction	No-Core CI	HPC	CI on HPC	For further reading
The No-Core	e Shell Mode	el: Plan foi	r four lecture	S

- 1. NCSM and HPC
 - Remainder of this lecture
- 2. NN and 3N (effective) interactions
 - This afternoon
- 3. Emergence of collective motion (plus additional topics, depending on interests?)
 - Tomorrow
- 4. Beyond the H.O. basis (plus additional topics, depending on interests?)
 - Wednesday

Introduction No-Core CI HPC CI on HPC For further reading Reminder: 3D quantum Harmonic Oscillator

- Hamiltonian $\hat{\mathbf{H}}^{\text{H.O.}} = \frac{p^2}{2m} + \frac{1}{2}m\omega^2 r^2$
- Solutions of Schrödinger equation $\hat{\mathbf{H}}^{\text{H.O.}}\phi(r) = E_N \phi(r)$

$$\phi(\mathbf{r}) = \mathcal{N}_{nl} \left(\frac{\mathbf{r}}{b}\right)^{l} e^{-r^{2}/(2b^{2})} L_{n}^{(l+\frac{1}{2})}(\mathbf{r}^{2}/b^{2}) Y_{lm}(\theta,\phi)$$

with H.O. parameter $b^2 = \hbar/(m\omega)$

- Eigenvalues $E_N = (\frac{3}{2} + N)\hbar\omega$ with N = 2n + I
- Nucleons: spin-¹/₂ particles, spin up or down
- Single-particle quantum number in LS-scheme: $|nlmss_z\rangle$
- Couple orbital motion and intrinsic spin (and suppress s = 1/2) to J-scheme: Ĵ = L̂ + Ŝ: |nljm_j⟩
- Degeneracy of major (H.O. energy) shells (N + 1)(N + 2)
 - magic numbers 2, 8, 20, 40, ...
 - s-shell, p-shell, sd-shell, pf-shell, ...

Introduction No-Core CI HPC CI on HPC For further reading No-Core Configuration Interaction approach For further reading For further reading For further reading

- Expand wavefunction in basis states $|\Psi\rangle = \sum a_i |\Phi_i\rangle$
- Express Hamiltonian in basis $\langle \Phi_j | \hat{\mathbf{H}} | \Phi_i \rangle = H_{ij}$
- Diagonalize Hamiltonian matrix H_{ij}
- No-Core: all A nucleons are treated the same
- Complete basis exact result
 - caveat: complete basis is infinite dimensional
- In practice
 - truncate basis
 - study behavior of observables as function of truncation
- Computational challenge
 - construct large ($10^{10} \times 10^{10}$) sparse symmetric matrix H_{ij}
 - obtain lowest eigenvalues & -vectors corresponding to low-lying spectrum and eigenstates

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

 Introduction
 No-Core CI
 HPC
 CI on HPC
 For further reading

 NCCI approach – Basis expansion
 For further reading
 For further reading
 For further reading

Expand A-body wave function in basis functions

$$\Psi(r_1,\ldots,r_A)=\sum a_i\Phi_i(r_1,\ldots,r_A)$$

Use basis of single Slater Determinants of single-particle states

$$\Phi_{i}(r_{1},...,r_{A}) = \frac{1}{\sqrt{(A!)}} \begin{vmatrix} \phi_{i1}(r_{1}) & \phi_{i2}(r_{1}) & \dots & \phi_{iA}(r_{1}) \\ \phi_{i1}(r_{2}) & \phi_{i2}(r_{2}) & \dots & \phi_{iA}(r_{2}) \\ \vdots & \vdots & & \vdots \\ \phi_{i1}(r_{A}) & \phi_{i2}(r_{A}) & \dots & \phi_{iA}(r_{A}) \end{vmatrix}$$

which takes care of anti-symmetrization (Fermion statistics)

- Each many-body basis state Φ(r₁,..., r_A) eigenstate of Ĵ_z, with fixed eigenvalue *M*, but not of Ĵ² (*M*-scheme)
 - almost trivial to implement

$$\hat{\mathbf{J}}_{\mathbf{z}}|\Phi
angle = M|\Phi
angle = \sum_{k=1}^{k} m_{j_k}|\Phi
angle$$

Α

Introduction No-Core CI HPC CI on HPC For further reading NCCI approach – Hamiltonian

Expand Hamiltonian in basis

$$\hat{\mathbf{H}}_{\text{rel}} = \sum_{i < j} \frac{(\vec{p}_i - \vec{p}_j)^2}{2 \, m \, A} + \sum_{i < j} V_{ij} + \sum_{i < j < k} V_{ijk} + \dots$$

- ► A-body problem with a-body interaction: nonzero matrix elements iff at least (A a) particles are in identical single-particle states
 - many-body basis states are single Slater Determinants
 - A-body problem with 2-body interactions

$$\mathcal{H}^{(\mathcal{A})}_{ij} = (-1)^{\mathsf{permutations}} \, \delta_{i_1, j_1} \dots \delta_{i_{(\mathcal{A}-2)}, j_{(\mathcal{A}-2)}} \, \langle a \, b | \hat{\mathbf{H}} | c \, d
angle$$

Sparse symmetric eigenvalue problem

< 3 > < 3</p>

NCCI approach – Truncations

Complete space - exact (for bound states), but infinite-dimensional

*N*_{max} truncation:
 Each many-body basis state Φ(*r*₁,...,*r*_A) satisfies

$$\sum_{k=1}^{A} \left(2 n_k + l_k \right) \leq N_0 + N_{\max}$$

- exact factorization of Center-of-Mass motion
- Alternatives:
 - FCI (commonly used in nuclear shell model, quantum chemistry, ...) truncation on single-particle basis states only
 - Importance Truncation
 - No-Core Monte-Carlo Shell Model
 - SU(3) Truncation
 - <u>►</u> ...

Roth, PRC79, 064324 (2009)

Abe et al, PRC86, 054301 (2012)

Dytrych et al, PRL111, 252501 (2013)

Introduction No-Core CI HPC CI on HPC For further reading
Intermezzo: Center-of-Mass motion

- Use single-particle coordinates, not relative (Jacobi) coordinates
 - straightforward to extend to many particles
 - have to separate Center-of-Mass motion from relative motion
- Center-of-Mass wavefunction factorizes for H.O. basis functions in combination with N_{max} truncation

$$\begin{array}{lll} |\Psi_{\rm total}\rangle & = & |\phi_1\rangle \otimes \ldots \otimes |\phi_A\rangle \\ & = & |\Phi_{\rm Center-of-Mass}\rangle \otimes |\Psi_{\rm rel}\rangle \end{array}$$

where

$${f \hat{H}}_{
m rel} | \Psi_{
m i, \, rel}
angle \ = \ E_{
m i} | \Psi_{
m i, \, rel}
angle$$

Add Lagrange multiplier to Hamiltonian (Lawson term)

$$\hat{\mathbf{H}}_{\mathsf{rel}} \longrightarrow \hat{\mathbf{H}}_{\mathsf{rel}} + \Lambda_{\mathsf{CM}} \Big(\hat{\mathbf{H}}_{\mathsf{CM}}^{\mathsf{H.O.}} - \frac{3}{2} \hbar \omega \Big)$$

with $\hat{\textbf{H}}_{\text{rel}} = \hat{\textbf{T}}_{\text{rel}} + \hat{\textbf{V}}_{\text{rel}}$ the relative Hamiltonian

- separates states with CM excitations from states with 0s CM motion $|\Phi_{CM}\rangle = |\Phi_{0s}\rangle$

Introduction No-Core CI HPC CI on HPC For further reading
Intermezzo: FCI vs. Nmax truncation

- ► *N*_{max} truncation
 - exact factorization of Center-of-Mass motion
- Infinite basis space limit
 - both N_{max} truncation and FCI converge to the same results
 - N_{max} truncation does so much more rapidly

- Increase of basis space dimension with increasing A and N_{max}
 - need calculations up to at least $N_{\text{max}} = 8$ for meaningful extrapolation and numerical error estimates
- More relevant measure for computational needs
 - number of nonzero matrix elements
 - current limit 10¹³ to 10¹⁴ (Edison, Mira, Titan)

matrix dimension

High-Performance Computing: Moore's law

Projected Performance Development

^performance

Introduction No-Core CI HPC CI on HPC For further reading

High-Performance Computing

- Parallel computing
 - Initially: Shared memory or distributed memory parallel systems
 - Currently: Systems have shared and distributed memory
 - use OpenMP within a node and MPI between nodes
- Accelerators
 - GPU's (NVIDIA), Xeon Phi (Intel), ...
 - Initially: as co-processor
 - Soon: self-hosted
- Vectorization
 - Xeon Phi (KNL) has 512-bit vector units (8 double precision floats)
- Increasing performance gap between processor and memory
 - Available memory and memory bandwidth per PU decreases
 - Data locality and data placement is crucial

Highly nontrivial to achieve good performance

 Need to collaborate with applied mathematicians and computer scientists

P. Maris (ISU)

Configuration Interaction code for nuclear structure calculations

- Platform-independent, hybrid OpenMP/MPI, Fortran 90
- Generate many-body basis space subject to user-defined single-particle and many-body truncation
- Construct of many-body matrix H_{ij}
 - determine which matrix elements can be nonzero based on quantum numbers of underlying single-particle states
 - evaluate and store nonzero matrix elements in compressed sparse block format
- Obtain lowest eigenpairs using Lanczos algorithm (or LOBPCG)
 - typical use: 8 to 12 lowest eigenvalues and eigenvectors
 - $\blacktriangleright\,$ typically need \sim 300 to \sim 500 Lanczos iterations
 - some applications need hundreds of eigenvalues
- Write eigenvectors (wavefunctions) to disk
- Calculate selected set of observables

3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Let *H* be a symmetric matrix. Then *H* can be reduced to a symetric tridiagonal matrix *T* via orthogonal unitary transformations, $H = Q_n T_n Q_n^T$

For i = 1, set $\beta_1 = 0$ and initial vector q_1 with $||q_1|| = 1$

- While (not converged) do
 - 1. compute $p = H q_i$ i.e. perform Sparse Matrix-Vector Multiplication
 - 2. compute $\alpha_i = q_i^T \cdot (H q_i)$
 - 3. compute $k = p \alpha_i q_i \beta_i q_{i-1}$
 - 4. (orthogonalize k w.r.t. q_i for numerical stability)

more dot-products

LAPACK

i.e. perform dot-product

- 5. compute $\beta_{i+1} = ||k||$ 6. set $q_{i+1} = k/||k||$
- 7. increment i = i + 1
- 8. check (convergence) diagonalize small tridiagonal matrix
 - obtain eigen-values λ and -vectors v of T_n
 - compute $\beta_i |\frac{v_i}{\lambda}|$ for each desired eigenvalue
- Compute approximate eigenvectors of H from T_n and Q_n

Introduction	No-Core CI	HPC	CI on HPC	For further reading
Lanczos algorithm				

- dimension 252 million, with 400 billion nonzero matrix elements
- runs on 124 nodes Edison at NERSC using 496 MPI ranks with
 6 OpenMP threads/MPI
- total runtime less than 10 minutes
- Lowest 5 eigenvalues of T_n after n Lanczos iterations
- ► Note: in MFDn we use single-precision for *H* and *Q* = {*q_i*} but double-precision for dot-products and *T_n* for numerical stability

P. Maris (ISU)

The NCSM and HPC

20/29

- Set initial guess for $X^{(1)}$ consisting of k orthonormal vectors
 - ideally, consisting of approximate eigenvectors
 - e.g. smaller basis space, different H.O. parameter $\hbar\omega, \ldots$
- While (not converged) do
 - 1. apply preconditioner T
 - preconditioning is an art ...
 - kinetic energy is likely to be efficient, but too expensive
 - diagonal matrix element is cheap, but not efficient
 - compromise:

diagonal tiles of H, based on many-body (n, l, j) orbitals

- 2. orthonormalize using Cholesky QR
- 3. compute *HX*⁽ⁱ⁾ Sparse Matrix-Matrix Multiplication
- 4. do LOBPCG magic ...
- 5. check convergence
- $X^{(n)}$ consists of k orthonormal eigenvectors

A B F A B F

- Blocks of 8 (12) vectors, targeting lowest 5 (8) eigenstates
- N_{max} = 8: 114 iterations in 6.5 seconds (using random initial vectors)
- $N_{\text{max}} = 10$: 67 iterations in 19.8 seconds
- $N_{\text{max}} = 12$: 50 iterations in 109.4 seconds
- Despite doing approximately 1.6 times more work in SpMV/SpMM, LOBPCG factor of 2 faster than Lanczos

Introduction	No-Core CI	HPC	CI on HPC	For further reading
Efficient c	listributed S	pMV		

- Symmetric matrix
 - store only half the matrix (upper or lower triangle)
 - have to do SpMV and SpMV^T with same data structure
- Load-balancing
 - load determined by number of nonzero matrix elements
 - 2-dimensional distribution of matrix
 - round-robin distribution of (groups of) many-body states

Efficient distributed SpMV – MPI communication

Aktulga, Yang, Ng, PM, Vary, Concurr. Comput. 26 (2014), doi:10.1002/cpe.3129

- Overlap communication with computation
- Optimize mapping onto network topology for non-overlapping communication see also Orvspavey, PhD thesis 2016, ISU • • • • • • • • • • •

P. Maris (ISU)

The NCSM and HPC

ISS28, Prague, 2016 26/29

Aktulga, Afibuzzaman, Williams, Buluç, Shao, Yang, Ng, PM, Vary, submitted for publication

- Compressed sparse block (CSB)
 - improves data locality and cache performance
 - allows for efficient OpenMP parallelization within nodes, avoiding race conditions for both SpMV and SpMV^T
- Block algorithm (LOBPCG)
 - SpMV on 'block of vectors' allows for vectorization

 Performance tuning for KNL in progress in collaboration with NERSC, Cray, and Intel

Introduction	No-Core CI	HPC	CI on HPC	For further reading
For further reading				

- J. Suhonen, From Nucleons to Nucleus, Springer, 2007
- R.R. Whitehead, A. Watt, B.J. Cole and I. Morrison, Computational Methods for Shell Model Calculations, Adv. Nucl. Phys. 9, 123 (1977).
- B.R. Barrett, P. Navrátil and J.P. Vary, Ab initio no core shell model, Prog. Part. Nucl. Phys. 69 (2013) 131.

Introduction No-Core CI HPC CI on HPC For further reading
For further reading - CI codes

Ŭ

OXBASH/NuShellX

B.A. Brown, A. Etchegoyen and W.D.M. Rae, *Computer code OXBASH: the Oxford University-Buenos Aires-MSU shell model code*, MSU Cyclotron Laboratory Report No. 524, 1985; B.A. Brown and W.D.M. Rae. Nucl. Data Sheets 120, 115 (2014).

Antoine

F. Nowacki and E. Caurier, Acta Phys. Pol. **B 30**, 705 (1999);

E. Caurier et al., Rev. Mod. Phys. 77, 427 (2005).

Bigstick

C.W. Johnson, W.E. Ormand and P.G. Krastev, Comp. Phys. Comm. **184**, 2761 (2013) [arXiv:1303.0905 [nucl-th]]; H. Shan, S. Williams, C.W. Johnson, K. McElvain and W.E. Ormand, SuperComputing 2015.

MFDn

should be made public this fall/winter ...

A B b 4 B b