Emergence of collective motion

Pieter Maris

Dept. of Physics and Astronomy lowa State University Ames, IA 50011 pmaris@iastate.edu

28th Indian Summer School Ab Initio methods in Nuclear Physics Aug. 29 – Sept. 2, 2016, Prague, Czech Republic

Outline

Binding and excitation energies with JISP16

Electromagnetic observables with JISP16

Emergence of rotational bands

Detailed example: 9Be

Intrinsic rotational band paramereters

< ロ > < 同 > < 回 > < 回 >

Ground state energies of *p*-shell nuclei with JISP16

Maris and Vary, IJMPE22, 1330016 (2013)

Extrapolating to complete basis

Challenge: achieve numerical convergence for No-Core CI calculations using a finite amount of CPU time on current HPC systems

- Perform a series of calculations with increasing N_{max} truncation
- \blacktriangleright Extrapolate to infinite model space \longrightarrow exact results
 - Empirical: binding energy exponential in N_{max}

$$E_{\text{binding}}^{N} = E_{\text{binding}}^{\infty} + a_1 \exp(-a_2 N_{\text{max}})$$

- use 3 or 4 consecutive N_{max} values to determine $E_{\text{binding}}^{\infty}$
- use ħω and N_{max} dependence to estimate numerical error bars
 Maris, Shirokov, Vary, PRC79, 014308 (2009)
- ► Recent studies of IR and UV behavior based on S.P. asymptotics: exponentials in √ħω/N and √ħωN Coon et al, PRC86, 054002 (2012);

Furnstahl, Hagen, Papenbrock, PRC86, 031301(R) (2012); More, Ekstrom, Furnstahl, Hagen, Papenbrock, PRC87, 044326 (2013); Wendt, Forssén, Papenbrock and Sääf, PRC91, 061301 (2015); More, PhD thesis OSU, arXiv:1608.01385 [nucl-th];

Extrapolating to complete basis - in practice

Perform a series of calculations with increasing N_{max} truncation

 H.O. basis up to N_{max} = 16 and exponential extrapilation E_b = -31.49(3) MeV

Cockrell, Maris, Vary, PRC86, 034325 (2012)

• Hyperspherical harmonics up to $K_{max} = 14$: $E_b = -31.46(5)$ MeV

Vaintraub, Barnea, Gazit, PRC79, 065501 (2009)

< ロ > < 同 > < 回 > < 回 >

Example: ⁹Be

Band paramereters

Spectrum of ⁶Li

- Excitation energies narrow states reasonably well converged
- No need for extrapolations

Energies of excited states of A = 6 to A = 9 nuclei

Maris and Vary, IJMPE22, 1330016 (2013)

Local one-body density

One-body density in single-particle coordinates

$$\rho(\vec{r}) = \int |\Psi(\vec{r}_1, \vec{r}_2, \dots, \vec{r}_A)|^2 d^3 r_2 \dots d^3 r_A$$

• Lab-frame density $\rho^{\omega}(\vec{r})$ includes Center-of-Mass motion

$$ho^{\omega}(\vec{r}) = \int
ho_{
m rel}(\vec{r}-\vec{R})
ho^{\omega}_{
m CM}(\vec{R}) d^{3}\vec{R}.$$

depends on basis ħω, even in complete (infinitely large) basis
 Deconvolution of relative density and Center-of-Mass motion

$$\rho_{\rm rel}(\vec{r}) = F^{-1} \left[\frac{F[\rho^{\omega}(\vec{r})]}{F[\rho^{\omega}_{\rm CM}(\vec{r})]} \right]$$

Multipole expansion (used to facilitate deconvolution)

$$\rho(\vec{r}) = \sum_{K=0}^{2J} \frac{\langle JMK0 | JM \rangle}{\sqrt{2J+1}} Y_K^0(\theta) \rho^{(K)}(r)$$

.

A D M A A A M M

Density of ⁶Li

Cockrell, Maris, Vary, PRC86, 034325 (2012)

- Slow convergence of asymptotic tail of wavefunction in particular for larger ħω values
- Hence, slow convergence of RMS radii, quadrupole moments, etc.

Radius of ⁷Be

• Calculation one-body observables $\langle i | \mathcal{O} | j \rangle \sim \int \mathcal{O}(r) r^2 \rho_{ij}(r) dr$

- RMS radius: $\mathcal{O}(r) = r^2$
- Slow convergence of RMS radius due to slow build up of asymptotic tail
- Ground state RMS radius in agreement with data

Multipole operators

Δ

Electric quadrupole (E2) operator

$$\mathbf{Q}_{2} = \sum_{i=1}^{N} e_{i} r_{i}^{2} Y_{2u}(\mathbf{r}_{i}) = e_{p} \mathbf{Q}_{p} + e_{n} \mathbf{Q}_{n} \qquad e_{p} = e \quad e_{n} = 0$$
$$\mathbf{Q}_{p} \sim \sum_{i=1}^{Z} r_{p,i}^{2} Y_{2u}(\mathbf{r}_{p,i}) \qquad \mathbf{Q}_{n} \sim \sum_{i=1}^{N} r_{n,i}^{2} Y_{2u}(\mathbf{r}_{n,i}) \qquad Proton \ \mathcal{E} \ neutron \ tensors$$

Magnetic dipole (M1) operator

$$\mathbf{M}_{1} = \sqrt{\frac{3}{4\pi}} \mu_{N} \sum_{i=1}^{A} (g_{\ell}^{(i)} \boldsymbol{\ell}_{i} + g_{s}^{(i)} s_{i}) \qquad \begin{array}{c} g_{\ell,p} = 1 & g_{\ell,n} = 0 \\ g_{s,p} \approx 5.585 & g_{s,n} \approx -3.826 \end{array}$$
$$= g_{\ell,p} \mathbf{D}_{\ell,p} + g_{\ell,n} \mathbf{D}_{\ell,n} + g_{s,p} \mathbf{D}_{s,p} + g_{s,n} \mathbf{D}_{s,n},$$
$$\mathbf{D}_{\ell,p} \sim \sum_{i=1}^{Z} \boldsymbol{\ell}_{p,i} \quad \mathbf{D}_{\ell,n} \sim \sum_{i=1}^{N} \boldsymbol{\ell}_{n,i} \quad \mathbf{D}_{s,p} \sim \sum_{i=1}^{Z} s_{p,i} \quad \mathbf{D}_{s,n} \sim \sum_{i=1}^{N} s_{n,i} \quad Dipole \ terms$$

: 0

Dipole terms of ⁷Li

Maris, Vary, IJMPE22, 1330016 (2013)

$$J = \frac{1}{J+1} \left(\langle \vec{J} \cdot \vec{L}_{p} \rangle + \langle \vec{J} \cdot \vec{L}_{n} \rangle + \langle \vec{J} \cdot \vec{S}_{p} \rangle + \langle \vec{J} \cdot \vec{S}_{n} \rangle \right)$$

• Converged with N_{max} , persistent weak $\hbar\omega$ dependence $\frac{5}{2}^{-}$ states

• Two $\frac{5}{2}^{-}$ states have very different structure

Magnetic moments of *p*-shell nuclei with JISP16

Magnetic moments reasonably well converged

Deviations from experiment: missing meson exchange currents

Quadrupole moment and E2 transition strengths 7Li

Cockrell, Maris, Vary, PRC86 034325 (2012)

- E2 observables not converged, due to gaussian fall-off of HO wavefunction
- Nevertheless, qualitative agreement of Q and B(E2) with data

Example: ⁹Be

Band paramereters

Spectrum of A = 6 to 9 nuclei with JISP16

Maris and Vary, IJMPE22, 1330016 (2013)

Rotational band?

P. Maris (ISU)

15/34

Example: ⁹Be Band parame

Rotational model predictions

Intrinsic state $|\phi_K\rangle$ & rotation in Euler angles ϑ (J = K, K + 1, ...) $|\psi_{JKM}\rangle \propto \int d\vartheta \Big[\mathscr{D}^{J}_{MK}(\vartheta) |\phi_{K};\vartheta\rangle + (-)^{J+K} \mathscr{D}^{J}_{M-K}(\vartheta) |\phi_{\bar{K}};\vartheta\rangle \Big]$ Rotational energy $E(J) = E_0 + A[J(J+1) + a(-)^{J+1/2}(J+\frac{1}{2})] \qquad A \equiv \frac{\hbar^2}{2\pi}$ Coriolis (K = 1/2) Rotational relations on electromagnetic transitions (E2, M1, ...)Ē - 01 E_{c} 5/2 7/2 1/23/29/2J

P. Maris (ISU)

Emergence of collective motion

ISS28, Prague, 2016 16 / 34

Rotational model predictions

Intrinsic state $|\phi_K\rangle$ & rotation in Euler angles ϑ (J = K, K + 1, ...) $|\psi_{JKM}\rangle \propto \int d\vartheta \Big[\mathscr{D}^{J}_{MK}(\vartheta) |\phi_{K};\vartheta\rangle + (-)^{J+K} \mathscr{D}^{J}_{M-K}(\vartheta) |\phi_{\bar{K}};\vartheta\rangle \Big]$ Rotational energy $E(J) = E_0 + A[J(J+1) + a(-)^{J+1/2}(J+\frac{1}{2})] \qquad A \equiv \frac{\hbar^2}{2\mathcal{J}}$ Coriolis (K = 1/2)Rotational relations on electromagnetic transitions (E2, M1, ...)Ē - 01 Coriolis decoupling 1/23/2 5/2 7/2 9/2J

P. Maris (ISU)

Emergence of collective motion

ISS28, Prague, 2016 17 / 34

Rotational band: Quadrupole matrix elements

$$\begin{aligned} \langle \psi_{J_f \mathcal{K}} || \mathcal{E}_2 || \psi_{J_f \mathcal{K}} \rangle &= \frac{(2J_i + 1)^{1/2}}{1 + \delta_{\mathcal{K}0}} \Big((J_i, \mathcal{K}, 2, 0 | J_f, \mathcal{K}) \langle \phi_{\mathcal{K}} || \mathcal{E}_{2,0} || \phi_{\mathcal{K}} \rangle \\ &+ (-)^{J_i + \mathcal{K}} (J_i, -\mathcal{K}, 2, 2\mathcal{K} | J_f, \mathcal{K}) \langle \phi_{\mathcal{K}} || \mathcal{E}_{2,2\mathcal{K}} || \phi_{\bar{\mathcal{K}}} \rangle \Big) \end{aligned}$$

Consider both proton and neutron quadrupole tensors

P. Maris (ISU)

Emergence of collective motion

Rotational band: Dipole matrix elements

Magnetic moments

$$\mu(J) = a_0 J + a_1 \frac{K}{J+1} + a_2 \delta_{K,\frac{1}{2}} \frac{(-1)^{J-\frac{1}{2}}}{2\sqrt{2}} \frac{2J+1}{J+1}$$

Magnetic transition matrix elements

$$\langle \psi_{J-1,K} || M_1 || \psi_{J,K} \rangle = -\sqrt{\frac{3}{4\pi}} \sqrt{\frac{J^2 - K^2}{J}} \left(a_1 + a_2 \delta_{K,\frac{1}{2}} \frac{(-1)^{J-\frac{1}{2}}}{\sqrt{2}} \right)$$

Define dipole terms D_{l,p}, D_{l,n}, D_{s,p}, and D_{s,n} for both the magnetic moments and for the M₁ transitions

$$M_1 = g_{l,p} D_{l,p} + g_{l,n} D_{l,n} + g_{s,p} D_{s,p} + g_{s,n} D_{s,n}$$

with $g_{l,p} = 1$, $g_{l,n} = 0$, $g_{s,p} = 5.586$, and $g_{s,n} = -3.826$

Example: ⁹Be Band parar

⁸Be ground state rotational band

Shell model: Valence space angular momentum $J \le 4$ Cluster model: Molecular rotation of $\alpha + \alpha$ dimer

20/34

Example: ⁹Be Band param

⁸Be ground state rotational band

Shell model: Valence space angular momentum $J \le 4$ Cluster model: Molecular rotation of $\alpha + \alpha$ dimer

P. Maris (ISU)

ISS28, Prague, 2016 21 / 34

Example: ⁹Be I

Band paramereters

⁸Be ground state rotational band

Shell model: Valence space angular momentum $J \le 4$ Cluster model: Molecular rotation of $\alpha + \alpha$ dimer

P. Maris (ISU)

ISS28, Prague, 2016 22 / 34

23/34

Candidate Rotational bands in Be isotopes

E2 moments

E2 moments and transitions

oands Exa

Example: ⁹Be Band par

E2 and M1 moments and transitions

Convergence with basis space

Absolute binding energy? NO!

< A

Example: ⁹Be

Convergence with basis space

Absolute binding energy? NO! Excitation within band? ~YES

★ E ► < E</p>

< A

Convergence with basis space

Absolute *E*2? **NO**! Ratio of *E*2? ~**YES** Absolute *M*1? ~**YES**

Example: ⁹Be Ba

Band paramereters

Inter- and Intra-band E2 transtions

Caprio, Maris, Vary, Smith, IJMPE 24, 1541002 (2015)

E2 transition strenght between natural (negative) parity states in ⁹Be

Transitions within g.s. (K = 3/2) and (K = 1/2) bands significantly enhanced over typical E2 transition strenght

One-body density of 9Be ground state $(\frac{3}{2}, \frac{1}{2})$

and their difference

nagnetic observables

Rotational banc

Example: ⁹Be

Band paramereters

Extraction of band parameters

Caprio, Maris, Vary, Smith, IJMPE 24, 1541002 (2015)

P. Maris (ISU)

Convergence of intrinsic quadrupole moments

Caprio, Maris, Vary, Smith, IJMPE 24, 1541002 (2015)

Quadrupole moments? NO! Ratios of p & n moments? ~ YES Enhanced relative to single-particle strength (Weisskopf)

P. Maris (ISU)

Convergence of observables

- Binding energies
 - need extrapolations
 - alternatives for H.O. basis and/or different truncation scheme?
- Excitation energies
 - okay for narrow states (of similar structure as bound state)
 - H.O. basis not suited for broad resonances
 - alternatives for H.O. basis, specifically for resonances?
- Magnetic moments and transitions
 - converge generally rapidly
 - need to add meson-exchange currents
- Quadrupole moments and transitions
 - converge slowly
 - however, ratio's of E2 observables reasonably well converged
 - extrapolations? Odell, Papenbrock and Platter, PRC 93, 044331 (2016)
 - alternatives for H.O. basis and/or different truncation scheme?
- Emergence of rotational structure and clustering