

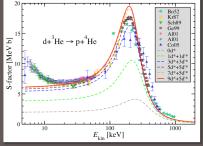
Ab Initio Nuclear Structure & Reaction Theory: No-Core Shell Model with Continuum Approach

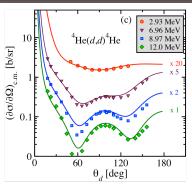
28th Indian-Summer School

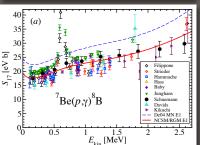
Ab Initio Methods in Nuclear Physics,
Prague, Czech Republic

August 29 - September 2, 2016

Petr Navratil | TRIUMF







Accelerating Science for Canada

Un accélérateur de la démarche scientifique canadient

Outline

Lecture 1

Introduction to nuclear reaction theory

Lecture 2

- Nuclear forces
 - chiral EFT, two-nucleon, three-nucleon
- Nuclear many-body calculations for bound states
 - No-core shell model (NCSM)
- Similarity Renormalization Group

Lecture 3

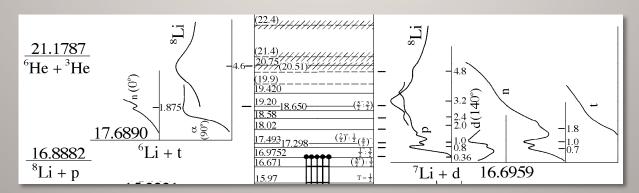
- Nuclear many-body calculations including continuum
 - NCSM with the Resonating Group Method (NCSM/RGM)
 - NCSM with continuum (NCSMC)

Lecture 4

- Applications to exotic nuclei and astrophysics
 - ⁷He, ¹¹Be, ¹⁰C(p,p), ¹¹C(p,γ)¹²N
 - ${}^{7}\text{Be}(p,\gamma){}^{8}\text{B}$, ${}^{3}\text{He}(\alpha,\gamma){}^{7}\text{Be}$, ${}^{3}\text{H}(\alpha,\gamma){}^{7}\text{Li}$, ${}^{3}\text{He}(d,p){}^{4}\text{He}$, ${}^{3}\text{H}(d,n){}^{4}\text{He}$
 - Progress towards ²H(α,γ)⁶Li, ⁴He(nn,γ)⁶He,

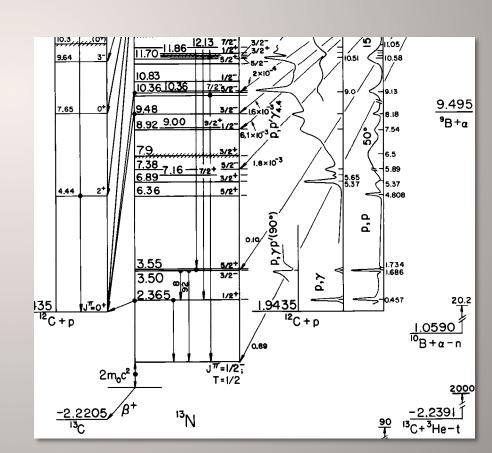
Nuclear reactions

- A+B→C+D ; A(B,C)D
 - conserve
 - number of nucleons
 - charge
 - energy
 - momentum
 - angular momentum
 - parity (strong, electromagnetic)
 - Q-value: Q = $M_A c^2 + M_B c^2 M_C c^2 M_D c^2$
 - Exothermic: Q>0 increase of kinetic energy in the final state
 - Endothermic: Q<0 decrease of kinetic energy in the final state



Nuclear reactions - kinds

- Elastic scattering
 - p+⁴He→p+⁴He; ⁴He(p,p)⁴He; ¹H(α,p)⁴He
 - n+⁴He→n+⁴He; ⁴He(n,n)⁴He
 - ¹²C(p,p)¹²C
 - ³He(α,α)³He
- Inelastic scattering
 - ¹²C(p,p')¹²C*(2+)
 - ¹⁹⁶Pt(¹¹Be, ¹¹Be*)¹⁹⁶Pt
 - · inverse kinematics, Coulomb excitation
- Transfer reactions
 - ⁷Li(d,p)⁸Li
 - 3H(d,n)4He (fusion)
 - ¹¹B(p, α)⁸Be*
 - ¹²C(p, α)⁹B
- Charge exchange reactions
 - $^{7}\text{Li}(p,n)^{7}\text{Be}$
- Breakup reactions
 - d+10B→p+n+10B
- Capture reactions (electromagnetic)
 - 7 Be(p, γ) 8 B
 - ³He(α , γ)⁷Be
 - ¹²C(p, γ)¹³N
- Photo-disintegration (electromagnetic)
 - v+¹¹Be →¹⁰Be+n
- Fission
 - n+²³⁵U → C*+D*



Nuclear reactions – times and energy scales

Direct reactions

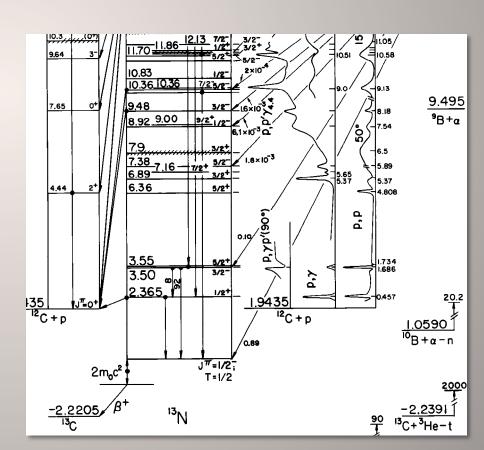
- fast
- involve few nucleons
- high incident energies
- typical examples: transfer and breakup
- DWBA theory
 - neglects antisymmetrization

Resonance reactions

- peaks in the cross sections
- resonances: long-lived configurations of nucleons
- various lifetimes
- typically at low energies
 - elastic, inelastic scattering
 - capture
- at high energies collective giant resonances
- nuclear many-body theory

Compound nucleus reactions

- low energy reactions
- slow
- compound nucleus formation, equilibrium
- decay independent on the details of the initial channel
- typical examples
 - neutron-induced reactions on heavy nuclei
- Hauser-Feshbach theory



Kinematics of binary reactions

Center of mass

$$\vec{R}_{cm} = \left(M_A \vec{r}_A + M_B \vec{r}_B\right) / \left(M_A + M_B\right)$$

$$\vec{P}_{cm} = \vec{p}_A + \vec{p}_B$$

Relative motion

$$\begin{split} \vec{r}_{AB} &= \vec{r}_A - \vec{r}_B \\ \vec{p}_{AB} &= \left(M_B \vec{p}_A - M_A \vec{p}_B \right) / \left(M_A + M_B \right) \end{split}$$

Total kinetic energy

$$E_{totkin} = \frac{\vec{p}_A^2}{2M_A} + \frac{\vec{p}_B^2}{2M_B} = \frac{\vec{P}_{cm}^2}{2(M_A + M_B)} + \frac{\vec{p}_{AB}^2}{2\mu_{AB}} \quad ; \quad \mu_{AB} = \frac{M_A M_B}{M_A + M_B} \quad ; \quad E_{kin} = \frac{\vec{p}_{AB}^2}{2\mu_{AB}}$$

center of mass energy and momentum conserved in reaction

Laboratory and CM scattering angles

- Laboratory target (B) at rest: v_B=0
 - Relative kinetic energy

$$E_{kin} = \frac{M_B}{M_A + M_B} E_A = \frac{1}{2} \mu_{AB} v_A^2$$

velocity relations

$$\vec{v} = \vec{v}' + \dot{\vec{R}}_{CM}$$

measured angle of nucleus C

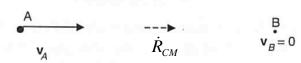
$$v_C \sin \theta_{lab} = v_C' \sin \theta_{CM}$$
$$v_C \cos \theta_{lab} = v_C' \cos \theta_{CM} + \dot{R}_{CM}$$

$$\tan \theta_{lab} = \frac{v_C' \sin \theta_{CM}}{v_C' \cos \theta_{CM} + \dot{R}_{CM}} = \frac{\sin \theta_{CM}}{\cos \theta_{CM} + \rho} \quad ; \quad \rho = \sqrt{\frac{M_A M_C}{M_B M_D} \frac{E_{kin}}{Q + E_{kin}}}$$

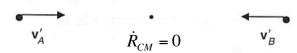
Using the energy conservation:

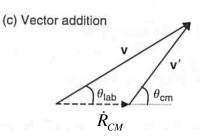
$$\frac{\vec{p}_{AB}^2}{2\mu_{AB}} + Q = \frac{\vec{p}_{CD}^2}{2\mu_{CD}}$$

(a) Laboratory frame



(b) Center-of-mass frame





Cross section

Asymptotic wave function for a short range potential

$$\begin{split} H_{tot} &= \frac{\vec{P}_{CM}^2}{2M} + H \quad ; \quad H = \frac{\vec{p}^2}{2\mu} + V(r) \\ \Psi(\vec{r}_1, \vec{r}_2) &= e^{i\vec{K}_{CM} \cdot \vec{R}_{CM}} \psi(\vec{r}) \quad ; \quad \vec{P}_{CM} = \hbar \vec{K}_{CM} \\ H\psi(\vec{r}) &= E\psi(\vec{r}) \end{split}$$

- if
$$rV(r) \rightarrow 0$$
 for $r \rightarrow \infty$
- then $\psi(\vec{r}) \rightarrow e^{i\vec{k}\cdot\vec{r}} + f(\theta,\varphi)\frac{e^{ikr}}{r}$; $\vec{p} = \hbar\vec{k}$

Differential cross section

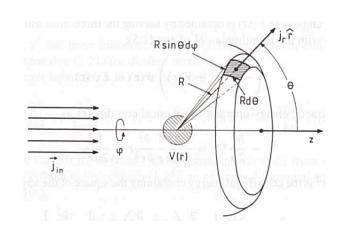
 $d\sigma(\Omega) = \frac{\text{probability current into } d\Omega \text{ in the direction } \Omega}{d\sigma(\Omega)}$ probability current density of the incident wave

$$\vec{j} = \frac{\hbar}{2\mu i} \Big(\psi^* \nabla \psi - \psi \nabla \psi^* \Big)$$

$$\vec{j}_{in} = \frac{\hbar \vec{k}_i}{\mu_i} = \vec{v}_i$$

$$\frac{d\sigma}{d\Omega} = \frac{j_r R^2}{|\vec{j}_{in}|} = |f(\theta, \varphi)|^2$$

$$\frac{d\sigma}{d\Omega_{CM}}d\Omega_{CM} = \frac{d\sigma}{d\Omega_{lab}}d\Omega_{lab} = 0$$



$$\frac{d\sigma}{d\Omega_{CM}}d\Omega_{CM} = \frac{d\sigma}{d\Omega_{lab}}d\Omega_{lab} \implies \frac{d\sigma}{d\Omega_{lab}} = \frac{\left(1 + \rho^2 + 2\rho\cos\theta\right)^{3/2}}{\left|1 + \rho\cos\theta\right|}\frac{d\sigma}{d\Omega_{CM}}$$

Calculation of scattering amplitude

Simplest case: Central short-range potential, no Coulomb

$$H\psi(\vec{r}) = E\psi(\vec{r})$$

$$\left(-\frac{\hbar^2}{2\mu}\vec{\nabla}^2 + V(r)\right)\psi(\vec{r}) = E\psi(\vec{r}) \quad ; \quad -\frac{\hbar^2}{2\mu}\vec{\nabla}^2 = -\frac{\hbar^2}{2\mu}\frac{1}{r}\frac{\partial^2}{\partial r^2}r + \frac{\vec{L}^2}{2\mu r^2}$$

The (initial) expansion plane wave expansion

$$e^{i\vec{k}\cdot\vec{r}} = 4\pi \sum_{l,m} i^l j_l(kr) Y_{lm}^*(\hat{k}) Y_{lm}(\hat{r}) = \sum_l (2l+1)i^l j_l(kr) P_l(\cos\theta) \quad ; \quad \vec{k}\cdot\vec{r} = kr\cos\theta$$

No dependence on azimuthal angle φ

$$\psi(\vec{r}) = \frac{1}{kr} \sum_{l} (2l+1)i^{l} u_{l}(r) P_{l}(\cos\theta) \quad ; \quad \vec{L}^{2} P_{l}(\cos\theta) = \hbar^{2} l(l+1) P_{l}(\cos\theta)$$

$$\left| \left(\frac{d^2}{dr^2} - \frac{l(l+1)}{r^2} - \frac{2\mu}{\hbar^2} V(r) + k^2 \right) u_l(r) = 0 \right| ; \quad k^2 = 2\mu E / \hbar^2$$

Equation to solve

– Assume $V(r)\sim 0$ for $r \geq a$ (valid for a nuclear potential)

$$u_{l}(r) \rightarrow b_{l} kr \left(\cos \delta_{l} j_{l}(kr) + \sin \delta_{l} n_{l}(kr)\right) \quad \text{for} \quad r \geq a$$

$$\rightarrow b_{l} \left(\cos \delta_{l} \sin(kr - \frac{\pi}{2}l) + \sin \delta_{l} \cos(kr - \frac{\pi}{2}l)\right) = b_{l} e^{-i\delta_{l}} \frac{e^{2i\delta_{l}} e^{i(kr - \frac{\pi}{2}l)} - e^{-i(kr - \frac{\pi}{2}l)}}{2i} \quad \text{for} \quad r \rightarrow \infty$$

– We introduced phase shift $\delta_{\rm l}$. For V=0 the phase shift is zero: $\delta_{\rm l}$ =0

Calculation of scattering amplitude

– To find the amplitude $f(\theta)$ we use

$$f(\theta) = \sum_{l} (2l+1) f_{l} P_{l}(\cos \theta)$$

Then we match

$$\psi(\vec{r}) \rightarrow e^{i\vec{k}\cdot\vec{r}} + f(\theta,\varphi) \frac{e^{ikr}}{r} = \sum_{l} (2l+1)(i^{l}j_{l}(kr) + f_{l}\frac{e^{ikr}}{r})P_{l}(\cos\theta) \rightarrow \frac{1}{2ik}\sum_{l} (2l+1)(i^{l}\frac{e^{i(kr-\frac{\pi}{2}l)} - e^{-i(kr-\frac{\pi}{2}l)}}{r} + 2ikf_{l}\frac{e^{ikr}}{r})P_{l}(\cos\theta)$$

$$= \frac{1}{2ikr}\sum_{l} (2l+1)((-1)^{l+1}e^{-ikr} + (1+2ikf_{l})e^{ikr})P_{l}(\cos\theta)$$

with

$$\psi(\vec{r}) = \frac{1}{kr} \sum_{l} (2l+1)i^{l} u_{l}(r) P_{l}(\cos\theta) \rightarrow \frac{1}{kr} \sum_{l} (2l+1)i^{l} b_{l} e^{-i\delta_{l}} \frac{e^{2i\delta_{l}} e^{i(kr - \frac{\pi}{2}l)} - e^{-i(kr - \frac{\pi}{2}l)}}{2i} P_{l}(\cos\theta)$$

$$= \frac{1}{2ikr} \sum_{l} (2l+1)b_{l} e^{-i\delta_{l}} \left((-1)^{l+1} e^{-ikr} + e^{2i\delta_{l}} e^{ikr} \right) P_{l}(\cos\theta) \quad \text{for} \quad r \rightarrow \infty$$

- and set $b_l = e^{i\delta_l}$ and $1 + 2ik f_l = e^{2i\delta_l} \implies f_l = (S_l 1)/2ik$
- S-matrix (element) S or collision matrix U: $S_l = e^{2i\delta_l}$

- Cross section:
$$\frac{d\sigma}{d\Omega} = |f(\theta)|^2 = \frac{1}{4k^2} \sum_{l,l'} (2l+1)(2l'+1)(S_l-1)(S_{l'}^*-1) P_l(\cos\theta) P_{l'}(\cos\theta)$$

Charge particle scattering

Rutherford scattering

$$V_C(r) = \frac{Z_1 Z_2 e^2}{r} \quad ; \quad \left(-\frac{\hbar^2}{2\mu} \vec{\nabla}^2 + V_C(r) \right) \psi_C(\vec{r}) = E \psi_C(\vec{r})$$

$$\psi_C(k\hat{z}, \vec{r}) = \sum_l (2l+1)i^l P_l(\cos\theta) \frac{1}{kr} F_l(\eta, kr) e^{i\sigma_l(\eta)} \quad ; \quad \eta = \frac{Z_1 Z_2 e^2}{\hbar v} \quad ... \quad \text{Sommerfeld parameter}$$

$$\sigma_l(\eta) = \arg \Gamma(l+1+i\eta) \quad ... \quad \text{Coulomb phase shift}$$

Regular and irregular Coulomb functions

$$\begin{split} F_l(0,kr) &= kr \, j_l(kr) \quad ; \quad G_l(0,kr) = kr \, n_l(kr) \\ F_l(\eta,kr) &\to \sin(kr - \eta \ln 2kr - l\frac{\pi}{2} + \sigma_l) \quad ; \quad G_l(\eta,kr) \to \cos(kr - \eta \ln 2kr - l\frac{\pi}{2} + \sigma_l) \quad \text{for} \quad r \to \infty \\ H_l^{(\pm)}(\eta,kr) &= G_l(\eta,kr) \pm i F_l(\eta,kr) \end{split}$$

Coulomb scattering amplitude

$$\psi_{C}(k\hat{z},\vec{r}) \rightarrow e^{i(kz+\eta \ln[k(r-z)])} + f_{C}(\theta) \frac{e^{i(kr-\eta \ln 2kr)}}{r} \quad \text{for} \quad r \rightarrow \infty$$

$$f_{C}(\theta) = \frac{1}{2ik} \sum_{l} (2l+1) \left(e^{2i\sigma_{l}} - 1 \right) P_{l}(\cos \theta) = -\frac{\eta}{2k \sin^{2} \frac{\theta}{2}} e^{-i\eta \ln(\sin^{2} \frac{\theta}{2}) + 2i\sigma_{0}}$$

Rutherford cross section

$$\frac{d\sigma_R}{d\Omega} = \left| f_C(\theta) \right|^2 = \frac{\eta^2}{4k^2 \sin^4 \frac{\theta}{2}}$$

Gamow factor

 $\psi_C(0) = \Gamma(1+i\eta)e^{-\eta\pi/2}$

$$|\psi_C(0)|^2 \approx 2\pi\eta e^{-2\eta\pi}$$
 for $\eta >> 1$... relevant for low-energy charged nuclear reactions - astrophysics

Charge particle scattering

Nuclear plus Coulomb scattering

$$\left(-\frac{\hbar^2}{2\mu}\vec{\nabla}^2 + V_C(r) + V(r)\right)\psi(\vec{r}) = E\psi(\vec{r})$$

$$\psi(\vec{r}) = \frac{1}{kr} \sum_{l} (2l+1)i^l e^{i\sigma_l} u_l(r) P_l(\cos\theta)$$

$$\psi(\vec{r}) = \psi_C(\vec{r}) + \psi_N(\vec{r})$$

$$\psi_N(\vec{r}) \to f_N(\theta) \frac{e^{i[kr - \eta \ln(2kr)]}}{r} \quad \text{for} \quad r \to \infty$$

only outgoing Coulomb function in the nuclear part of the wave function

$$\psi(\vec{r}) = \psi_C(\vec{r}) + \frac{1}{kr} \sum_{l} (2l+1)i^l e^{i\sigma_l} f_l^N H_l^{(+)}(\eta, kr) P_l(\cos\theta)$$

$$f_l^N = \frac{1}{2i} (S_l^N - 1) \quad ; \quad S_l^N = e^{2i\delta_l^N}$$

- nuclear phase shift
- scattering amplitude Coulomb plus nuclear

$$f(\theta) = f_C(\theta) + f_N(\theta)$$

$$f_N(\theta) = \frac{1}{2ik} \sum_{l} (2l+1)e^{2i\sigma_l} (e^{2i\delta_l^N} - 1) P_l(\cos\theta)$$

- Cross section
$$\frac{d\sigma}{d\Omega} = |f(\theta)|^2 = \frac{d\sigma_R}{d\Omega} + 2\operatorname{Re}\left[f_C^*(\theta)f_N(\theta)\right] + |f_N(\theta)|^2$$

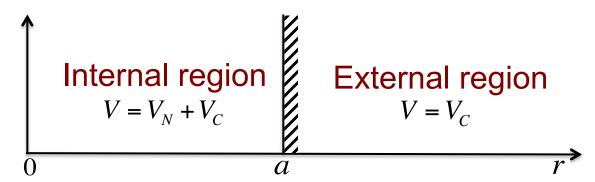
How to solve scattering equations?

$$\psi(\vec{r}) = \frac{1}{kr} \sum_{l} (2l+1)i^{l} e^{i\sigma_{l}} u_{l}(r) P_{l}(\cos\theta) \quad ; \quad \vec{L}^{2} P_{l}(\cos\theta) = \hbar^{2} l(l+1) P_{l}(\cos\theta)$$

$$\left(\frac{d^{2}}{dr^{2}} - \frac{l(l+1)}{r^{2}} - \frac{2\mu}{\hbar^{2}} V(r) + k^{2}\right) u_{l}(r) = 0 \quad ; \quad k^{2} = 2\mu E / \hbar^{2}$$

$$\left(T_{l}(r) + V(r) - E\right) u_{l}(r) = 0 \quad ; \quad T_{l}(r) = -\frac{\hbar^{2}}{2\mu} \left(\frac{d^{2}}{dr^{2}} - \frac{l(l+1)}{r^{2}}\right)$$

- Many methods... let's apply Microscopic R-matrix on a Lagrange mesh
 - Very efficient also for the case of non-local potentials
 - Powerful for coupled channel problem



Solution in the external region

$$u_{l}(r) = \frac{i}{2} \Big(H_{l}^{(-)}(\eta, kr) - S_{l} H_{l}^{(+)}(\eta, kr) \Big) = I_{l}(kr) - S_{l} O_{l}(kr)$$

Microscopic R-matrix on a Lagrange mesh

Internal region

$$u_l(r) = \sum_{n=1}^{N} A_{ln} f_n(r)$$
; N Lagrange basis functions $f_n(r)$

associated with a Lagrange mesh of N points $ax_n \in [0,a]$

 x_n ... zero of shifted Legendre polynomials: $P_N(2x_n - 1) = 0$

$$f_n(r) = (-1)^{N-n} a^{-1/2} \sqrt{\frac{1-x_n}{x_n}} \frac{r}{r - ax_n} P_N(\frac{2r}{a} - 1)$$

$$f_{n'}(ax_n) = \frac{1}{\sqrt{a\lambda_n}} \delta_{n,n'}$$
 ... zero at all mesh points except one

 $-\lambda_n$... weights of the Gauss-Legendre quadrature approximation of the integral

$$\int_0^1 g(x)dx \approx \sum_{n=1}^N \lambda_n g(x_n)$$

- Lagrange basis functions orthonormal within the quadrature approximation

$$\int_0^a f_n(r) f_{n'}(r) dr \approx \delta_{n,n'}$$

- Matrix element calculation trivial $\langle f_n | V | f_{n'} \rangle = \int_0^a f_n(r) V(r) f_{n'}(r) dr \approx V(ax_n) \delta_{n,n'}$

Microscopic R-matrix on a Lagrange mesh

Back to solving the Schrödinger equation

$$(T_l(r) + V(r) - E)u_l(r) = 0$$

$$u_l(0) = 0$$

Logarithmic-derivative matching at *r*=*a* facilitated by the Bloch operator

Internal region $V = V_N + V_C$

$$u_l(r) = \sum_{n=1}^{N} A_{ln} f_n(r)$$

External region

$$u_l(r) = I_l(kr) - S_l O_l(kr)$$

$$\mathcal{L} = \frac{\hbar^2}{2\mu} \delta(r - a) \left(\frac{d}{dr} - B \right) \quad \dots \quad B \text{ boundary condition, for scattering } B = 0$$

$$\left(T_{l}(r) + V(r) + \mathcal{L} - E\left(u_{l}(r)\right)\right) = \mathcal{L}\left(u_{l}(r)\right)$$

$$\sum_{n=1}^{N} \left(C_{n'n} - E \delta_{n,n'} \right) A_{ln} = f_{n'}(a) \frac{\hbar^2 k}{2\mu} \left[I'_{l}(ka) - S_{l}O'_{l}(ka) \right]$$

$$C_{n'n} = \left\langle f_{n'} \middle| T_l + V + \mathcal{L} \middle| f_n \right\rangle = \int_0^a dr \, f_{n'}(r) \big[T_l(r) + V(r) + \mathcal{L} \big] f_n(r)$$

 $T_t + \mathcal{L}$... Hermitian on $r \in [0, a]$

- 1) Invert *C-E* to get $A_{ln} \& u_{l}$ in the internal region
- 2) Match u_i to the external solution at r=a
- 3) Obtain R-matrix R, & S-matrix S,

$$R_{l} = \frac{\hbar^{2}}{2\mu a} \sum_{n,n'=1}^{N} f_{n}(a) \left[C - E \mathbf{1} \right]_{nn'}^{-1} f_{n'}(a) \quad ; \quad S_{l} = e^{2i\delta_{l}} = \frac{I_{l}(ka) - kaR_{l}I'_{l}(ka)}{O_{l}(ka) - kaR_{l}O'_{l}(ka)}$$

$$S_l = e^{2i\delta_l} = \frac{I_l(ka) - kaR_lI_l'(ka)}{O_l(ka) - kaR_lO_l'(ka)}$$

Phase shift properties

Example: n-4He elastic scattering

$$\frac{d\sigma_{el}}{d\Omega} = \frac{1}{4k^2} \sum_{l,l'} (2l+1)(2l'+1)(S_l-1)(S_{l'}^*-1)P_l(\cos\theta)P_{l'}(\cos\theta) \quad ; \quad S_l = e^{2i\delta_l}$$

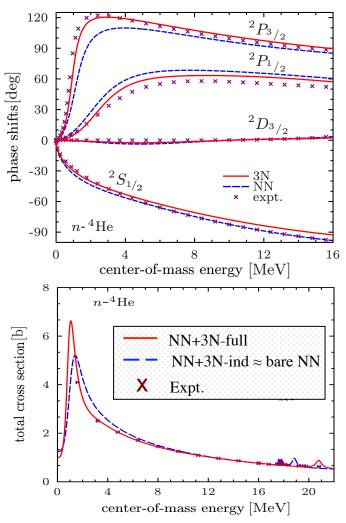
$$\sigma_{el} = \frac{\pi}{k^2} \sum_{l} (2l+1) |S_l - 1| = \frac{4\pi}{k^2} \sum_{l} (2l+1) \sin^2 \delta_l \quad ; \quad \delta_l = \delta_{l, res} + \delta_{l, bg}$$

- Phase shift increasing attractive interaction :
 - A sharp resonance in I=1 ^{2s+1} $I_J=^2P_{3/2}$
 - A broad resonance in *I*=1 ²*P*_{1/2}
- Phase shift ~ 0 interaction ~0
 - $I=2^{2}D_{3/2}$
- Phase shift decreasing no resonance
 - /=0 2S_{1/2} Pauli-forbidden bound state
- An isolated resonance can be phenomenologically described by a Breit-Wigner shape

$$\sigma_l^{res}(E) \approx \frac{4\pi}{k^2} (2l+1) \frac{\Gamma^2 / 4}{(E - E_r) + \Gamma^2 / 4} = \frac{4\pi}{k^2} (2l+1) \sin^2 \delta_{l,res}(E)$$

$$\delta_{l,res}(E) = \arctan\left(\frac{\Gamma/2}{E_r - E}\right) (+n(E)\pi) \quad ; \quad \delta_{l,bg} \approx 0$$

$$\Gamma \approx 2 / \left(\frac{d\delta}{dE}\right)_{E_r}$$
 ... resonance width, E_r resonance energy, $\tau \approx \hbar / \Gamma$ time delay



Phase shift properties

S-matrix near an isolated resonance

$$S(E) = e^{2i\delta_{bg}} \frac{E - E_r - i\Gamma/2}{E - E_r + i\Gamma/2}$$

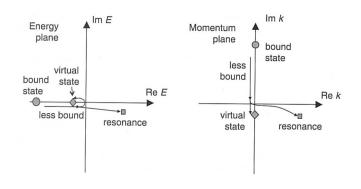
S(E) continued to complex energy E: Pole at $E_p = E_r - i\Gamma/2$

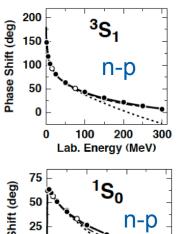
- used to define the resonance E_r and Γ
- n-4He 3/2-: E~ 0.96 i 0.92/2 MeV
- n-4He 1/2-: E~ 1.9 i 6.1/2 MeV
- /=0 neutral scattering (neutron S-wave scattering)
 - special case: neutral unbound poles called virtual states

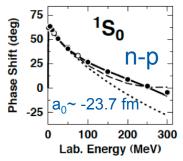
$$S(k) = -\frac{k + i/a_0}{k - i/a_0} \quad \dots \quad \text{pole at } k_p = i/a_0$$

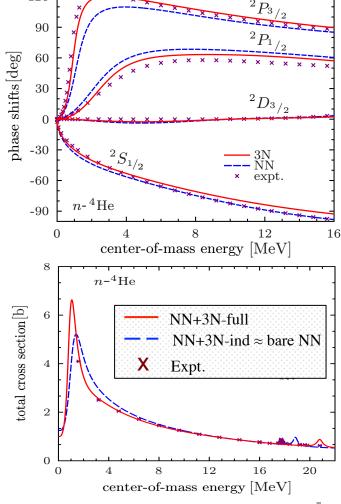
$$\delta(k) = -\arctan(a_0 k)$$
 ... $k \cot \delta(k) = -1/a_0$

$$a_0$$
 ... $l = 0$ scattering length









17

Multi-channel scattering & reactions

• Binary collisions $-A_1+A_2 \rightarrow A_1+A_2$; $A_1+A_2 \rightarrow A_1+A_2 \rightarrow A_$

$$\begin{aligned} \left| \psi^{J^{\pi}T} \right\rangle &= \sum_{\nu} \hat{A}_{\nu} \left[\left(\left| A - a \, \alpha_{1} I_{1}^{\pi_{1}} \right\rangle \left| a \, \alpha_{2} I_{2}^{\pi_{2}} \right\rangle \right)^{(s)} Y_{\ell}(\hat{r}_{A-a,a}) \right]^{(J^{\pi})} \frac{u_{\nu}^{J^{\pi}}(r_{A-a,a})}{r_{A-a,a}} \\ v &= \left\{ A - a \, \alpha_{1} I_{1}^{\pi_{1}}; a \, \alpha_{2} I_{2}^{\pi_{2}}; s\ell \right\} \quad \text{channel q.n.} \quad ; \quad \hat{A}_{\nu} \dots \text{antisymmetrizer} \\ \vec{r}_{A-a,a} &= \frac{1}{A-a} \sum_{i=1}^{A-a} \vec{r}_{i} - \frac{1}{a} \sum_{i=A-a+1}^{A} \vec{r}_{i} \qquad \qquad \vec{s} = \vec{I}_{1} + \vec{I}_{2} \quad ; \quad \vec{J} = \vec{s} + \vec{\ell} \end{aligned}$$

- (A-a,a) ... defines a mass partition
- s ... channel spin, / ... relative orbital momentum, J ... total momentum
- Hamiltonian

$$\begin{split} H &= H_{(A-a)} + H_{(a)} + T_{rel} + V_{rel} \quad ; \quad T_{rel} = \frac{\hbar^2}{2\mu_{A-a,a}} \nabla^2_{A-a,a} \quad ; \quad V_{rel} \to V_{C,\,rel} = \frac{Z_{A-a}Z_a e^2}{r_{A-a,aa}} \quad \text{for} \quad r_{A-a,a} \to \infty \\ H_{(A-a)} \left| A - a \, \alpha_1 I_1^{\pi_1} \right\rangle &= E_{\alpha_1}^{I_1^{\pi_1}} \left| A - a \, \alpha_1 I_1^{\pi_1} \right\rangle \\ H_{(a)} \left| a \, \alpha_2 I_2^{\pi_2} \right\rangle &= E_{\alpha_2}^{I_2^{\pi_2}} \left| a \, \alpha_2 I_2^{\pi_2} \right\rangle \end{split}$$

Coupled channel equations

$$H\left|\psi^{J^{\pi}T}\right\rangle = E\left|\psi^{J^{\pi}T}\right\rangle$$

Multi-channel scattering & reactions

- Wave function expansion considering the beam in the \mathbf{k}_i direction

$$\left|\psi^{J^{\pi}T}\right\rangle = \frac{4\pi}{k_{i}} \sqrt{v_{i}} \sum_{\alpha s \ell s_{i} \ell_{i} J} i^{\ell_{i}} Y_{\ell_{i} m_{i}}^{*}(\hat{k}_{i}) (s_{i} m_{si} \ell_{i} m_{i} | JM) e^{i\sigma_{\ell_{i}}} \hat{A}_{\alpha} \left[\left(\left|A - a \alpha_{1} I_{1}^{\pi_{1}}\right\rangle \left|a \alpha_{2} I_{2}^{\pi_{2}}\right\rangle\right)^{(s)} Y_{\ell}(\hat{r}_{A-a,a})\right]_{M}^{J^{\pi}} \frac{u_{\alpha s \ell, \alpha_{i} s_{i} \ell_{i}}^{J^{\pi}}(r_{A-a,a})}{r_{A-a,a}}$$

$$\alpha = \left\{A - a \alpha_{1} I_{1}^{\pi_{1}}; a \alpha_{2} I_{2}^{\pi_{2}}\right\}$$

Beam in the
$$\hat{z}$$
 direction $(\vec{k}_i = k_i \hat{z})$: $Y_{\ell_i m_i}^*(\hat{z}) = \delta_{m_i,0} \sqrt{\frac{2\ell_i + 1}{4\pi}}$

$$u_{\alpha s\ell, \alpha_{i} s_{i} \ell_{i}}^{J^{\pi}}(r_{A-a,a}) \rightarrow \frac{i}{2} \frac{1}{\sqrt{V_{\alpha}}} \left[H_{\ell_{i}}^{(-)}(\eta_{\alpha}, k_{\alpha} r_{A-a,a}) \delta_{\alpha, \alpha_{i}} \delta_{\ell, \ell_{i}} \delta_{s, s_{i}} - S_{\alpha s\ell, \alpha_{i} s_{i} \ell_{i}}^{J^{\pi}} H_{\ell}^{(+)}(\eta_{\alpha}, k_{\alpha} r_{A-a,a}) \right] \quad \text{for} \quad r_{A-a,a} \rightarrow \infty$$

 $S^{J^{\pi}}_{\alpha s \ell, \alpha_i s_i \ell_i}$... symmetric and unitary S-matrix

$$\hat{A}_{\alpha} \rightarrow 1$$
 for $r_{A-a,a} \rightarrow \infty$... no antisymetrization for separated nuclei

Scattering amplitude follows from the asymptotic expansion

$$f_{\alpha s m_{s}, \alpha_{i} s_{i} m_{si}}(\theta_{\alpha}) = \delta_{\alpha, \alpha_{i}} \delta_{s, s_{i}} \delta_{m_{s}, m_{si}} f_{C \alpha_{i}}(\theta_{\alpha_{i}})$$

$$+ \frac{2\pi i}{k_{i}} \sum_{J \ell \ell_{i} M m m_{i}} i^{\ell_{i} - \ell} (s_{i} m_{si} \ell_{i} m_{i} | JM) (s m_{s} \ell m | JM) e^{i(\sigma_{\ell} + \sigma_{\ell_{i}})} \left[\delta_{\alpha, \alpha_{i}} \delta_{s, s_{i}} \delta_{\ell, \ell_{i}} - S_{\alpha s \ell, \alpha_{i} s_{i} \ell_{i}}^{J^{\pi}} \right] Y_{\ell}(\hat{r}_{A - a, a}) Y_{\ell_{i} m_{i}}^{*}(\hat{k}_{i})$$
with $\vec{k}_{i} \cdot \vec{r}_{A - a, a} = k_{i} r_{A - a, a} \cos(\theta_{\alpha})$

Multi-channel scattering & reactions

Cross section

$$\frac{d\sigma_{\alpha,\alpha_{i}}}{d\Omega} = \frac{1}{(2I_{1i} + 1)(2I_{2i} + 1)} \sum_{sm_{s}s_{i}m_{si}} \left| f_{\alpha sm_{s},\alpha_{i}s_{i}m_{si}}(\theta_{\alpha}) \right|^{2}$$

- Polarized beams
 - non-uniform distribution of the M-states, e.g., of the projectile

$$\frac{d\sigma_{\alpha,\alpha_{i}}^{pol}}{d\Omega} = \frac{d\sigma_{\alpha,\alpha_{i}}}{d\Omega} \sum_{Qq} t_{Qq}^{*} T_{Qq}^{\alpha,\alpha_{i}}$$

... t_{Qq}^* chracterizes spin-projection distribution

$$\left|I_{2}M_{2}\right\rangle \sum_{Qq}t_{Qq}^{*}\sqrt{2Q+1}(I_{2}M_{2}'Qq\mid I_{2}M_{2})\left\langle I_{2}M_{2}'\right|$$

- ... T_{Qq}^{α,α_i} tenzor analyzing powers
- A_y analyzing power: projectile polarized in y(2)direction, beam in z(3)-direction, reaction plane x-z

$$\frac{d\sigma_{\alpha,\alpha_{i}}^{A_{y}}}{d\Omega} = \frac{\sqrt{2}}{(2I_{1i}+1)(2I_{2i}+1)} \sum_{sm_{s}s_{i}m_{si}s'_{i}m'_{si}} (-1)^{I_{1i}+I_{2i}+1+s_{i}} \begin{cases} I_{1i} & I_{2i} & s'_{i} \\ 1 & s_{i} & I_{2i} \end{cases} \sqrt{3(2I_{2i}+1)(2s'_{i}+1)} \left(s'_{i}m'_{si} 11 \mid s_{i}m_{si}\right) f^{*}_{\alpha sm_{s},\alpha_{i}s'_{i}m'_{si}}(\theta_{\alpha}) f_{\alpha sm_{s},\alpha_{i}s_{i}m_{si}}(\theta_{\alpha}) f_{\alpha sm_{s},\alpha_{i}s'_{i}m'_{si}}(\theta_{\alpha}) f_{\alpha sm_{s$$



$$\frac{1}{2} p_{y} A_{y} = \frac{N_{L} - N_{R}}{N_{L} + N_{R}}$$

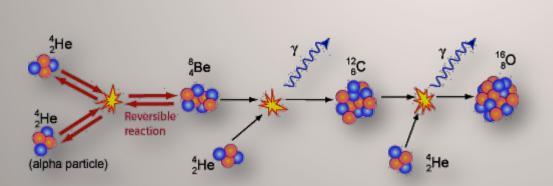
$$\frac{d\sigma_{\alpha,\alpha_i}^{A_y}}{d\Omega} = \frac{d\sigma_{\alpha,\alpha_i}}{d\Omega} \left(1 + \frac{1}{2}p_y A_y\right) \quad ; \quad A_y = \sqrt{2} i T_{11}^{\alpha,\alpha_i}$$

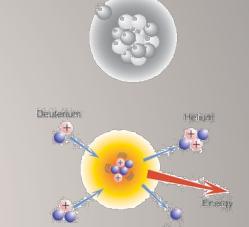
Literature

- Nuclear Reactions for Astrophysics,
 Ian J. Thompson and Filomena M. Nunes (Cambridge)
- Theory of Nuclear Reactions, P. Fröbrich and R. Lipperheide (Oxford)
- Scattering Theory, John R. Taylor (Dover)
- Introduction to Nuclear Reactions (Graduate Student Series in Physics),
 C. A. Bertulani and P. Danielewicz (CRC Press)
- Nuclear Reactions: An Introduction, Hans Paetz gen. Schieck (Springer)
- Collision Theory, M. L. Goldhaber and K. M. Watson (Dover)
- Direct Nuclear Reactions, Norman K. Glendenning (World Scientific)
- Scattering Theory of Waves and Particles, Roger G. Newton (Springer)

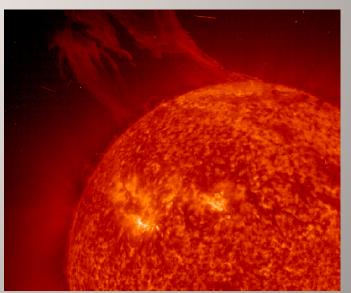
Why nuclei from first principles?

- Goal: Predictive theory of structure and reactions of nuclei
- Needed for
 - Physics of **exotic nuclei**, tests of fundamental symmetries
 - Understanding of nuclear reactions important for **astrophysics**
 - Understanding of reactions important for energy generation
 - **Double beta decay** nuclear matrix elements
 - Neutrino-nucleus cross sections
 - •





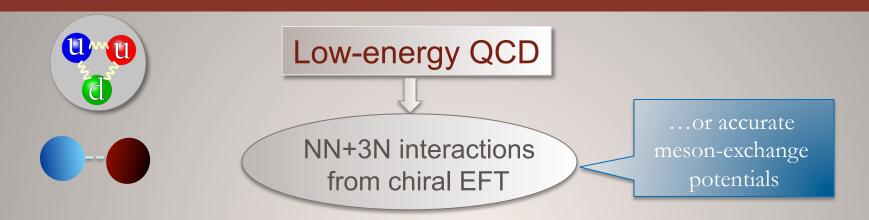
Understanding our Sun

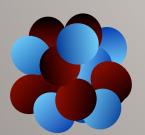


What is meant by ab initio in nuclear physics?

- First principles for Nuclear Physics:
 QCD
 - Non-perturbative at low energies
 - Lattice QCD in the future
- Degrees of freedom: NUCLEONS
 - Nuclei made of nucleons
 - Interacting by nucleon-nucleon and three-nucleon potentials
 - Ab initio
 - ♦ All nucleons are active
 - ♦ Exact Pauli principle
 - ♦ Realistic inter-nucleon interactions
 - ♦ Accurate description of NN (and 3N) data
 - ♦ Controllable approximations

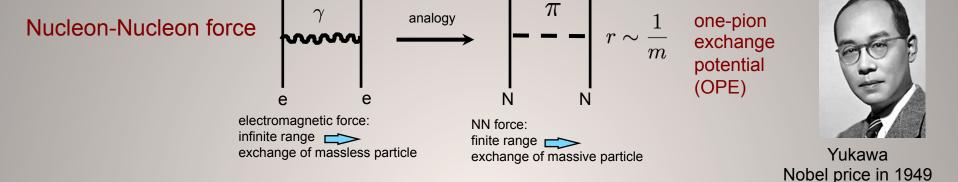
From QCD to nuclei





Nuclear structure and reactions

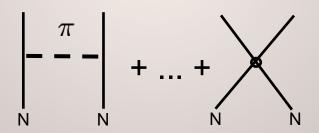
Nuclear forces



Nowadays:

New vision of Effective Field Theory Links low energy physics to QCD in a systematic way

Nucleon-Nucleon force



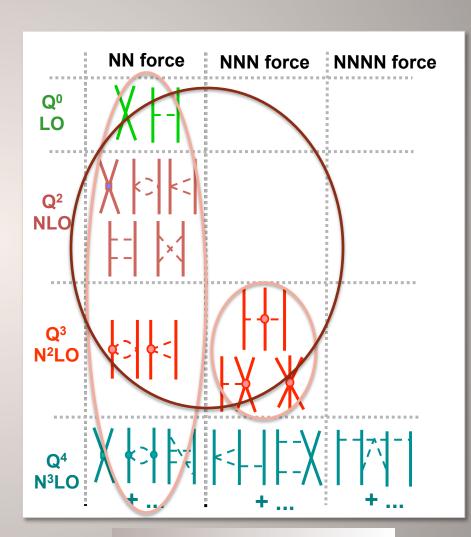
Details of short distance physics not resolved, but captured in short range couplings should come from QCD but are now fit to experiment

Many-Nucleon forces

Arise due to the effective nature of nuclear forces

Chiral Effective Field Theory

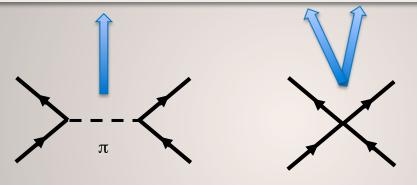
- Inter-nucleon forces from chiral effective field theory
 - Based on the symmetries of QCD
 - Chiral symmetry of QCD $(m_u \approx m_d \approx 0)$, spontaneously broken with pion as the Goldstone boson
 - Degrees of freedom: nucleons + pions
 - Systematic low-momentum expansion to a given order (Q/Λ_x)
 - Hierarchy
 - Consistency
 - Low energy constants (LEC)
 - Fitted to data
 - Can be calculated by lattice QCD



 Λ_{χ} ~1 GeV : Chiral symmetry breaking scale

Chiral EFT NN interaction in the leading order (LO)

$$V^{\text{LO}} = -\frac{g_A^2}{4F_\pi^2} \boldsymbol{\tau}_1 \cdot \boldsymbol{\tau}_2 \frac{\vec{\sigma}_1 \cdot \vec{q} \, \vec{\sigma}_2 \cdot \vec{q}}{\vec{q}^2 + M_\pi^2} + C_S + C_T \vec{\sigma}_1 \cdot \vec{\sigma}_2$$



 C_S , C_T : Low-energy constants (LECs) fitted to NN data

one-pion exchange

contact

$$\vec{q} = \vec{k'} - \vec{k}$$
 ...momentum transfer

$$g_A$$
=1.29 ...axial-vector coupling constant

$$F_{\pi}$$
=92.4 MeV ...pion decay constant

$$\exp(-(k'/\Lambda)^{2n} - (k/\Lambda)^{2n})$$

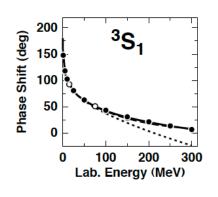
$$\Lambda \sim 500 \text{ MeV} << \Lambda_{\chi} \sim 1 \text{ GeV}$$

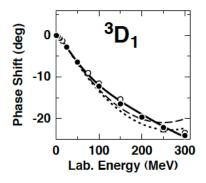
The NN interaction from chiral EFT

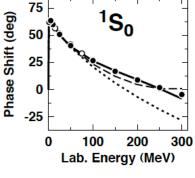
PHYSICAL REVIEW C 68, 041001(R) (2003)

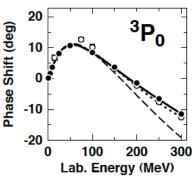
Accurate charge-dependent nucleon-nucleon potential at fourth order of chiral perturbation theory

D. R. Entem^{1,2,*} and R. Machleidt^{1,†}

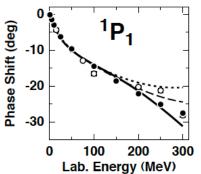


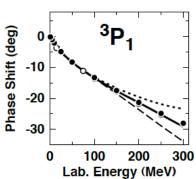




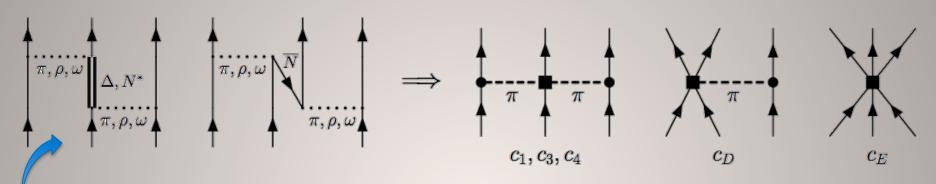


- 24 LECs fitted to the np scattering data and the deuteron properties
 - Including c_i LECs (i=1-4) from pion-nucleon Lagrangian





Three-nucleon forces why?



Eliminating degrees of freedom leads to three-body forces.

Two-pion exchange with virtual △ excitation – Fujita & Miyazawa (1957)

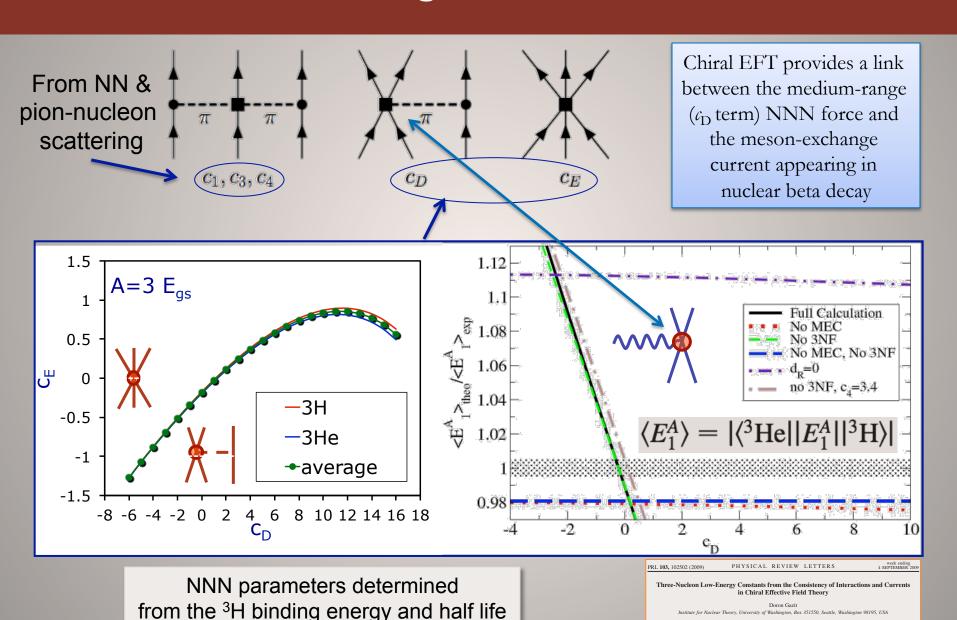
- Leading three-nucleon force terms
 - Long-range two-pion exchange
 - Medium-range one-pion exchange + two-nucleon contact
 - Short range three-nucleon contact

The question is not: Do three-body forces enter the description? The only question is: How large are three-body forces?

Leading terms of the chiral NNN force

ory, University of Washington, Box 351550, Seattle, Washington 98195, USA

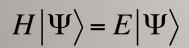
Sofia Ouaglioni and Petr Navrátil Lawrence Livermore National Laboratory, P.O. Box 808, L-414, Livermore, California 94551, USA

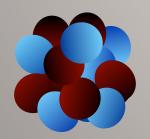


From QCD to nuclei

NN+3N interactions from chiral EFT

...or accurate meson-exchange potentials





Many-Body methods

NCSM, NCSM/RGM, NCSMC, CCM, SCGF, GFMC, HH, Nuclear Lattice EFT...

Nuclear structure and reactions

The nuclear many-body problem

Start with the microscopic A-nucleon Hamiltonian

$$H^{(A)} = \sum_{i=1}^{A} \frac{p_i^2}{2m} + \sum_{i< j=1}^{A} V^{2b}(\vec{r}_i - \vec{r}_j) + \left(\sum_{i< j< k=1}^{A} V_{ijk}^{3b}\right)$$

- Nucleons interact with two- and three-nucleon forces: this yields complicated quantum correlations
- Solve the many-body Schrödinger equation

$$H^{(A)}\Psi^{(A)}(\vec{r}_1, \vec{r}_2, \dots \vec{r}_A) = E\Psi^{(A)}(\vec{r}_1, \vec{r}_2, \dots \vec{r}_A)$$

- Negative energies (relative to a breakup threshold)
 – bound-state boundary conditions
 - Find eigenfunctions and eigenenergies
- Continuum of positive energies scattering boundary conditions
 - Find elements of the Scattering matrix

The nuclear many-body wave function

A active nucleons – spatial, spin, and isospin degrees of freedom

$$\vec{r}_i \equiv \{\vec{r}_i, \vec{\sigma}_i, \vec{\tau}_i\}, i = 1, 2, \dots, A$$

Nucleons are fermions – wave function antisymmetric

$$\Psi^{(A)}(\vec{r}_1, \vec{r}_2, \dots \vec{r}_k, \dots \vec{r}_i, \dots \vec{r}_A) = -\Psi^{(A)}(\vec{r}_1, \vec{r}_2, \dots \vec{r}_i, \dots \vec{r}_k, \dots \vec{r}_A)$$

- Conserved total angular momentum J and parity π
 - approximately conserved total isospin T
- We are not interested in the motion of the center of mass, but only in the intrinsic motion
 - Look for translationally invariant wave function. Two options:
 - Work with A 1 translational invariant coordinates known as Jacobi coordinates
 - Work with A single particle coordinates and aim at exact separation between intrinsic and center of mass motion

$$\Psi^{(A)}(\vec{r}_1, \vec{r}_2, \dots \vec{r}_A) = \psi^{(A)}(\vec{\xi}_1, \vec{\xi}_2, \dots \vec{\xi}_{A-1})\Psi_{CM}(\vec{R}_{CM})$$

How to solve the many-body Schrödinger equation?

The nuclear wave function must factorize, e.g., for free c.m. motion

$$\Psi^{(A)} = \psi^{(A)} \exp\left(-i\frac{\vec{P}_{CM}\vec{R}_{CM}}{\hbar}\right) \qquad E = \varepsilon + \frac{P_{CM}^2}{2Am}$$

- First option: solve eigenvalue problem for the intrinsic Hamiltonian
 - The c.m. motion is not present from the beginning
 - \odot Work with 3(A-1) spatial degrees of freedom (Jacobi relative coordinates)
 - Jacobi coordinates do not treat the nucleons in a symmetric manner

$$\hat{P}_{ij}\phi_{s,n}^{(A)}(\vec{\xi}_{1},...\vec{\xi}_{A-1}) = \phi_{s,n}^{(A)}(\hat{P}_{ij}\vec{\xi}_{1},...\hat{P}_{ij}\vec{\xi}_{A-1}) = \sum_{m=1}^{N} R_{nm}\phi_{s,m}^{(A)}(\vec{\xi}_{1},...\vec{\xi}_{A-1})$$

$$\begin{cases} \vec{\xi}_{1} = \frac{1}{\sqrt{2}} (\vec{r}_{1} - \vec{r}_{2}) \\ \vec{\xi}_{2} = \sqrt{\frac{2}{3}} \left[\frac{1}{2} (\vec{r}_{1} + \vec{r}_{2}) - \vec{r}_{3} \right] \end{cases} \qquad \vec{\xi}_{2}$$

$$\begin{cases} \vec{\xi}'_{1} = \frac{1}{\sqrt{2}} (\vec{r}_{1} - \vec{r}_{3}) \\ \vec{\xi}'_{2} = \sqrt{\frac{2}{3}} \left[\frac{1}{2} (\vec{r}_{1} + \vec{r}_{3}) - \vec{r}_{2} \right] \end{cases} \qquad \vec{\xi}'_{1}$$

How to solve the many-body Schrödinger equation (for bound states)?

Second option: tie the system to a fixed point

$$H_{SM}^{(A)} = \sum_{i=1}^{A} \left(\frac{p_i^2}{2m} + U_i(r_i) \right) + \sum_{i< j=1}^{A} V^{2b}(\vec{r}_i - \vec{r}_j) - \sum_{i=1}^{A} U_i(r_i)$$
mean field residual interaction

Sum of single particle Hamiltonians

$$\left(\frac{p^2}{2m} + U(r)\right)\varphi_k(\vec{r}) = \varepsilon_k \varphi_k(\vec{r})$$
The mean field determines the shell structure

Antisymmetrized product of single-particle wfs: use these as A-body basis states

$$\phi_{n}^{(A)} = \frac{1}{\sqrt{A!}} \begin{vmatrix} \varphi_{i}(\vec{r}_{1}) & \varphi_{i}(\vec{r}_{2}) & \dots & \varphi_{i}(\vec{r}_{A}) \\ \varphi_{j}(\vec{r}_{1}) & \varphi_{j}(\vec{r}_{2}) & & \varphi_{j}(\vec{r}_{A}) \\ \vdots & \ddots & \vdots \\ \varphi_{l}(\vec{r}_{1}) & \varphi_{l}(\vec{r}_{2}) & \dots & \varphi_{l}(\vec{r}_{A}) \end{vmatrix}$$

Slater Determinant (SD):

0f1p N=4

0d1s N=2

0p N=1

0s N=0

- Great to implement Pauli exclusion principle
- Very convenient, especially in second quantization formalism

How to solve the many-body Schrödinger equation for bound states?

- Single-particle shell-model states are very convenient basis states for expanding the many-body wave function
- However, the introduction of the mean-field potential U destroys the invariance of the system with respect to translations
- The c.m. motion is no longer separable and remains mixed to intrinsic motion, giving rise in general to spurious effects

$$\Psi_{SM}^{(A)} = \sum_{n} \psi_{n}^{(A)} \left(\left\{ \vec{\xi}_{i} \right\} \right) g_{n}(\vec{R}_{CM})$$

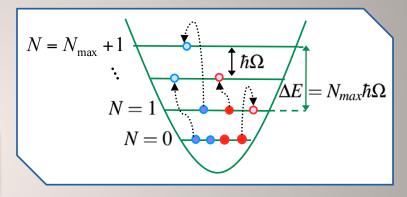
- Factorization for H_{int} only when complete convergence reached (exact solution)
- Exception: harmonic oscillator (HO) potential is exactly separable

$$\sum_{i=1}^{A} \frac{1}{2} m \Omega^2 r_i^2 = \sum_{i< j=1}^{A} \frac{m \Omega^2}{2A} (\vec{r}_i - \vec{r}_j)^2 + \frac{1}{2} A m \Omega^2 R_{CM}^2$$
$$= \sum_{i=1}^{A-1} \frac{1}{2} m \Omega^2 \xi_i^2 + \frac{1}{2} A m \Omega^2 R_{CM}^2$$

Ab initio no-core shell model (NCSM)

- An ab initio approach to solve the many-body Schrödinger equation for bound states (narrow resonances) starting from
 - High-precision NN+NNN interactions (coordinate/momentum space)
 - Uses large (but finite!) expansions in HO many-body basis states

$$\Psi^{A} = \sum_{N=0}^{N_{\text{max}}} \sum_{i} c_{Ni} \Phi_{Ni}^{HO}(\vec{r}_{1}, \vec{r}_{2}, \dots, \vec{r}_{A})$$

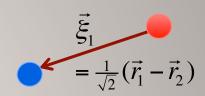


- Choice of either Jacobi relative or Cartesian single-particle coordinates according to the efficiency for the problem at hand
 - Translational invariance of the internal wave function is preserved also when single-particle Slater Determinant (SD) basis is used with N_{max} truncation
- Convergence to exact result using effective interactions (obtained from unitary transformations of the bare interaction)

 N_{max} ... maximal allowed HO excitation above the lowest possible A-nucleon configuration Full N_{max} space: All basis states with $N \le N_{\text{max}}$ kept

HO multi-particle states in Jacobi coordinates

- Build many-body basis by adding one particle at the time
- Antisymmetrized two-particle states
 - Start with two-body basis states (LS coupled)



$$\left\langle \vec{\xi}_1 \vec{\sigma}_1 \vec{\sigma}_2 \vec{\tau}_1 \vec{\tau}_2 \middle| n_2 \ell_2 s_2 j_2 t_2 \right\rangle$$

$$= R_{n_2\ell_2}(\xi_1) \left[Y_{\ell_2}(\hat{\xi}_1) \otimes \left[\chi_{\frac{1}{2}}^S(\vec{\sigma}_1) \otimes \chi_{\frac{1}{2}}^S(\vec{\sigma}_2) \right]^{s_2} \right]^{l_2} \left[\chi_{\frac{1}{2}}^T(\vec{\tau}_1) \otimes \chi_{\frac{1}{2}}^T(\vec{\tau}_2) \right]^{t_2}$$

Now keep only antisymmetric ones, that is only those for which

$$\hat{P}_{12} \left| n_2 \ell_2 s_2 j_2 t_2 \right\rangle = - \left| n_2 \ell_2 s_2 j_2 t_2 \right\rangle \implies (-1)^{\ell_2 + s_2 + t_2} = -1$$

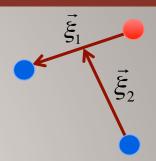
Total energy

$$\varepsilon_N = (N + \frac{3}{2})\hbar\Omega \qquad N = 2n_2 + \ell_2$$

HO three-particle states in Jacobi coordinates

Add one more body

$$\left\langle \vec{\xi}_{2}\vec{\sigma}_{3}\vec{\tau}_{3} \middle| N_{3}L_{3}J_{3} \right\rangle = R_{N_{3}L_{3}}(\xi_{2}) \left[Y_{L_{3}}(\hat{\xi}_{2}) \otimes \chi_{\frac{1}{2}}^{S}(\vec{\sigma}_{3}) \right]^{J_{3}} \chi_{\frac{1}{2}}^{T}(\vec{\tau}_{3})$$



Three-body basis (JJ coupled)

$$\left\langle \vec{\xi}_1 \vec{\xi}_2 \vec{\sigma}_1 \vec{\sigma}_2 \vec{\sigma}_3 \vec{\tau}_1 \vec{\tau}_2 \vec{\tau}_3 \middle| \left[n_2 \ell_2 s_2 j_2 t_2; N_3 L_3 J_3 \right] JT \right\rangle$$

$$\left|\left[n_2\ell_2s_2j_2t_2;N_3L_3J_3\right]JT\right\rangle$$

$$= \sum_{m_2,M_3} C_{j_2m_2,J_3M_3}^{JM} \sum_{m_2^t,M_3^t} C_{t_2m_2^t,T_3M_3^t}^{TM_T} \left| n_2 \ell_2 s_2 j_2 t_2 \right\rangle \left| N_3 L_3 J_3 \right\rangle$$

- Total energy: $\varepsilon_N = (N+3)\hbar\Omega$ with $N = 2n_2 + \ell_2 + 2N_3 + L_3$
- To find totally antisymmetric states, diagonalize: $\hat{A} = \frac{1}{3}(1 \hat{P}_{13} \hat{P}_{23})$
 - Keep only antisymmetric eigenstates, that is those with eigenvalue 1

HO single-particle wave functions

• Start with single-particle HO spatial wave function, defined by radial quantum number n, orbital angular momentum l, and z-projection μ

$$\varphi_{nl\mu}(\vec{r}) = R_{nl}(r)Y_{l\mu}(\hat{r})$$
 $\varepsilon_{nl} = (2n + l + \frac{3}{2})\hbar\Omega$

- Now include the spin and isospin wave functions: $\chi_{\frac{1}{2}m_s}^S(\vec{\sigma}), \; \chi_{\frac{1}{2}m_s}^T(\vec{\tau})$
 - Uncoupled scheme

$$\varphi_{nl\mu_{\frac{1}{2}m_{s}\frac{1}{2}m_{t}}}(\vec{r},\vec{\sigma},\vec{\tau}) = R_{nl}(r)Y_{l\mu}(\hat{r})\chi_{\frac{1}{2}m_{s}}^{S}(\vec{\sigma})\chi_{\frac{1}{2}m_{t}}^{T}(\vec{\tau})$$

j-coupled scheme

$$\varphi_{nljm_j\frac{1}{2}m_t}(\vec{r},\vec{\sigma},\vec{\tau}) = R_{nl}(r) \left[Y_l(\hat{r}) \otimes \chi_{\frac{1}{2}}^S(\vec{\sigma}) \right]_{m_j}^j \chi_{\frac{1}{2}m_t}^T(\vec{\tau})$$

$$\left[Y_{l}(\hat{r}) \otimes \chi_{\frac{1}{2}}^{S}(\vec{\sigma})\right]_{m_{j}}^{j} = \sum_{\mu m_{s}} C_{l\mu,\frac{1}{2}m_{s}}^{j m_{j}} Y_{l\mu}(\hat{r}) \chi_{\frac{1}{2}m_{s}}^{S}(\vec{\sigma})$$

Multi-particle states in the Slater Determinant basis

Many-body HO Slater determinants

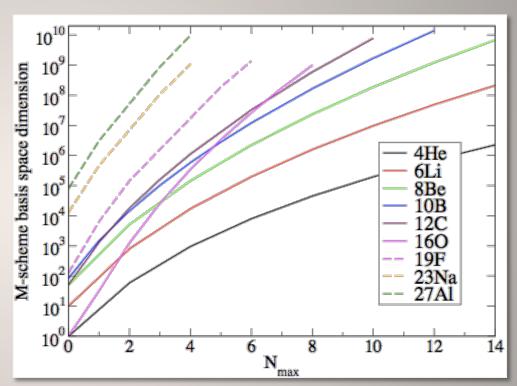
$$\begin{vmatrix} \langle \vec{r}_{1}\vec{\sigma}_{1}\vec{\tau}_{1}, \vec{r}_{2}\vec{\sigma}_{2}\vec{\tau}_{2}, \cdots, \vec{r}_{A}\vec{\sigma}_{A}\vec{\tau}_{A} \, \middle| \, a_{l}^{+}\cdots a_{j}^{+}a_{i}^{+} \middle| \, 0 \rangle$$

$$= \frac{1}{\sqrt{A!}} \begin{vmatrix} \varphi_{i}(\vec{r}_{1}) & \varphi_{i}(\vec{r}_{2}) & \cdots & \varphi_{i}(\vec{r}_{A}) \\ \varphi_{j}(\vec{r}_{1}) & \varphi_{j}(\vec{r}_{2}) & \varphi_{j}(\vec{r}_{A}) \\ \vdots & \ddots & \vdots \\ \varphi_{l}(\vec{r}_{1}) & \varphi_{l}(\vec{r}_{2}) & \cdots & \varphi_{l}(\vec{r}_{A}) \end{vmatrix}$$

$$= \frac{1}{\sqrt{A!}} \begin{vmatrix} \varphi_{i}(\vec{r}_{1}) & \varphi_{j}(\vec{r}_{2}) & \cdots & \varphi_{l}(\vec{r}_{A}) \\ \varphi_{nljm_{j}\frac{1}{2}m_{l}}(\vec{r},\vec{\sigma},\vec{\tau}) & \cdots & \varphi_{l}(\vec{r}_{A}) \end{vmatrix}$$

$$= R_{nl}(r) \left[Y_{l}(\hat{r}) \otimes \chi_{\frac{1}{2}}^{S}(\vec{\sigma}) \right]_{m_{j}}^{j} \chi_{\frac{1}{2}m_{l}}^{T}(\vec{\tau})$$

$$= R_{nl}(r) \left[Y_{l}(\hat{r}) \otimes \chi_{\frac{1}{2}}^{S}(\vec{\sigma}) \right]_{m_{j}}^{j} \chi_{\frac{1}{2}m_{l}}^{T}(\vec{\tau})$$



- Antisymmetrization is trivial
- Good M, M_T and parity quantum numbers, but not J and T
 - Huge number of basis states

Second Quantization

- One of the most useful representations in many-body theory
 - $|-|0\rangle$: the state with no particles (the vacuum)
 - $-a_i^+$: creation operator, creates a fermion in the state i $a_i^+|0\rangle=|i\rangle, a_i^+|i\rangle=0$
 - $-a_i$: annihilation operator, annihilates a fermion in the state i: $a_i |i\rangle = |0\rangle$, $a_i |0\rangle = 0$
 - Anticommutation relations:

$$\left\{a_i^+,\ a_j^+\right\} = \left\{a_i\ ,\ a_j\right\} = 0, \qquad \left\{a_i^+,\ a_j\right\} = \left\{a_i\ ,\ a_j^+\right\} = \delta_{ij}$$
 Pauli principle in second quantization
$$a_i^+ a_j^+ = -a_j^+ a_i^+$$

- So that the Slater determinant can be written as:

$$\phi_{_{n}}^{(A)} = \frac{1}{\sqrt{A!}} \left| \begin{array}{cccc} \varphi_{_{l}}(\vec{r}_{_{1}}) & \varphi_{_{l}}(\vec{r}_{_{2}}) & \dots & \varphi_{_{l}}(\vec{r}_{_{A}}) \\ \varphi_{_{j}}(\vec{r}_{_{1}}) & \varphi_{_{j}}(\vec{r}_{_{2}}) & \varphi_{_{j}}(\vec{r}_{_{A}}) \\ \vdots & \ddots & \vdots \\ \varphi_{_{l}}(\vec{r}_{_{1}}) & \varphi_{_{l}}(\vec{r}_{_{2}}) & \dots & \varphi_{_{l}}(\vec{r}_{_{A}}) \end{array} \right| = a_{_{l}}^{+} \dots a_{_{j}}^{+} a_{_{i}}^{+} \left| 0 \right\rangle, \quad \begin{array}{c} \text{implicitly assumes we} \\ \text{have already chosen the} \\ \text{form of the single-particle} \\ \text{states, } (i = 1, 2, 3, \dots A) \\ \text{as dictated by some} \\ \text{mean-field potential} \end{array}$$

Basis states: occupation representation

- How are Slater determinants actually represented in a computer program?
 - We are dealing with fermions, so a single-particle state is either occupied or empty, which in computer language translates to either 1's or 0's
 - A very useful approach is a bit representation known as M-scheme
 - If the mean-field is spherically symmetric, the single-particle states will have good j, m_j

$$a_{1,\frac{3}{2},-\frac{1}{2}}^{+}a_{1,\frac{3}{2},\frac{3}{2}}^{+}a_{1,\frac{1}{2},\frac{1}{2}}^{+}a_{0,\frac{1}{2},-\frac{1}{2}}^{+} \begin{vmatrix} 0 \rangle = \boxed{0} \boxed{1} \boxed{0} \boxed{1} \boxed{0} \boxed{1} \boxed{1} \boxed{0} \boxed{1} \boxed{1} \boxed{0} = 2^{1} + 2^{3} + 2^{5} + 2^{6} = 106$$

$$-3 \boxed{1} \boxed{1} \boxed{3} \boxed{-1} \boxed{1} \boxed{1} \boxed{0}$$

$$2m_{j}$$

$$0p_{3/2} 0p_{1/2} 0s_{1/2}$$

- A single integer represents a complicated slater determinant
- While the many-body states will have good M, they do not have good J. States of good J must be projected and will be a combination of Slater determinants. Same for T and M_T .

Getting the eigenvalues and wave functions

- Setup Hamiltonian matrix (Φ_i I H IΦ_i) and diagonalize
- Lanczos algorithm
 - Bring matrix to tri-diagonal form (\mathbf{v}_1 , \mathbf{v}_2 ... orthonormal, H Hermitian)

$$H\mathbf{v}_{1} = \alpha_{1}\mathbf{v}_{1} + \beta_{1}\mathbf{v}_{2}$$

$$H\mathbf{v}_{2} = \beta_{1}\mathbf{v}_{1} + \alpha_{2}\mathbf{v}_{2} + \beta_{2}\mathbf{v}_{3}$$

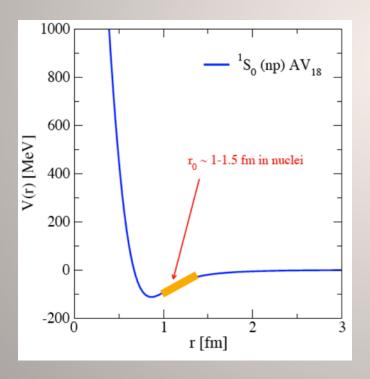
$$H\mathbf{v}_{3} = \beta_{2}\mathbf{v}_{2} + \alpha_{3}\mathbf{v}_{3} + \beta_{3}\mathbf{v}_{4}$$

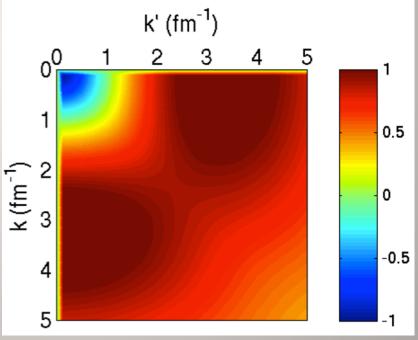
$$H\mathbf{v}_{4} = \beta_{3}\mathbf{v}_{3} + \alpha_{4}\mathbf{v}_{4} + \beta_{4}\mathbf{v}_{5}$$

- nth iteration computes 2nth moment
- Eigenvalues converge to extreme (largest and smallest) values
- $-\sim 100-200$ iterations needed for 10 eigenvalues (even for 10^9 states)
- Typically we use M-scheme:
 - Total M_J , $M_T = (Z-N)/2$ and parity conserved

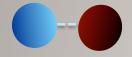
Accurate NN potentials are hard to use

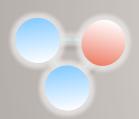
- Repulsive core of nuclear force introduces coupling to high momenta
 - Very large model spaces are required to reach convergent solution of the nuclear many-body problem



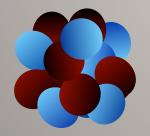


From QCD to nuclei





$$H|\Psi\rangle = E|\Psi\rangle$$



NN+3N interactions from chiral EFT

Unitary/similarity transformations

Many-Body methods

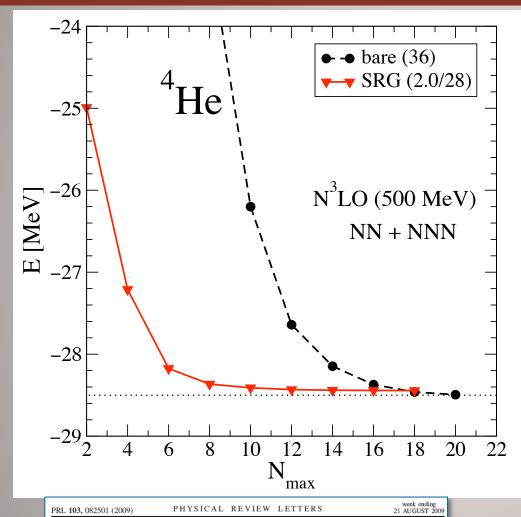
...or accurate meson-exchange potentials

Identity or SRG or OLS or UCOM ... Softens NN, induces 3N

NCSM, NCSM/RGM, CCM, GFMC, HH, Nuclear Lattice EFT...

Nuclear structure and reactions

⁴He from chiral EFT interactions: g.s. energy convergence



PRL 103, 082501 (2009) PHYSICAL REVIEW LETTERS 21 Week ending 21 AUGUST 2009

Evolution of Nuclear Many-Body Forces with the Similarity Renormalization Group

E.D. Jurgenson, P. Navrátil, and R.J. Furnstahl

A=3 binding energy and half life constraint c_D =-0.2, c_E =-0.205, Λ =500 MeV

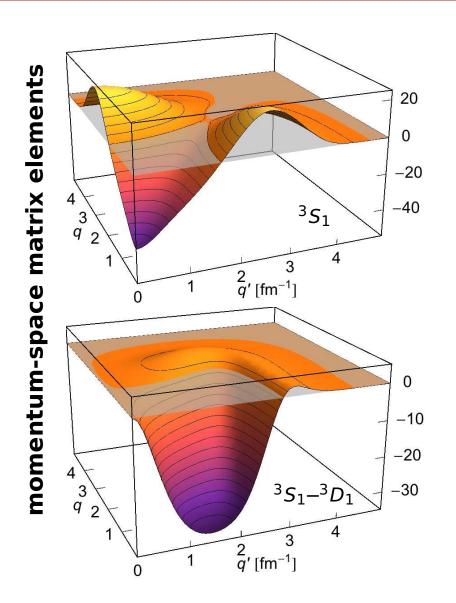
Chiral N³LO NN plus N²LO NNN potential

- Bare interaction (black line)
 - Strong short-range correlations
 - Large basis needed
- SRG evolved effective interaction (red line)
 - Unitary transformation

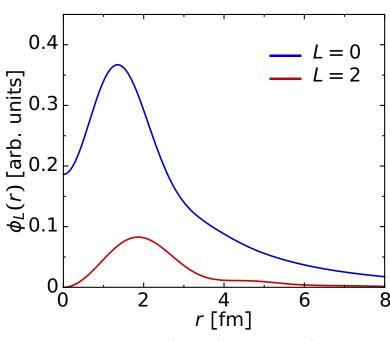
$$H_{\alpha} = U_{\alpha} H U_{\alpha}^{+} \Rightarrow \frac{dH_{\alpha}}{d\alpha} = \left[\left[T, H_{\alpha} \right], H_{\alpha} \right] \left(\alpha = \frac{1}{\lambda^{4}} \right)$$

- Two- plus three-body components, four-body omitted
- Softens the interaction
 - Smaller basis sufficient

Why similarity renormalization?



deuteron wave-function



Robert Roth - TU Darmstadt - 06/2012

Similarity Renormalization Group (SRG) evolution

- Continuous transformation driving Hamiltonian to band-diagonal form with respect to a chosen basis
- Unitary transformation $H_{\alpha} = U_{\alpha} H U_{\alpha}^{+}$ $U_{\alpha} U_{\alpha}^{+} = U_{\alpha}^{+} U_{\alpha} = 1$ $\frac{dH_{\alpha}}{d\alpha} = \frac{dU_{\alpha}}{d\alpha} H U_{\alpha}^{+} + U_{\alpha} H \frac{dU_{\alpha}^{+}}{d\alpha} = \frac{dU_{\alpha}}{d\alpha} U_{\alpha}^{+} U_{\alpha} H U_{\alpha}^{+} + U_{\alpha} H U_{\alpha}^{+} U_{\alpha} \frac{dU_{\alpha}^{+}}{d\alpha}$ $= \frac{dU_{\alpha}}{d\alpha} U_{\alpha}^{+} H_{\alpha} + H_{\alpha} U_{\alpha} \frac{dU_{\alpha}^{+}}{d\alpha} = \left[\eta_{\alpha}, H_{\alpha}\right]$ $\eta_{\alpha} = \frac{dU_{\alpha}}{d\alpha} U_{\alpha}^{+} = -\eta_{\alpha}^{+}$
- Setting $\eta_{\alpha} = [G_{\alpha}, H_{\alpha}]$ with Hermitian G_{α}

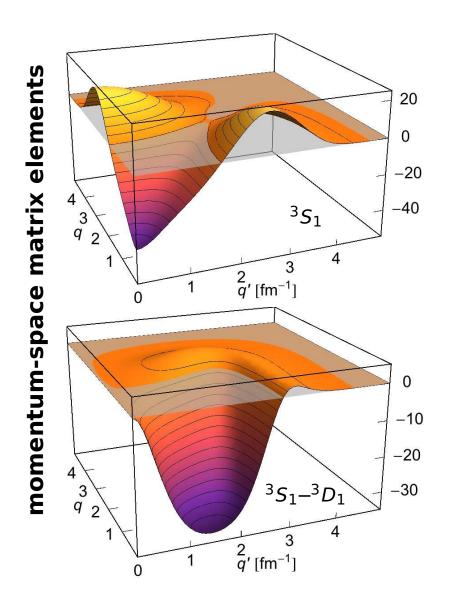
$$\frac{dH_{\alpha}}{d\alpha} = \left[\left[G_{\alpha}, H_{\alpha} \right], H_{\alpha} \right]$$

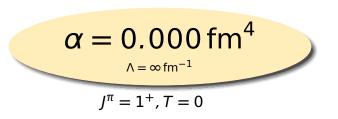
- Customary choice in nuclear physics $G_{\alpha} = T$... kinetic energy operator
 - band-diagonal in momentum space plane-wave basis

• Initial condition
$$H_{\alpha=0} = H_{\lambda=\infty} = H$$
 $\lambda^2 = 1/\sqrt{\alpha}$

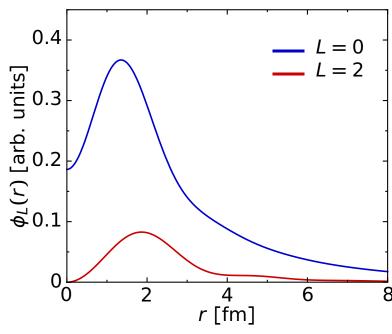
anti-Hermitian generator

SRG evolution in two-nucleon space



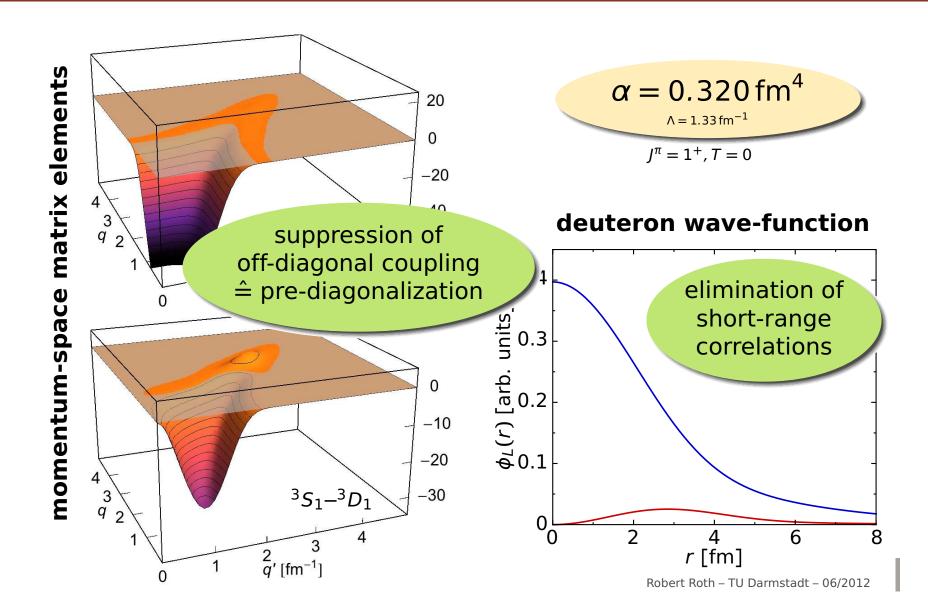


deuteron wave-function

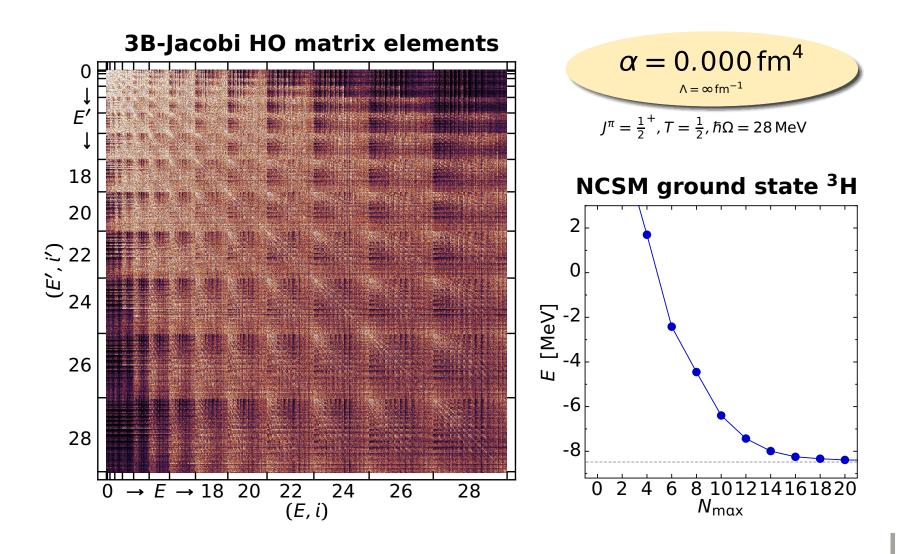


Robert Roth - TU Darmstadt - 06/2012

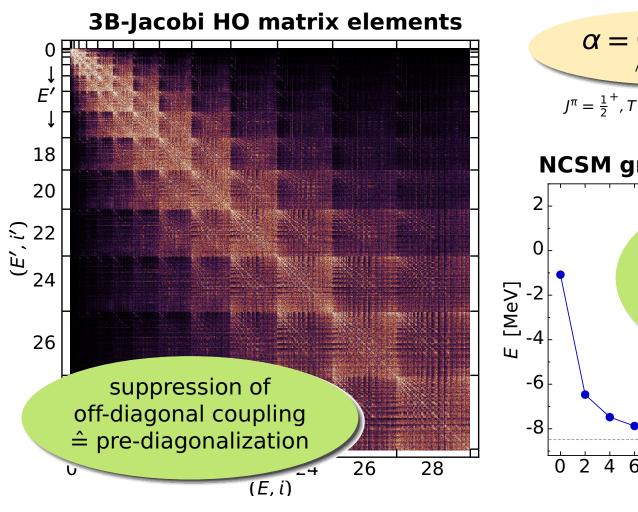
SRG evolution in two-nucleon space



SRG evolution in three-nucleon space



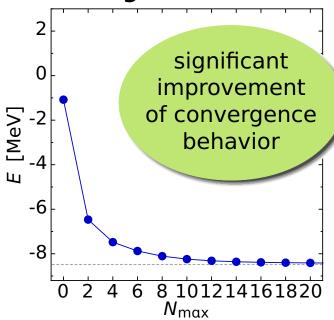
SRG evolution in three-nucleon space



 $\alpha = 0.320 \, \text{fm}^4$

$$J^{\pi} = \frac{1}{2}^{+}, T = \frac{1}{2}, \hbar\Omega = 28 \text{ MeV}$$

NCSM ground state ³H



SRG evolution for A-nucleon system

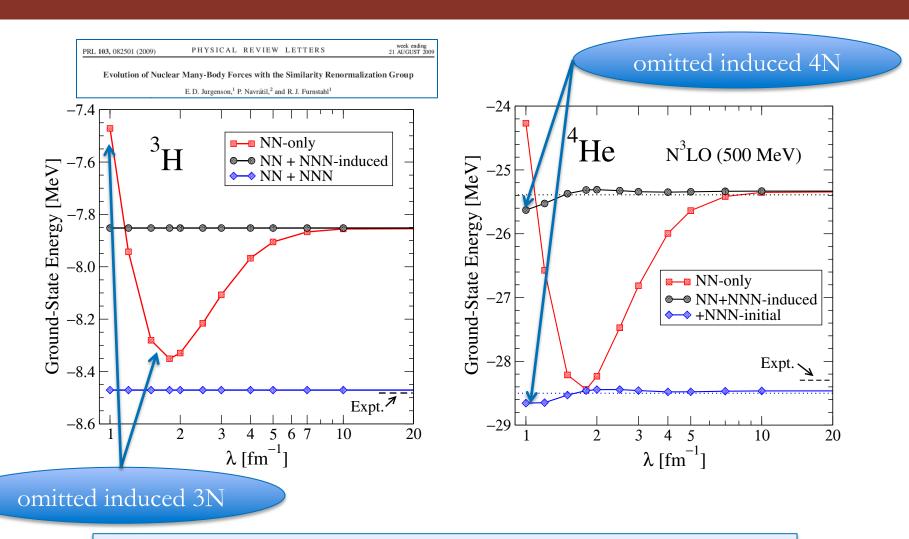
Evolution induces many-nucleon terms (up to A)

$$\tilde{H}_{\alpha} = \tilde{H}_{\alpha}^{[1]} + \tilde{H}_{\alpha}^{[2]} + \tilde{H}_{\alpha}^{[3]} + \tilde{H}_{\alpha}^{[4]} + ... + \tilde{H}_{\alpha}^{[A]}$$

- In actual calculations so far only terms up to $ilde{H}_lpha^{[3]}$ kept
- Three types of SRG-evolved Hamiltonians used
 - NN only: Start with initial T+V_{NN} and keep $\tilde{H}_{\alpha}^{[1]}$ + $\tilde{H}_{\alpha}^{[2]}$
 - NN+3N-induced: Start with initial T+V_{NN} and keep $\tilde{H}_{\alpha}^{[1]}$ + $\tilde{H}_{\alpha}^{[2]}$ + $\tilde{H}_{\alpha}^{[3]}$
 - NN+3N-full: Start with initial T+V_{NN}+V_{NNN} and keep $\tilde{H}_{\alpha}^{[1]}$ + $\tilde{H}_{\alpha}^{[2]}$ + $\tilde{H}_{\alpha}^{[3]}$

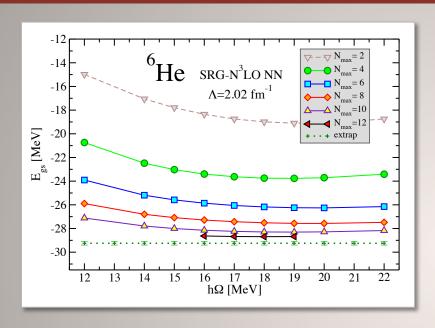
α variation (Λ variation) provides a diagnostic tool to asses the contribution of omitted many-body terms, tests the unitarity of the SRG transformation

SRG evolution: ³H and ⁴He



Ab initio calculations (NCSM, in this case) used also for SRG evolution of NNN force (in HO basis)

NCSM calculations of ⁶He g.s. energy



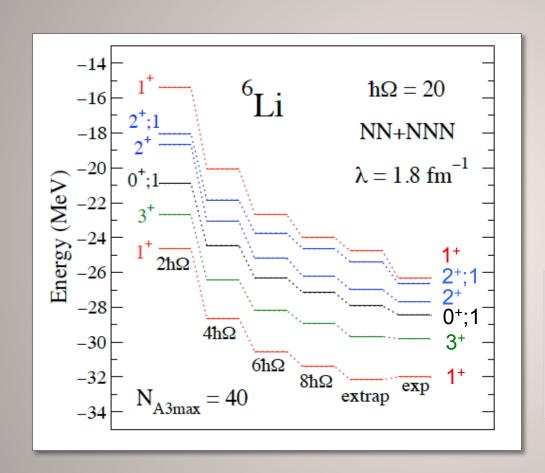
Dependence on:

Basis size $-N_{max}$ HO frequency $-h\Omega$

- Soft SRG evolved NN potential
- √ N_{max} convergence OK
- Extrapolation feasible

$E_{\rm g.s.} [{ m MeV}]$	⁴ He	⁶ He	
$NCSM N_{max} = 12$	-28.05	-28.63	
NCSM extrap.	-28.22(1)	-29.25(15)	
Expt.	-28.30	-29.27	

⁶Li from chiral EFT interactions: Ground-state & excitation energies



A=3 binding energy & half life constraint $c_{\rm D}$ =-0.2, $c_{\rm E}$ =-0.205, Λ =500 MeV

PHYSICAL REVIEW C 83, 034301 (2011)

Evolving nuclear many-body forces with the similarity renormalization group

E. D. Jurgenson*

Lawrence Livermore National Laboratory, P. O. Box 808, L-414, Livermore, California 94551, USA

Navrátil[†]

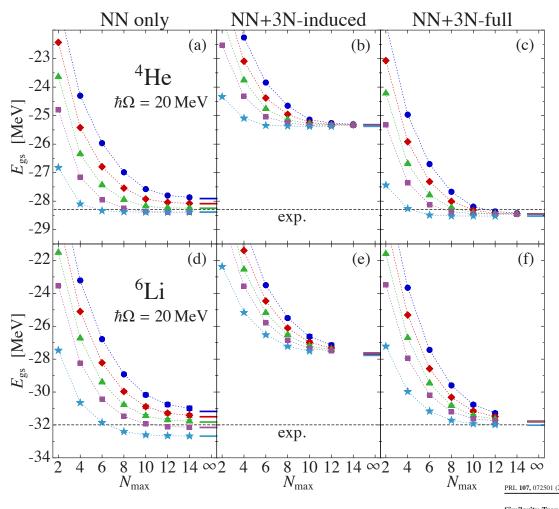
Lawrence Livermore National Laboratory, P. O. Box 808, L-414, Livermore, California 94551, USA and TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia, V6T 2A3 Canada

R. J. Furnstahl

Department of Physics, The Ohio State University, Columbus, Ohio 43210, USA (Received 1 December 2010; published 1 March 2011)

SRG with 2- plus 3-body: Good convergence, extrapolation to infinite basis space possible

Light nuclei with SRG evolved interactions



- Fast convergence
- Significant 3N induced interaction
- No 4N induced interaction

Similarity-Transformed Chiral NN + 3N Interactions for the Ab Initio Description of 12 C and 16 O Robert Roth, 1, 8 Joachim Langhammer, 1 Angelo Calci, 1 Sven Binder, 1 and Petr Navrátil 2, 3

 $\alpha = 0.04 \, \text{fm}^4$ $\Lambda = 2.24 \, \text{fm}^{-1}$

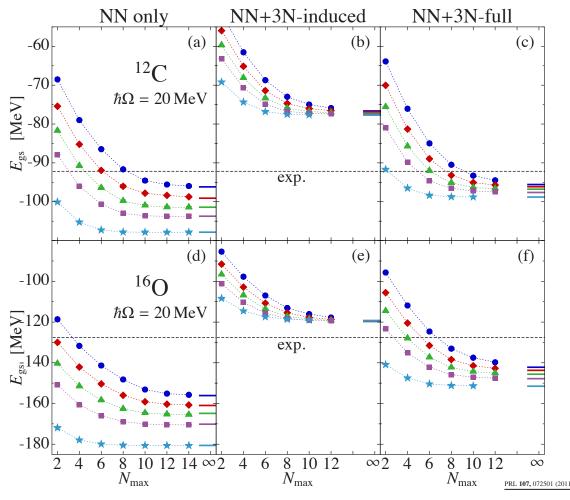
 $\alpha = 0.05 \, \text{fm}^4$ $\Lambda = 2.11 \, \text{fm}^{-1}$

 $\alpha = 0.0625 \, \text{fm}^4$ $\Lambda = 2.00\,\mathrm{fm}^{-1}$

 $\alpha = 0.08 \, \text{fm}^4$ $\Lambda = 1.88 \, \text{fm}^{-1}$

 $\alpha = 0.16 \, \text{fm}^4$ $\Lambda = 1.58 \, \text{fm}^{-1}$

Heavier p-shell nuclei with SRG evolved interactions



- Fast convergence
- Significant 3N induced interaction
- 4N induced interaction when chiral 3N included

4N induced suppressed by lowering the chiral 3N cutoff to 400 MeV

 $\alpha = 0.04 \, \text{fm}^4$ $\Lambda = 2.24 \, \text{fm}^{-1}$

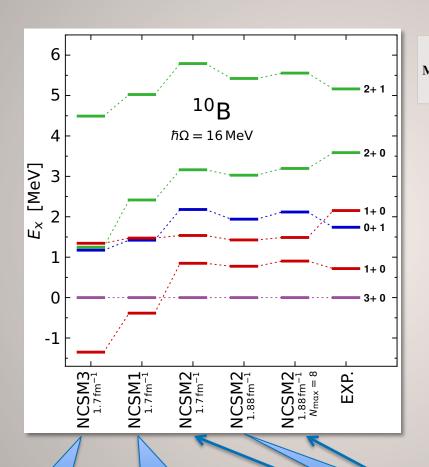
 $\alpha = 0.05 \, \text{fm}^4$ $\Lambda = 2.11 \, \text{fm}^{-1}$ $\alpha = 0.0625 \, \text{fm}^4$ $\Lambda = 2.00\,\text{fm}^{-1}$

 $\alpha = 0.08 \, \text{fm}^4$ $\Lambda = 1.88 \, \text{fm}^{-1}$

 $\alpha = 0.16 \, \text{fm}^4$ $\Lambda = 1.58 \, \text{fm}^{-1}$

Robert Roth, 1,* Joachim Langhammer, 1 Angelo Calci, 1 Sven Binder, 1 and Petr Navrátil 2,5

¹⁰B states very sensitive to 3N interaction



PHYSICAL REVIEW C 86, 054609 (2012) $\label{eq:microscopic} \mbox{Microscopic two-nucleon overlaps and knockout reactions from 12C}$

E. C. Simpson, P. Navrátil, R. Roth, and J. A. Tostevin^{1,4}

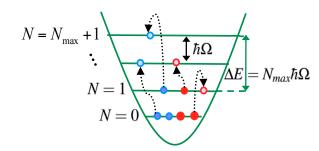
chiral NN

chiral NN+3N(400) chiral NN+3N(500)

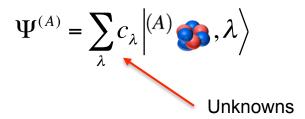
No-core shell model

No-core shell model (NCSM)

- A-nucleon wave function expansion in the harmonic-oscillator (HO) basis
- short- and medium range correlations
- Bound-states, narrow resonances

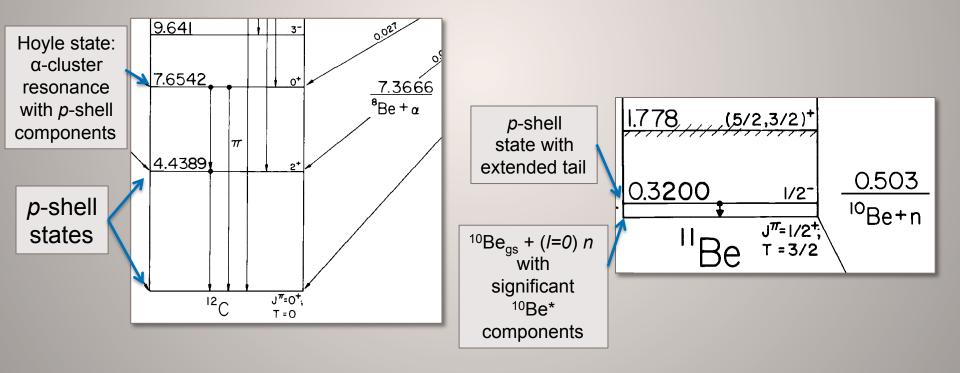


$$\Psi^A = \sum_{N=0}^{N_{\text{max}}} \sum_i c_{Ni} \, \Phi_{Ni}^A$$

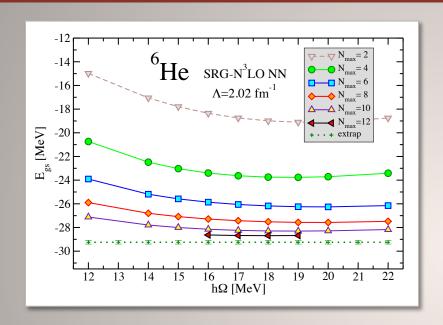


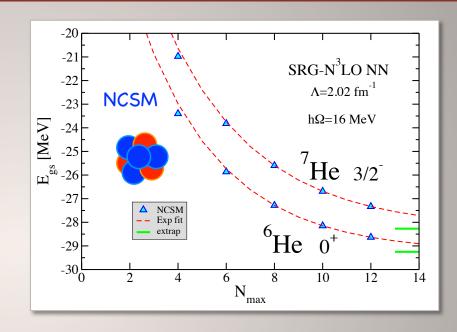
Light & medium mass nuclei from first principles

- Nuclear structure and reaction theory for light nuclei cannot be uncoupled
 - Well-bound nuclei, e.g. ¹²C, have low-lying cluster-dominated resonances
 - Bound states of exotic nuclei, e.g. ¹¹Be, manifest many-nucleon correlations



NCSM calculations of ⁶He and ⁷He g.s. energies





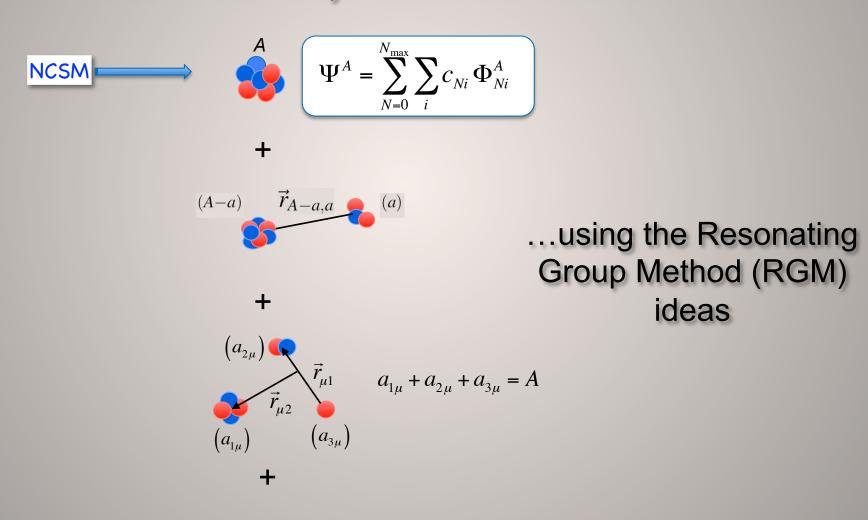
- Soft SRG evolved NN potential
- ✓ N_{max} convergence OK
- Extrapolation feasible

$E_{\rm g.s.} [{ m MeV}]$	⁴ He	⁶ He	⁷ He
NCSM $N_{\rm max}$ =12	-28.05	-28.63	-27.33
NCSM extrap.	-28.22(1)	-29.25(15)	-28.27(25)
Expt.	-28.30	-29.27	-28.84

- ⁷He unbound
 - Expt. E_{th}=+0.430(3) MeV: NCSM E_{th}≈ +1 MeV
 - Expt. width 0.182(5) MeV: NCSM no information about the width

Extending no-core shell model beyond bound states

Include more many nucleon correlations...



$$\psi^{(A)} = \sum_{\kappa} c_{\kappa} \phi_{1\kappa} \left(\left\{ \vec{\xi}_{1\kappa} \right\} \right)$$

$$+ \sum_{\nu} \hat{A}_{\nu} \phi_{1\nu} \left(\left\{ \vec{\xi}_{1\nu} \right\} \right) \phi_{2\nu} \left(\left\{ \vec{\xi}_{2\nu} \right\} \right) g_{\nu}(\vec{r_{\nu}})$$

$$+ \sum_{\nu} \hat{A}_{\mu} \phi_{1\nu} \left(\left\{ \vec{\xi}_{1\nu} \right\} \right) \phi_{2\nu} \left(\left\{ \vec{\xi}_{2\nu} \right\} \right) g_{\nu}(\vec{r_{\nu}})$$

$$+ \sum_{\nu} \hat{A}_{\mu} \phi_{1\mu} \left(\left\{ \vec{\xi}_{1\mu} \right\} \right) \phi_{2\mu} \left(\left\{ \vec{\xi}_{2\mu} \right\} \right) \phi_{3\mu} \left(\left\{ \vec{\xi}_{3\mu} \right\} \right) G_{\mu}(\vec{r_{\mu 1}}, \vec{r_{\mu 2}})$$

$$+ \cdots$$

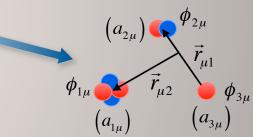
$$\psi^{(A)} = \sum_{\kappa} c_{\kappa} \phi_{1\kappa} \left(\left\{ \vec{\xi}_{1\kappa} \right\} \right) \qquad (a_{1\kappa} = A)$$

$$+ \sum_{\nu} \hat{A}_{\nu} \phi_{1\nu} \left(\left\{ \vec{\xi}_{1\nu} \right\} \right) \phi_{2\nu} \left(\left\{ \vec{\xi}_{2\nu} \right\} \right) g_{\nu} (\vec{r_{\nu}}) \qquad (a_{1\nu})$$

$$a_{1\nu} + a_{2\nu} = A$$

$$+ \sum_{\mu} \hat{A}_{\mu} \phi_{1\mu} (\{\vec{\xi}_{1\mu}\}) \phi_{2\mu} (\{\vec{\xi}_{2\mu}\}) \phi_{3\mu} (\{\vec{\xi}_{3\mu}\}) G_{\mu} (\vec{r}_{\mu 1}, \vec{r}_{\mu 2})$$

$$+ \cdots$$



 $a_{1\mu} + a_{2\mu} + a_{3\mu} = A$

- ϕ : antisymmetric cluster wave functions
 - {ξ}: Translationally invariant internal coordinates
 (Jacobi relative coordinates)
 - These are known, they are an input

$$\psi^{(A)} = \sum_{\kappa} c_{\kappa} \phi_{1\kappa} \left(\left\{ \vec{\xi}_{1\kappa} \right\} \right)$$

$$\phi_{1\kappa}$$

$$+ \sum_{\nu} \hat{A}_{\nu} \phi_{1\nu} \left(\left\{ \vec{\xi}_{1\nu} \right\} \right) \phi_{2\nu} \left(\left\{ \vec{\xi}_{2\nu} \right\} \right) g_{\nu}(\vec{r}_{\nu})$$

$$(a_{1\nu}) \qquad (a_{2\nu}) \qquad (a_{2\nu$$

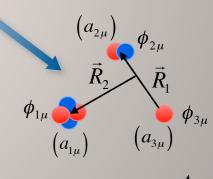
• A_{ν} , A_{μ} : intercluster antisymmetrizers

- Antisymmetrize the wave function for exchanges of nucleons between clusters

 $a_{1\mu} + a_{2\mu} + a_{3\mu} = A$

- Example: $a_{1v} = A - 1, \ a_{2v} = 1 \implies \hat{A}_v = \frac{1}{\sqrt{A}} \left[1 - \sum_{i=1}^{A-1} \hat{P}_{iA} \right]$

- c, g and G: discrete and continuous linear variational amplitudes
 - Unknowns to be determined



$$a_{1\mu} + a_{2\mu} + a_{3\mu} = A$$

$$\psi^{(A)} = \sum_{\kappa} c_{\kappa} \phi_{1\kappa} \left(\left\{ \vec{\xi}_{1\kappa} \right\} \right)$$

$$\phi_{1\kappa}$$

$$a_{1\nu} + a_{2\nu} = A$$

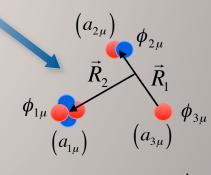
$$+ \sum_{\nu} \int g_{\nu}(\vec{r}) \hat{A}_{\nu} \left[\phi_{1\nu} \left(\left\{ \vec{\xi}_{1\nu} \right\} \right) \phi_{2\nu} \left(\left\{ \vec{\xi}_{2\nu} \right\} \right) \delta(\vec{r} - \vec{r}_{\nu}) \right] d\vec{r}$$

$$\phi_{1\nu} \qquad \phi_{1\nu} \qquad \phi_{2\nu}$$

$$(a_{1\nu}) \qquad (a_{2\nu})$$

$$+ \sum_{\mu} \iint G_{\mu}(\vec{R}_{1}, \vec{R}_{2}) \hat{A}_{\mu} \left[\phi_{1\mu} \left(\left\{ \vec{\xi}_{1\mu} \right\} \right) \phi_{2\mu} \left(\left\{ \vec{\xi}_{2\mu} \right\} \right) \phi_{3\mu} \left(\left\{ \vec{\xi}_{3\mu} \right\} \right) \delta(\vec{R}_{1} - \vec{R}_{\mu 1}) \delta(\vec{R}_{2} - \vec{R}_{\mu 2}) \right] d\vec{R}_{1} d\vec{R}_{2}$$

- Discrete and continuous set of basis functions
 - Non-orthogonal
 - Over-complete



$$a_{1\mu} + a_{2\mu} + a_{3\mu} = A$$

Binary cluster wave function

$$\psi^{(A)} = \sum_{\kappa} c_{\kappa} \phi_{1\kappa} \left(\left\{ \vec{\xi}_{1\kappa} \right\} \right)$$

$$a_{1\nu} + a_{2\nu} = A$$

$$+ \sum_{\nu} \int g_{\nu}(\vec{r}) \hat{A}_{\nu} \left[\phi_{1\nu} \left(\left\{ \vec{\xi}_{1\nu} \right\} \right) \phi_{2\nu} \left(\left\{ \vec{\xi}_{2\nu} \right\} \right) \delta(\vec{r} - \vec{r}_{\nu}) \right] d\vec{r}$$

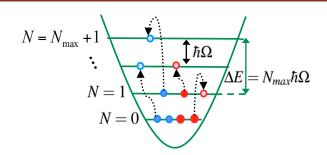
$$+ \sum_{\mu} \int \int G_{\mu}(\vec{R}_{1}, \vec{R}_{2}) \hat{A}_{\mu} \left[\phi_{1\mu} \left(\left\{ \vec{\xi}_{1\mu} \right\} \right) \phi_{2\mu} \left(\left\{ \vec{\xi}_{2\mu} \right\} \right) \phi_{3\mu} \left(\left\{ \vec{\xi}_{3\mu} \right\} \right) \delta(\vec{R}_{1} - \vec{R}_{\mu 1}) \delta(\vec{R}_{2} - \vec{R}_{\mu 2}) \right] d\vec{R}_{1} d\vec{R}_{2}$$

$$+ \cdots$$

- In practice: function space limited by using relatively simple forms of Ψ chosen according to physical intuition and energetical arguments
 - Most common: expansion over binary-cluster basis

No-core shell model with RGM

- No-core shell model (NCSM)
 - A-nucleon wave function expansion in the harmonic-oscillator (HO) basis
 - short- and medium range correlations
 - Bound-states, narrow resonances



- NCSM with Resonating Group Method (NCSM/RGM)
 - cluster expansion
 - proper asymptotic behavior
 - long-range correlations

$$\Psi^{(A)} = \sum_{v} \int d\vec{r} \, \gamma_{v}(\vec{r}) \, \hat{A}_{v} \begin{vmatrix} \vec{r} \\ (A-a) \end{vmatrix} (a), v$$

Binary cluster Resonating Group Method

• Working in partial waves $(v = \{A - a \alpha_1 I_1^{\pi_1} T_1; a \alpha_2 I_2^{\pi_2} T_2; s\ell\})$

$$\left|\psi^{J^{\pi}T}\right\rangle = \sum_{v} \hat{A}_{v} \left[\left(\left|A - a \alpha_{1} I_{1}^{\pi_{1}} T_{1}\right\rangle \left|a \alpha_{2} I_{2}^{\pi_{2}} T_{2}\right\rangle\right)^{(sT)} Y_{\ell}(\hat{r}_{A-a,a})\right]^{(J^{\pi}T)} \frac{g_{v}^{J^{\pi}T}(r_{A-a,a})}{r_{A-a,a}}$$
Target
Projectile

• Introduce a dummy variable \vec{r} with the help of the delta function

$$\left| \psi^{J^{\pi}T} \right\rangle = \sum_{\nu} \int \frac{g_{\nu}^{J^{\pi}T}(r)}{r} \hat{A}_{\nu} \left[\left(\left| A - a \, \alpha_{1} I_{1}^{\pi_{1}} T_{1} \right\rangle \left| a \, \alpha_{2} I_{2}^{\pi_{2}} T_{2} \right\rangle \right)^{(sT)} Y_{\ell}(\hat{r}) \right]^{(J^{\pi}T)} \delta(\vec{r} - \vec{r}_{A-a,a}) \, r^{2} dr \, d\hat{r}$$

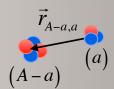
Allows to bring the wave function of the relative motion in front of the antisymmetrizer

Binary cluster Resonating Group Method

$$\left| \psi^{J^{\pi}T} \right\rangle = \sum_{\nu} \int \frac{g_{\nu}^{J^{\pi}T}(r)}{r} \hat{A}_{\nu} \left[\left(\left| A - a \, \alpha_{1} I_{1}^{\pi_{1}} T_{1} \right\rangle \left| a \, \alpha_{2} I_{2}^{\pi_{2}} T_{2} \right\rangle \right)^{(sT)} Y_{\ell}(\hat{r}) \right]^{(J^{\pi}T)} \delta(\vec{r} - \vec{r}_{A-a,a}) \, r^{2} dr \, d\hat{r}$$

Now introduce partial wave expansion of delta function

$$\delta(\vec{r} - \vec{r}_{A-a,a}) = \sum_{\lambda\mu} \frac{\delta(r - r_{A-a,a})}{rr_{A-a,a}} Y_{\lambda\mu}^*(\hat{r}) Y_{\lambda\mu}(\hat{r}_{A-a,a})$$



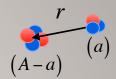
After integration in the solid angle one obtains:

$$\left| \psi^{J^{\pi}T} \right\rangle = \sum_{\nu} \int \frac{g_{\nu}^{J^{\pi}T}(r)}{r} \hat{A}_{\nu} \left[\left(\left| A - a \, \alpha_{1} I_{1}^{\pi_{1}} T_{1} \right\rangle \left| a \, \alpha_{2} I_{2}^{\pi_{2}} T_{2} \right\rangle \right)^{(sT)} Y_{\ell}(\hat{r}_{A-a,a}) \right]^{(J^{\pi}T)} \frac{\delta(r - r_{A-a,a})}{r r_{A-a,a}} r^{2} dr$$

$$\left|\Phi_{vr}^{J^{\pi}T}
ight
angle$$
 (Jacobi) channel basis

Binary cluster RGM equations

• Trial wave function:
$$\left|\psi^{J^{\pi}T}\right\rangle = \sum_{\nu} \int \frac{g_{\nu}^{J^{\pi}T}(r)}{r} \hat{A}_{\nu} \left|\Phi_{\nu r}^{J^{\pi}T}\right\rangle r^{2} dr$$



Projecting the Schrödinger equation on the channel basis yields:

$$\sum_{v} \int \left[H_{v'v}^{J^{\pi}T}(r',r) - E N_{v'v}^{J^{\pi}T}(r',r) \right] \frac{g_{v}^{J^{\pi}T}(r)}{r} r^{2} dr = 0$$

$$\left\langle \Phi_{v'r'}^{J^{\pi}T} \left| \hat{A}_{v'} H \hat{A}_{v} \right| \Phi_{vr}^{J^{\pi}T} \right\rangle \qquad \left\langle \Phi_{v'r'}^{J^{\pi}T} \left| \hat{A}_{v'} \hat{A}_{v} \right| \Phi_{vr}^{J^{\pi}T} \right\rangle$$
Hamiltonian kernel Overlap (or norm) kernel

- Breakdown of approach:
 - 1. Build channel basis states from input target and projectile wave functions
 - Calculate Hamiltonian and norm kernels
 - 3. Solve RGM equations: find unknown relative motion wave functions
 - Bound-state / scattering boundary conditions

How to calculate the RGM kernels?

- Depends on chosen target and projectile intrinsic wave functions
 - NCSM/RGM approach: use eigenstates of the (A-a)- and a-body intrinsic Hamiltonians obtained within the NCSM approach
- Note: $H_{\text{int}}^{(A)} = T_{rel}(r) + V_{rel}(r) + \overline{V}_{Coul}(r) + H_{\text{int}}^{(A-a)} + H_{\text{int}}^{(a)}$
 - Relative kinetic energy
 - Relative interaction: sum of all interactions between nucleons belonging to different clusters (minus average Coulomb interaction)
 - Example for single-nucleon projectile (a = 1): $V_{rel}(r) = \sum_{i=1}^{A-1} V_{iA}^{2b} + \sum_{i < j=1}^{A-1} V_{ijA}^{3b} \bar{V}_{Coul}(r)$ verage Coulomb interaction $\bar{V}_{Coul}(r) = \frac{Z_{1\nu}Z_{2\nu}e^2}{r}$
 - Average Coulomb interaction
 - (A-a)- and a-body intrinsic Hamiltonians (same interaction everywhere!)

$$H_{\text{int}}^{(A-a)} \left| A - a \alpha_1 I_1^{\pi_1} T_1 \right\rangle = \varepsilon_{\alpha_1}^{I_1^{\pi_1} T} \left| A - a \alpha_1 I_1^{\pi_1} T_1 \right\rangle \qquad H_{\text{int}}^{(a)} \left| a \alpha_2 I_2^{\pi_2} T_2 \right\rangle = \varepsilon_{\alpha_2}^{I_2^{\pi_2} T} \left| a \alpha_2 I_2^{\pi_2} T_2 \right\rangle$$

How to calculate the RGM kernels?

 Since we are using NCSM wave functions, it is convenient to introduce Jacobi channel states in the HO space

$$\left|\Phi_{vn}^{J^{\pi}T}\right\rangle = \left[\left(\left|A - a \; \alpha_{1} I_{1}^{\pi_{1}} T_{1}\right\rangle \left|a \; \alpha_{2} I_{2}^{\pi_{2}} T_{2}\right\rangle\right)^{(sT)} Y_{\ell}(\hat{r}_{A-a,a})\right]^{(J^{\pi}T)} R_{n\ell}(r_{A-a,a})$$

- Note:
 - The coordinate space channel states are given by

$$\left|\Phi_{vr}^{J^{\pi}T}\right\rangle = \sum_{n} R_{n\ell}(r) \left|\Phi_{vn}^{J^{\pi}T}\right\rangle$$

• We used the closure properties of HO radial wave functions

$$\frac{\delta(r - r_{A-a,a})}{r r_{A-a,a}} = \sum_{n} R_{n\ell}(r) R_{n\ell}(r_{A-a,a})$$

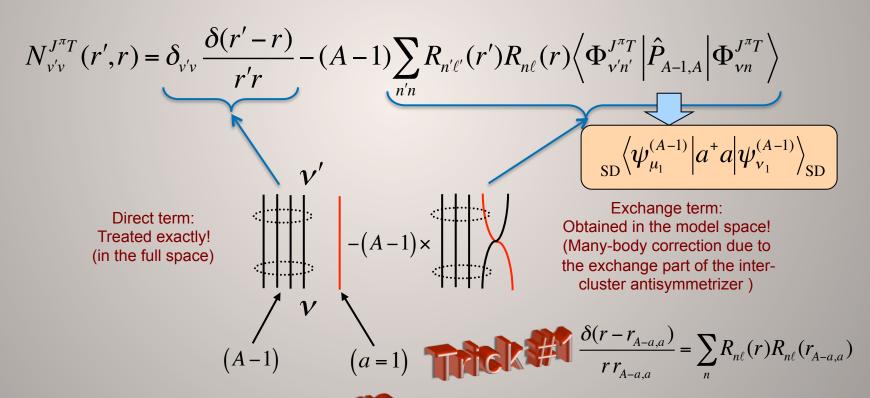
Note that this is OK, in particular when the sum is truncated, ONLY for localized parts of the kernels

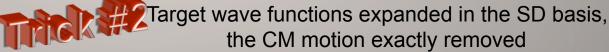
- We call them Jacobi channel states because they describe only the internal motion
 - Target and projectile wave functions are both translational invariant NCSM eigenstates calculated in the Jacobi coordinate basis

Norm kernel (Pauli principle)

Single-nucleon projectile

$$\left\langle \Phi_{v'r'}^{J^{\pi}T} \left| \hat{A}_{v} \hat{A}_{v} \right| \Phi_{vr}^{J^{\pi}T} \right\rangle = \left\langle \begin{array}{c} (A-1) \\ r' \\ \end{array} \right| \left(a' = 1 \right) \left| \begin{array}{c} 1 - \sum_{i=1}^{A-1} \hat{P}_{iA} \\ \end{array} \right| \left(a = 1 \right) \left| \begin{array}{c} (A-1) \\ r \\ \end{array} \right|$$





Hamiltonian kernel (projectile-target potentials)

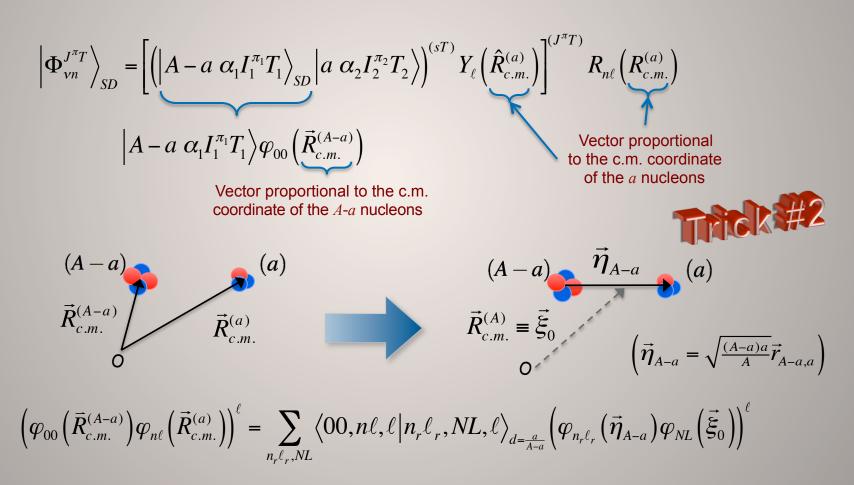
Single-nucleon projectile

Direct potential: in the model space (interaction is localized!)

Exchange potential: in the model space

Introduce SD channel states in the HO space

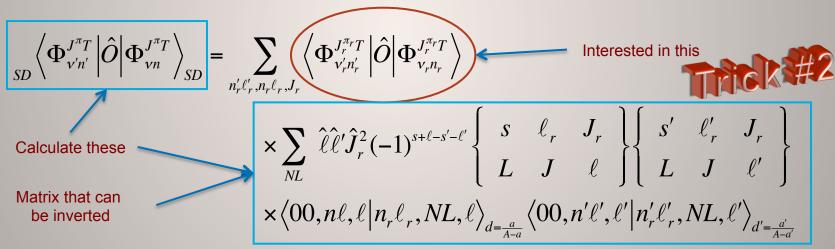
 Define SD channel states in which the eigenstates of the heaviest of the two clusters (target) are described by a SD wave function:



Translational invariant matrix elements from SD ones

More in detail:

The spurious motion of the c.m. is mixed with the intrinsic motion



- Translational invariance preserved (exactly!) also with SD channels
- Transformation is general: same for different A's or different a's

Is the SD channel basis advantageous?

- SD to Jacobi transformation is general and exact
- Can use powerful second quantization representation
 - Matrix elements of translational invariant operators can be expressed in terms of matrix elements of density operators on the target eigenstates
 - For example, for a = a' = 1

$$\sum_{SD} \left\langle \Phi_{v'n'}^{J^{\pi}T} \left| P_{A-1,A} \right| \Phi_{vn}^{J^{\pi}T} \right\rangle_{SD} = \frac{1}{A-1} \sum_{jj'K\tau} \hat{s} \hat{s}' \hat{j} \hat{j}' \hat{K} \hat{\tau} (-1)^{I_1'+j'+J} (-1)^{T_1+\frac{1}{2}+T}$$

$$\times \left\{ \begin{array}{ccc} I_1 & \frac{1}{2} & s \\ \ell & J & j \end{array} \right\} \left\{ \begin{array}{ccc} I_1' & \frac{1}{2} & s' \\ \ell' & J & j' \end{array} \right\} \left\{ \begin{array}{ccc} I_1 & K & I_1' \\ j' & J & j \end{array} \right\} \left\{ \begin{array}{ccc} T_1 & \tau & T_1' \\ \frac{1}{2} & T & \frac{1}{2} \end{array} \right\}$$

$$\times \left\{ \begin{array}{cccc} A-1 & \alpha_1' I_1'' \pi_1' T_1' \left\| \left(a_{n\ell j\frac{1}{2}}^+ \tilde{a}_{n'\ell'j'\frac{1}{2}} \right)^{(K\tau)} \right\| A-1 & \alpha_1 I_1^{\pi_1} T_1 \right\rangle_{SD} \right\}$$

• Given a, a', matrix elements are also general (same for different A's)

Solving the NCSM/RGM equations

- There are other technical details
 - Because of the norm kernel, the radial wave functions solutions of the RGM equation are not Schrödinger wave functions
 - However, the RGM equations can be orthogonalized

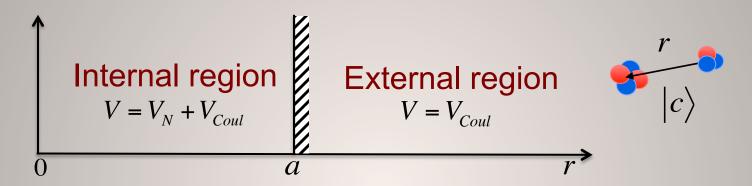
$$\sum_{v'} \int dr' r'^2 \left[N^{-\frac{1}{2}} H N^{-\frac{1}{2}} \right]_{vv'} (r,r') \frac{u_{v'}(r')}{r'} = E \frac{u_v(r)}{r}$$

- This procedure is explained in Phys. Rev. C 79, 044606 (2009)
- In the end, one is left with a set of integral-differential coupled channel equations with a non-local potential of the type:

$$\left[T_{rel}(r) + \overline{V}_{Coul}(r) - (E - \varepsilon_{\alpha_1} - \varepsilon_{\alpha_2}) \right] u_{\nu}(r) + \sum_{\nu'} \int dr' r' \ W_{\nu\nu'}(r, r') \ u_{\nu'}(r') = 0$$

Microscopic *R*-matrix theory

Separation into "internal" and "external" regions at the channel radius a

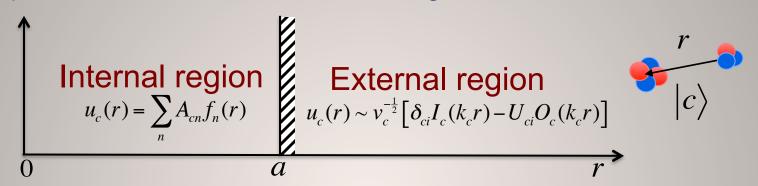


- This is achieved through the Bloch operator: $L_c = \frac{\hbar^2}{2\mu_c} \delta(r-a) \left(\frac{d}{dr} \frac{B_c}{r} \right)$
- System of Bloch-Schrödinger equations:

$$\left[\hat{T}_{rel}(r) + L_c + \overline{V}_{Coul}(r) - (E - E_c)\right] u_c(r) + \sum_{c'} \int dr' r' W_{cc'}(r, r') u_{c'}(r') = L_c u_c(r)$$

Microscopic *R*-matrix theory

Separation into "internal" and "external" regions at the channel radius a



- This is achieved through the Bloch operator: $L_c = \frac{\hbar^2}{2\mu_c} \delta(r-a) \left(\frac{d}{dr} \frac{B_c}{r} \right)$
- System of Bloch-Schrödinger equations:

$$\left[\hat{T}_{rel}(r) + L_c + \overline{V}_{Coul}(r) - (E - E_c)\right] \underbrace{u_c(r)}_{u_c(r)} + \sum_{c'} \int dr' r' W_{cc'}(r, r') \underbrace{u_{c'}(r')}_{u_{c'}(r')} = L_c \underbrace{u_c(r)}_{u_c(r)}$$

- Internal region: expansion on square-integrable basis $u_c(r) = \sum_n A_{cn} f_n(r)$

External region: asymptotic form for large r

$$u_c(r) \sim C_c W(k_c r)$$
 or $u_c(r) \sim v_c^{-\frac{1}{2}} \big[\delta_{ci} I_c(k_c r) - U_{ci} O_c(k_c r) \big]$ Scattering matrix Scattering state

To find the Scattering matrix

• After projection on the basis $f_n(r)$:

$$\sum_{c'n'} \left[C_{cn,c'n'} - (E - E_c) \delta_{cn,c'n'} \right] A_{c'n'} = \frac{\hbar^2 k_c}{2\mu_c v_c^{1/2}} \left\langle f_n | L_c | I_c \delta_{ci} - U_{ci} O_c \right\rangle$$

$$\left\langle f_n | \hat{T}_{rel}(r) + L_c + \overline{V}_{Coul}(r) | f_{n'} \right\rangle \delta_{cc'} + \left\langle f_n | W_{cc'}(r,r') | f_{n'} \right\rangle$$

- 1. Solve for A_{cn}
- 2. Match internal and external solutions at channel radius, a

with Lagrange mesh:

$$\left\{ax_n \in [0,a]\right\}$$

$$\int_0^1 g(x)dx \approx \sum_{n=1}^N \lambda_n g(x_n)$$

Lagrange basis associated

$$\int_{0}^{a} f_{n}(r) f_{n'}(r) dr \approx \delta_{nn'}$$

$$\sum_{c'} R_{cc'} \frac{k_{c'}a}{\sqrt{\mu_{c'}v_{c'}}} \left[I'_{c'}(k_{c'}a)\delta_{ci} - U_{c'i}O'_{c'}(k_{c'}a) \right] = \frac{1}{\sqrt{\mu_{c}v_{c}}} \left[I_{c}(k_{c}a)\delta_{ci} - U_{ci}O_{c}(k_{c}a) \right]$$

 In the process introduce R-matrix, projection of the Green's function operator on the channel-surface functions

$$R_{cc'} = \sum_{nn'} \frac{\hbar}{\sqrt{2\mu_c a}} f_n(a) [C - EI]_{cn,c'n'}^{-1} \frac{\hbar}{\sqrt{2\mu_{c'} a}} f_{n'}(a)$$

To find the Scattering matrix

3. Solve equation with respect to the scattering matrix U

$$\sum_{c'} R_{cc'} \frac{k_{c'}a}{\sqrt{\mu_{c'}v_{c'}}} \Big[I'_{c'}(k_{c'}a)\delta_{ci} - U_{c'i}O'_{c'}(k_{c'}a) \Big] = \frac{1}{\sqrt{\mu_{c}v_{c}}} \Big[I_{c}(k_{c}a)\delta_{ci} - U_{ci}O_{c}(k_{c}a) \Big]$$

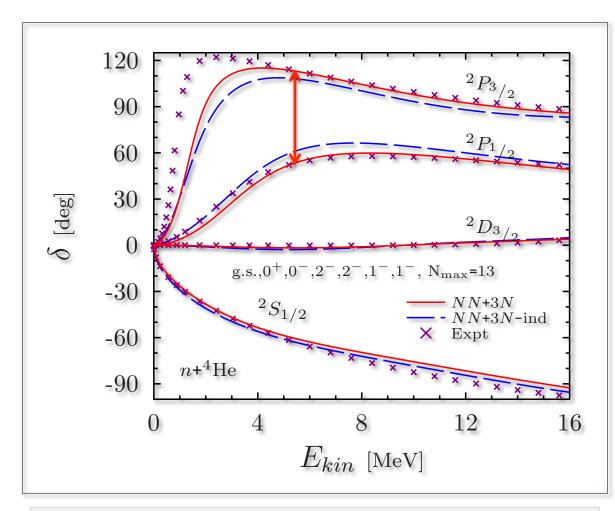
4. You can demonstrate that the solution is given by:

$$U = Z^{-1}Z^*, Z_{cc'} = (k_{c'}a)^{-1} [O_c(k_ca)\delta_{cc'} - k_{c'}a R_{cc'} O'_{c'}(k_{c'}a)]$$

Scattering phase shifts are extracted from the scattering matrix elements

$$U = \exp(2i\delta)$$

n-4He scattering within the NCSM/RGM



PHYSICAL REVIEW C 88, 054622 (2013)

Ab initio many-body calculations of nucleon-4He scattering with three-nucleon forces

Guillaume Hupin, 1,* Joachim Langhammer, 2,† Petr Navrátil, 3,‡ Sofia Quaglioni, 1,§ Angelo Calci, 2,|| and Robert Roth 2,¶

chiral NN+NNN(500) chiral NN+NNN-induced SRG λ =2 fm⁻¹ HO N_{max}=13, h Ω =20 MeV

⁴He g.s. and 6 excited states

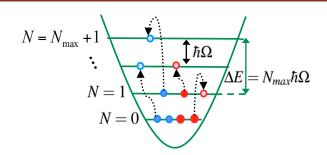
29.89	2+,0	
28.37 2839 28.64 28.31	28.67 1+,0	2 [†] ,0 -0 [†] ,0 -2 [†] ,0
27.42	2+,0	,-
25,95	1-,1	
25,28	0-,1	
24.25	17,0	
23.64	1-,1	
23.33	2-,1	
21.84	27,0	
21.01	0.0	
20.21	0,0	p(1

A larger splitting between the *P*-waves obtained with the chiral NN+NNN interaction

The 3/2- resonance still off: Interaction or **CONVERGENCE?**

No-core shell model with RGM

- No-core shell model (NCSM)
 - A-nucleon wave function expansion in the harmonic-oscillator (HO) basis
 - short- and medium range correlations
 - Bound-states, narrow resonances

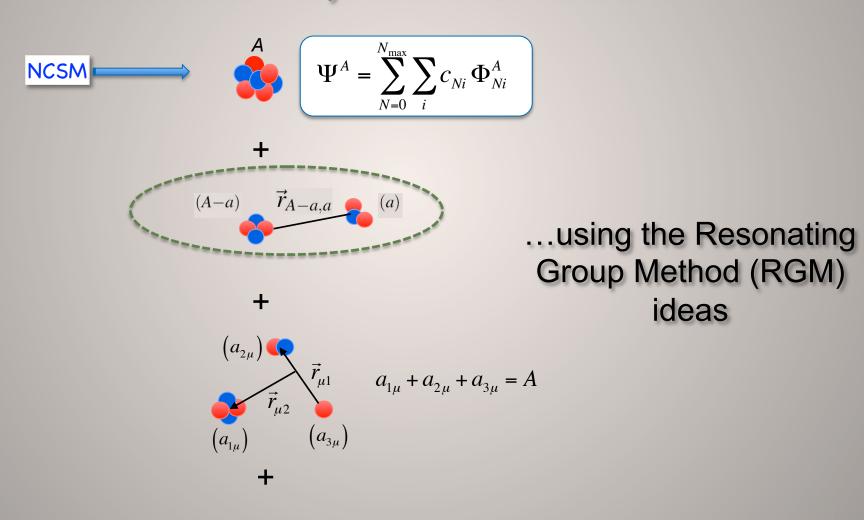


- NCSM with Resonating Group Method (NCSM/RGM)
 - cluster expansion
 - proper asymptotic behavior
 - long-range correlations

$$\Psi^{(A)} = \sum_{v} \int d\vec{r} \, \gamma_{v}(\vec{r}) \, \hat{A}_{v} \begin{vmatrix} \vec{r} & \vec{r} \\ (A-a) & (a) \end{vmatrix}, v$$

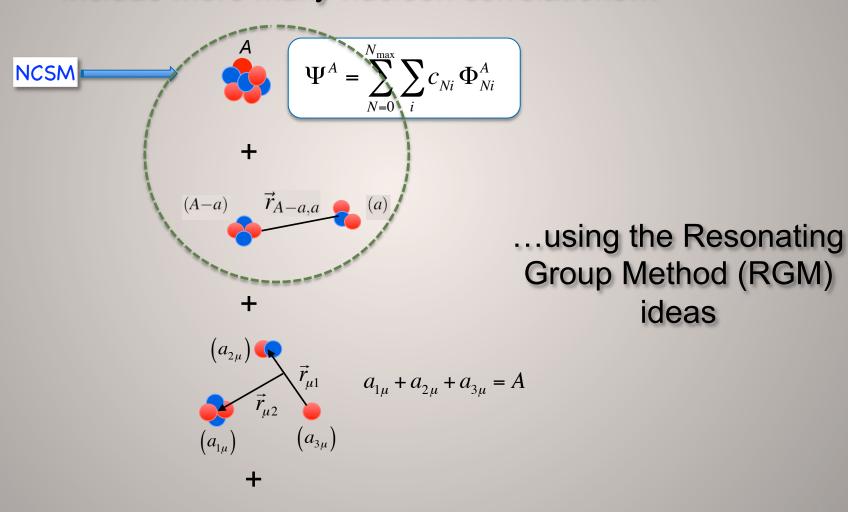
Extending no-core shell model beyond bound states

Include more many nucleon correlations...



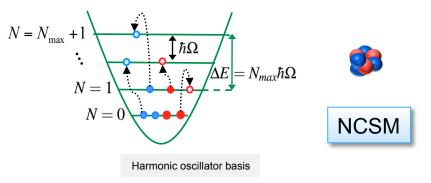
Extending no-core shell model beyond bound states

Include more many nucleon correlations...

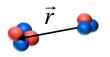


Unified approach to bound & continuum states; to nuclear structure & reactions

- Ab initio no-core shell model
 - Short- and medium range correlations
 - Bound-states, narrow resonances



- ...with resonating group method
 - Bound & scattering states, reactions
 - Cluster dynamics, long-range correlations

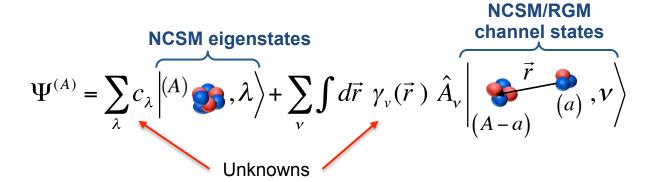


NCSM/RGM

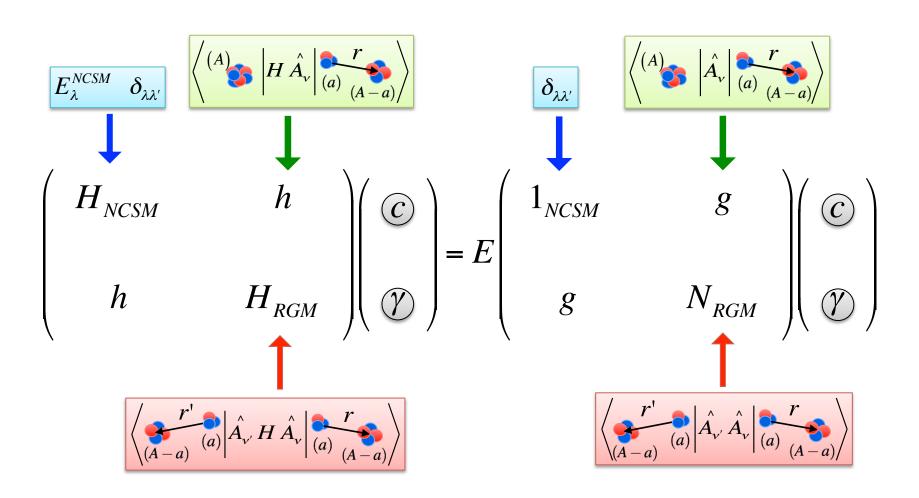
S. Baroni, P. Navratil, and S. Quaglioni, PRL **110**, 022505 (2013); PRC **87**, 034326 (2013).

Most efficient: ab initio no-core shell model with continuum

NCSMC



Coupled NCSMC equations



Scattering matrix (and observables) from matching solutions to known asymptotic with microscopic *R*-matrix on Lagrange mesh

NCSMC formalism

$$\begin{pmatrix} H_{NCSM} & \overline{h} \\ \overline{h} & \overline{\mathcal{H}} \end{pmatrix} \begin{pmatrix} c \\ \chi \end{pmatrix} = E \begin{pmatrix} 1 & \overline{g} \\ \overline{g} & 1 \end{pmatrix} \begin{pmatrix} c \\ \chi \end{pmatrix}$$

Coupling:
$$\bar{g}_{\lambda\nu}(r) = \sum_{\nu'} \int dr' r'^2 \langle A\lambda J^{\pi}T | \hat{\mathcal{A}}_{\nu'} \Phi_{\nu'r'}^{J^{\pi}T} \rangle \, \mathcal{N}_{\nu'\nu}^{-\frac{1}{2}}(r',r)$$

$$\bar{h}_{\lambda\nu}(r) = \sum_{\nu'} \int dr' r'^2 \langle A\lambda J^{\pi} T | \hat{H} \hat{\mathcal{A}}_{\nu'} | \Phi_{\nu'r'}^{J^{\pi}T} \rangle \, \mathcal{N}_{\nu'\nu}^{-\frac{1}{2}}(r', r)$$

Calculation of *h* from SD wave functions:

$$\left\langle A\lambda J^{\pi}T \middle| V_{3N} \middle| \mathcal{A}_{v}\Phi_{vr}^{J^{\pi}T} \right\rangle \propto {}_{SD} \left\langle A\lambda J^{\pi}MTM_{T} \middle| V_{3N}\mathcal{A} \left[\middle| A - 1\alpha_{1}I_{1}T_{1} \right\rangle_{SD} \varphi_{nlj}(A) \right]_{MM_{T}}^{(J^{\pi}T)} =$$

$$\sum_{\beta M_{1}m} \frac{1}{12} (I_{1}M_{1}jm \mid JM) (T_{1}M_{T_{1}} \not/_{2}m_{t} \mid TM_{T}) \left\langle \beta_{A-2}\beta_{A-1}\beta_{A} \middle| V_{3N} \middle| \beta_{A-2}' \beta_{A-1}' nljm \not/_{2}m_{t} \right\rangle$$

$$\times {}_{SD} \left\langle A\lambda J^{\pi}MTM_{T} \middle| a_{\beta_{A}}^{+} a_{\beta_{A}-1}^{+} a_{\beta_{A}-2}^{+} a_{\beta_{A-2}} a_{\beta_{A-1}'} \middle| A - 1\alpha_{1}I_{1}M_{1}T_{1}M_{T_{1}} \right\rangle_{SD}$$
9

NCSMC formalism

Calculation of h from SD wave functions:

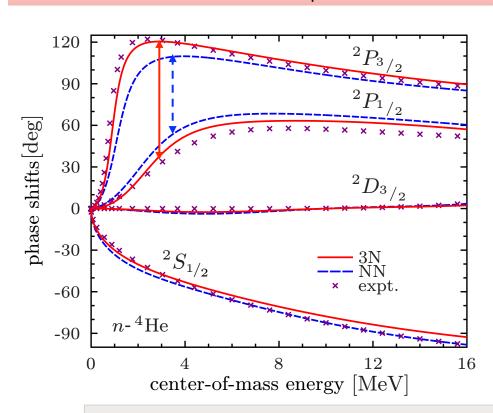
$$\begin{split} \left\langle A\lambda J^{\pi}T \left| V_{3N} \right| \mathcal{A}_{v} \Phi_{vr}^{J^{\pi}T} \right\rangle &\propto {}_{SD} \left\langle A\lambda J^{\pi}MTM_{T} \left| V_{3N}\mathcal{A} \left[\left| A - 1\alpha_{1}I_{1}T_{1} \right\rangle_{SD} \varphi_{nlj}(A) \right]_{MM_{T}}^{(J^{\pi}T)} = \\ &\sum_{\beta M_{1}m} {}^{\frac{1}{12}} (I_{1}M_{1}jm \mid JM) (T_{1}M_{T_{1}} \cancel{1}_{2}m_{t} \mid TM_{T}) \left\langle \beta_{A-2}\beta_{A-1}\beta_{A} \left| V_{3N} \right| \beta_{A-2}' \beta_{A-1}' nljm \cancel{1}_{2}m_{t} \right\rangle \\ &\times {}_{SD} \left\langle A\lambda J^{\pi}MTM_{T} \left| a_{\beta_{A}}^{+} a_{\beta_{A}-1}^{+} a_{\beta_{A}-2}^{+} a_{\beta_{A-2}} a_{\beta_{A-1}'} \left| A - 1\alpha_{1}I_{1}M_{1}T_{1}M_{T_{1}} \right\rangle_{SD} \end{split}$$

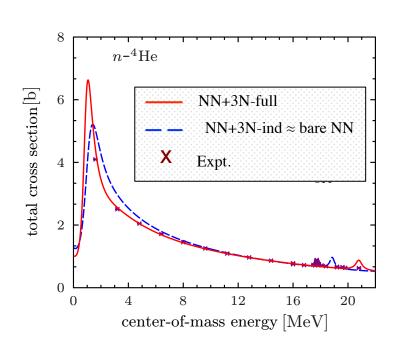
- Tricky part: Sums over M_1 , M_{T1}
 - Need target eigenvectors for all M's:
 - Use raising and lowering J_{\pm} and T_{\pm} acting on $|A-1\alpha_1 I_1 M_1 T_1 M_{T_1}\rangle_{sp}$ with $M_1=0$ for even A or 1/2 for odd A

n-⁴He scattering within NCSMC

n-4He scattering phase-shifts for chiral NN and NN+3N potential

Total *n*-4He cross section with NN and NN+3N potentials





3N force enhances $1/2^- \leftarrow \rightarrow 3/2^-$ splitting: Essential at low energies!

10P Publishing | Project Secretary of Sciences
Phys. Sci. 91 cortes (0.0000 chique)

don't in 10046, 00001 46669 (1 / 5 0000000

Invited Comment

Unified ab initio approaches to nuclear structure and reactions

Petr Navrátil ¹, Sofia Quaglioni ², Guillaume Hupin ^{1,4}, Carolina Romero-Redondo ² and Angelio Calci

PHYSICAL REVIEW C 88, 054622 (2013)

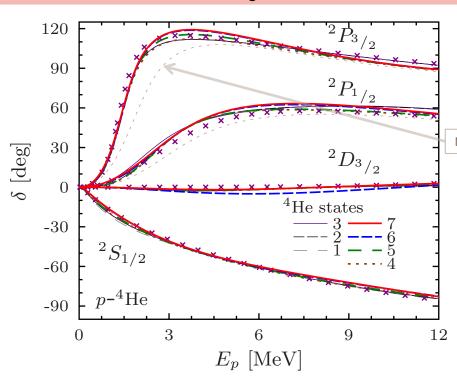
Ab initio many-body calculations of nucleon-4He scattering with three-nucleon forces

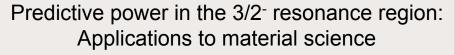
Guillaume Hupin,^{1,*} Joachim Langhammer,^{2,†} Petr Navrátil,^{3,‡} Sofia Quaglioni,^{1,§} Angelo Calci,^{2,||} and Robert Roth^{2,¶}

p-⁴He scattering within NCSMC

p-⁴He scattering phase-shifts for NN+3N potential: Convergence

Differential *p*-⁴He cross section with NN+3N potentials

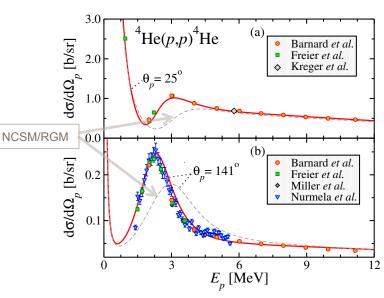


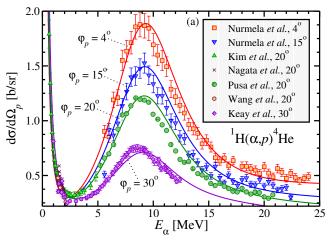


PHYSICAL REVIEW C 90, 061601(R) (2014)

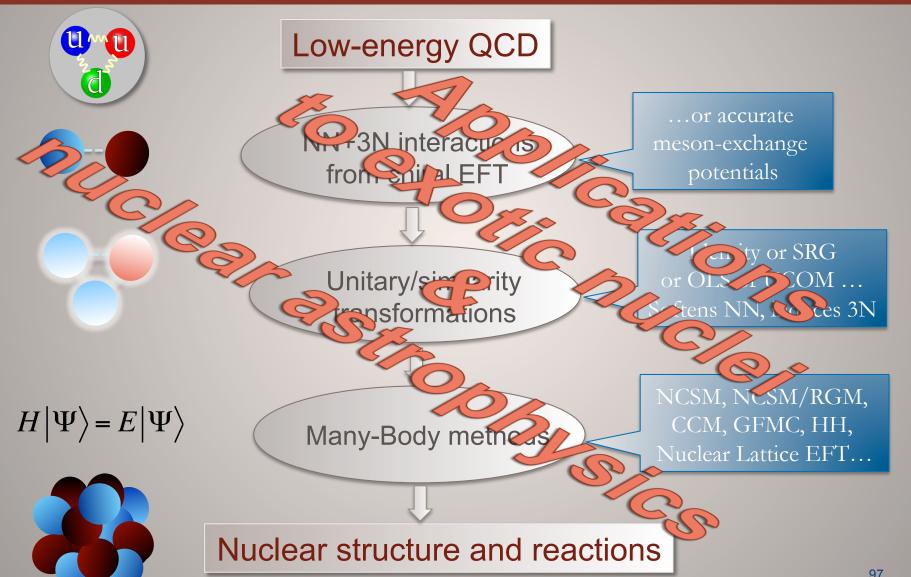
Predictive theory for elastic scattering and recoil of protons from ⁴He

Guillaume Hupin, 1,* Sofia Quaglioni, 1,† and Petr Navrátil^{2,‡}

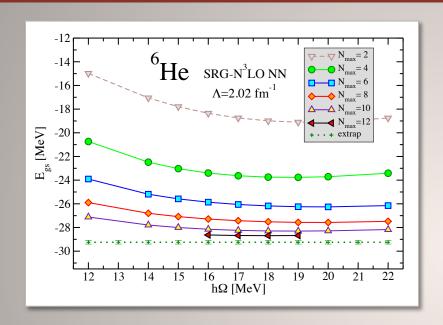


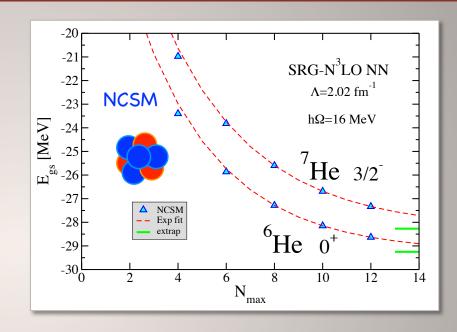


From QCD to nuclei



NCSM calculations of ⁶He and ⁷He g.s. energies





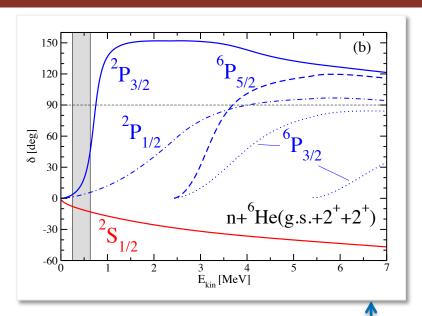
- Soft SRG evolved NN potential
- ✓ N_{max} convergence OK
- Extrapolation feasible

$E_{\rm g.s.} [{ m MeV}]$	⁴ He	⁶ He	⁷ He
NCSM $N_{\rm max}$ =12	-28.05	-28.63	-27.33
NCSM extrap.	-28.22(1)	-29.25(15)	-28.27(25)
Expt.	-28.30	-29.27	-28.84

- ⁷He unbound
 - Expt. E_{th}=+0.430(3) MeV: NCSM E_{th}≈ +1 MeV
 - Expt. width 0.182(5) MeV: NCSM no information about the width

NCSM with continuum: ⁷He ↔ ⁶He+n

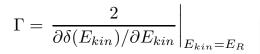
5.8



unbound

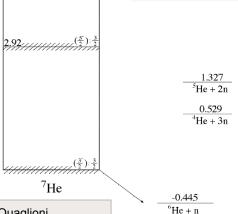
J^{π}	experiment			NCSMC	
	E_R	Γ	Ref.	E_R	Γ
$3/2^{-}$	0.430(3)	0.182(5)	[2]	0.71	0.30
$5/2^{-}$	3.35(10)	1.99(17)	[40]	3.13	1.07
$1/2^{-}$	3.03(10)	2	[11]	2.39	2.89
	3.53	10	[15]		
	1.0(1)	0.75(8)	[5]		

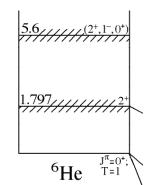
[11] A. H. Wuosmaa et al., Phys. Rev. C 72, 061301 (2005).



NCSMC

with three ⁶He states and ten ⁷He eigenstates More **7-nucleon correlations** Fewer ⁶He-core states needed Experimental controversy: Existence of low-lying 1/2⁻ state ... not seen in these calculations

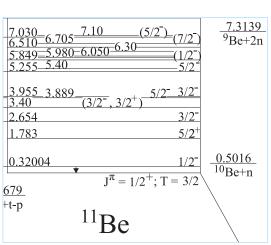




S. Baroni, P. N., and S. Quaglioni, PRL **110**, 022505 (2013); PRC **87**, 034326 (2013).

Neutron-rich halo nucleus ¹¹Be

- Z=4, N=7
 - In the shell model picture g.s. expected to be $J^{\pi}=1/2^{-1}$
 - Z=6, N=7 ¹³C and Z=8, N=7 ¹⁵O have J^π=1/2 g.s.
 - In reality, ¹¹Be g.s. is J^π=1/2⁺ parity inversion
 - Very weakly bound: E_{th}=-0.5 MeV
 - Halo state dominated by ¹⁰Be-n in the S-wave
 - The 1/2⁻ state also bound only by 180 keV
- Can we describe ¹¹Be in ab initio calculations?
 - Continuum must be included
 - Does the 3N interaction play a role in the parity inversion?

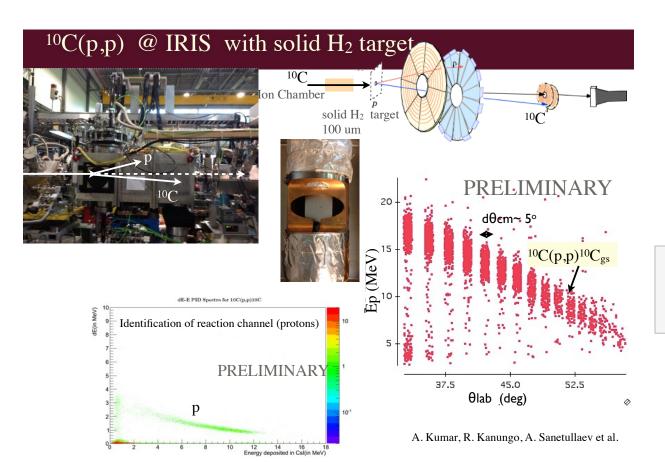


1s_{1/2} 0p_{1/2}

0p_{3/2} 0s_{1/2}

¹⁰C(p,p) @ IRIS with solid H₂ target

- New experiment at TRIUMF with the novel IRIS solid H₂ target
 - First re-accelerated ¹⁰C beam at TRIUMF
 - 10 C(p,p) angular distributions measured at $E_{\rm CM}$ ~ 4.16 MeV and 4.4 MeV



IRIS collaboration:
A. Kumar, R. Kanungo,
A. Sanetullaev *et al.*

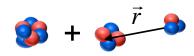
p+10C scattering: structure of 11N resonances

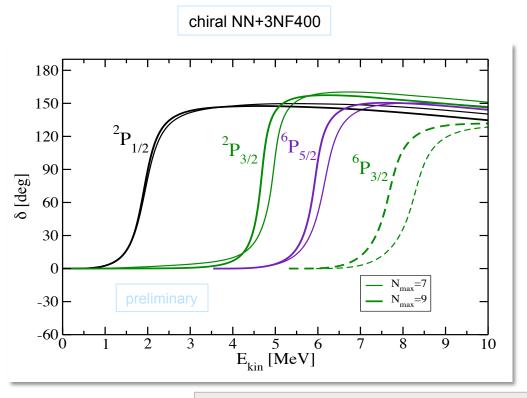
NCSMC calculations with chiral NN+3N (N³LO NN+N²LO 3NF400, NNLOsat)

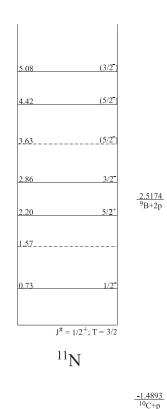
$$- p^{-10}C + {}^{11}N$$

• 10C: 0+, 2+, 2+ NCSM eigenstates

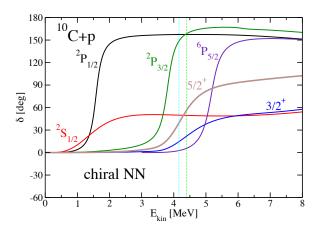
• ^{11}N : $\geq 4 \pi = -1$ and $\geq 3 \pi = +1$ NCSM eigenstates

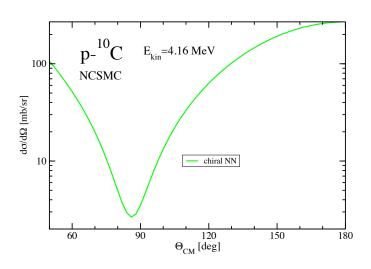


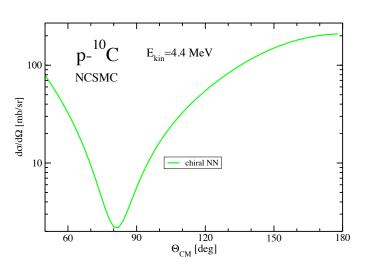




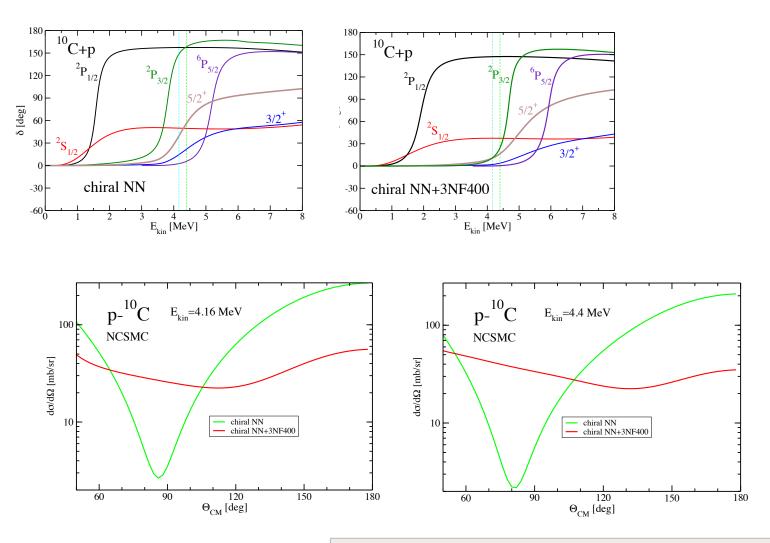
p+10C scattering: structure of 11N resonances





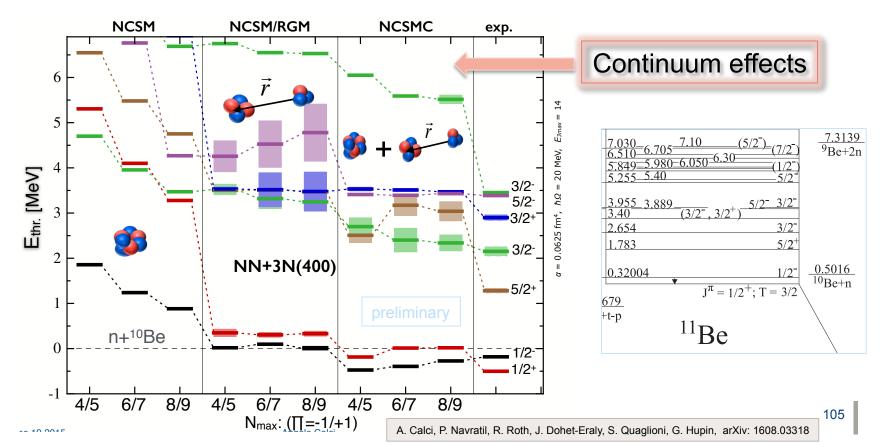


p+10C scattering: structure of 11N resonances

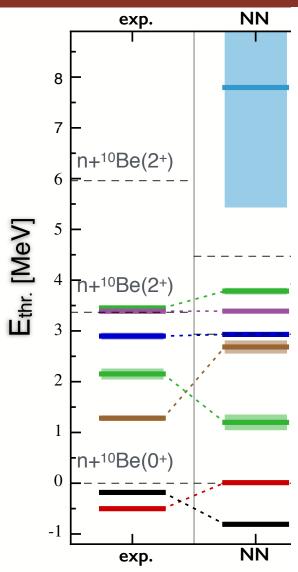


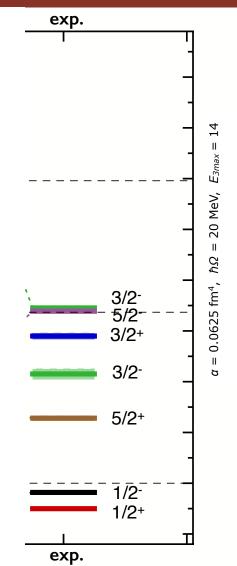
Structure of ¹¹Be from chiral NN+3N forces

- NCSMC calculations including chiral 3N (N³LO NN+N²LO 3NF400)
 - $n^{-10}Be + {}^{11}Be$
 - ¹⁰Be: 0⁺, 2⁺, 2⁺ NCSM eigenstates
 - ¹¹Be: ≥ 6 π = -1 and ≥ 3 π = +1 NCSM eigenstates

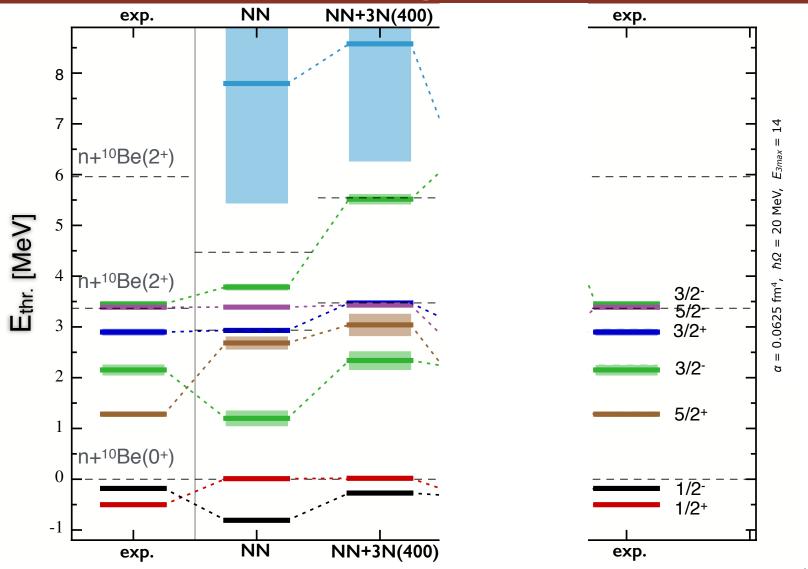


¹¹Be within NCSMC: Discrimination among chiral nuclear forces

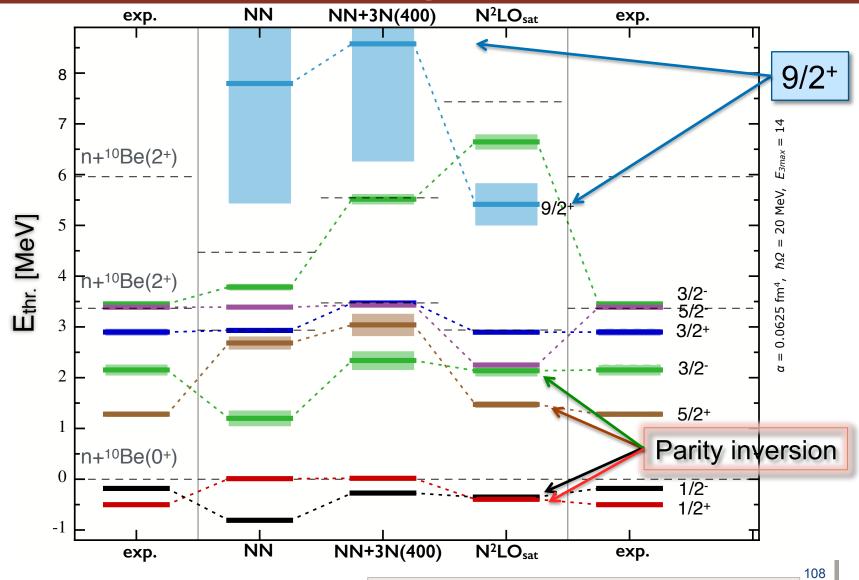




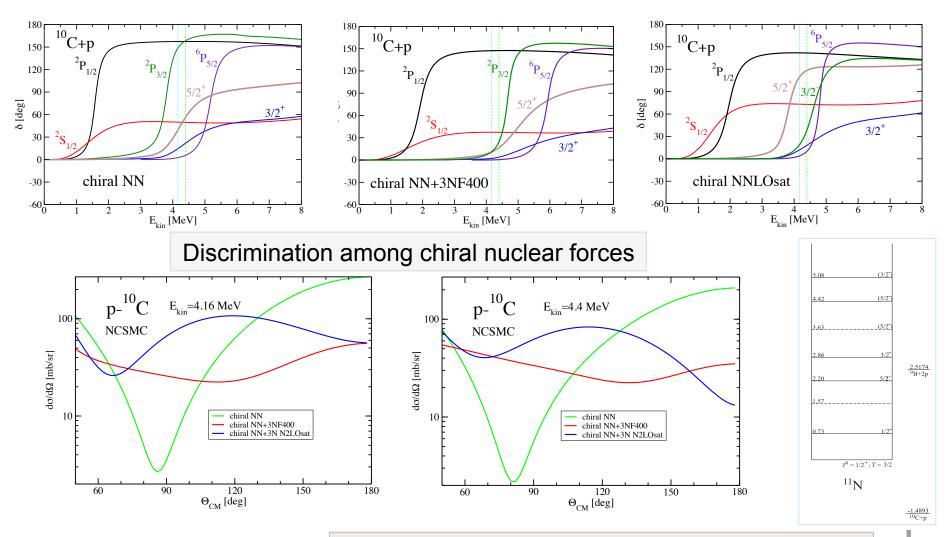
¹¹Be within NCSMC: Discrimination among chiral nuclear forces



¹¹Be within NCSMC: Discrimination among chiral nuclear forces



p+10C scattering: structure of 11N resonances



NCSMC wave function

$$\Psi^{(A)} = \sum_{\lambda} c_{\lambda} \left| \stackrel{(A)}{\bullet} , \lambda \right\rangle + \sum_{\nu} \int d\vec{r} \ \gamma_{\nu}(\vec{r}) \ \hat{A}_{\nu} \left| \stackrel{\vec{r}}{\bullet} , \nu \right\rangle$$

$$\begin{split} \left| \Psi_{A}^{J^{\pi}T} \right\rangle &= \sum_{\lambda} |A\lambda J^{\pi}T\rangle \Bigg[\sum_{\lambda'} (N^{-\frac{1}{2}})^{\lambda\lambda'} \bar{c}_{\lambda'} \ + \sum_{\nu'} \int dr' \ r'^{2} (N^{-\frac{1}{2}})^{\lambda}_{\nu'r'} \frac{\bar{\chi}_{\nu'}(r')}{r'} \Bigg] \\ &+ \sum_{\nu\nu'} \int dr \ r^{2} \int dr' \ r'^{2} \hat{\mathcal{A}}_{\nu} \left| \Phi_{\nu r}^{J^{\pi}T} \right\rangle \mathcal{N}_{\nu\nu'}^{-\frac{1}{2}}(r,r') \left[\sum_{\lambda'} (N^{-\frac{1}{2}})^{\lambda'}_{\nu'r'} \bar{c}_{\lambda'} \ + \sum_{\nu''} \int dr'' \ r''^{2} (N^{-\frac{1}{2}})_{\nu'r'\nu''r''} \frac{\bar{\chi}_{\nu''}(r'')}{r''} \right]. \end{split}$$

Asymptotic behavior $r \rightarrow \infty$:

$$\begin{split} \overline{\chi}_v(r) \sim C_v W(k_v r) & \qquad \overline{\chi}_v(r) \sim \mathbf{V}_v^{-\frac{1}{2}} \Big[\delta_{vi} I_v(k_v r) - U_{vi} O_v(k_v r) \Big] \\ \text{Bound state} & \qquad \text{Scattering state} & \qquad \text{Scattering matrix} \end{split}$$

state ocationing in

E1 transitions in NCSMC

$$\Psi^{(A)} = \sum_{\lambda} c_{\lambda} \left| \stackrel{(A)}{\bullet} , \lambda \right\rangle + \sum_{\nu} \int d\vec{r} \ \gamma_{\nu}(\vec{r}) \ \hat{A}_{\nu} \left| \stackrel{\vec{r}}{\bullet} , \nu \right\rangle$$

$$\vec{E1} = e \sum_{i=1}^{A-a} \frac{1 + \tau_i^{(3)}}{2} \left(\vec{r_i} - \vec{R}_{\text{c.m.}}^{(A-a)} \right)$$

$$+ e \sum_{j=A-a+1}^{A} \frac{1 + \tau_j^{(3)}}{2} \left(\vec{r_i} - \vec{R}_{\text{c.m.}}^{(a)} \right)$$

$$+ e \frac{Z_{(A-a)}a - Z_{(a)}(A-a)}{A} \vec{r}_{A-a,a}.$$

$$\mathcal{M}_{1\mu}^{E} = e \sum_{j=1}^{A} \frac{1 + \tau_{j}^{(3)}}{2} |\vec{r}_{j} - \vec{R}_{\text{c.m.}}^{(A)}| Y_{1\mu}(r_{j} - \widehat{R_{\text{c.m.}}^{(A)}})$$

$$\mathcal{B}_{fi}^{E1} = \sum_{\lambda\lambda'} c_{\lambda'}^{*f} \langle A\lambda' J_f^{\pi_f} T_f || \mathcal{M}_1^E || A\lambda J_i^{\pi_i} T_i \rangle c_{\lambda}^i$$

$$+ \sum_{\lambda'\nu} \int dr r^2 c_{\lambda'}^{*f} \langle A\lambda' J_f^{\pi_f} T_f || \mathcal{M}_1^E \hat{\mathcal{A}}_{\nu} || \Phi_{\nu r}^i \rangle \frac{\gamma_{\nu}^i(r)}{r}$$

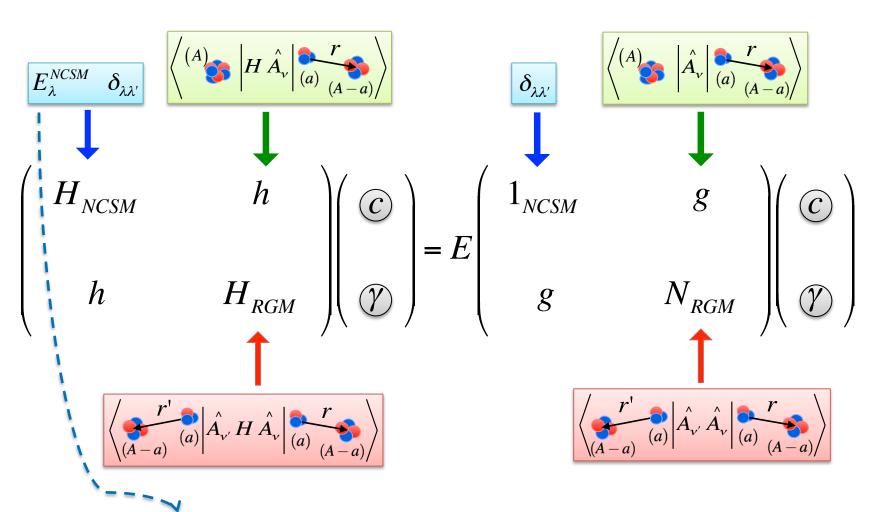
$$+ \sum_{\lambda\nu'} \int dr' r'^2 \frac{\gamma_{\nu'}^{*f}(r')}{r'} \langle \Phi_{\nu'r'}^f || \hat{\mathcal{A}}_{\nu'} \mathcal{M}_1^E || A\lambda J_i^{\pi_i} T_i \rangle c_{\lambda}^i$$

$$+ \sum_{\nu\nu'} \int dr' r'^2 \int dr r^2 \frac{\gamma_{\nu'}^{*f}(r')}{r'} \langle \Phi_{\nu'r'}^f || \hat{\mathcal{A}}_{\nu'} \mathcal{M}_1^E \hat{\mathcal{A}}_{\nu} || \Phi_{\nu r}^i \rangle \frac{\gamma_{\nu}^i(r)}{r}$$

Photo-disassociation of ¹¹Be

Bound to bound	NCSM	NCSMC-phenom	Expt.
B(E1; $1/2^+ \rightarrow 1/2^-$) [$e^2 \text{ fm}^2$]	0.0005	0.117	0.102(2)

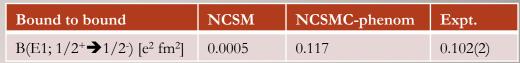
NCSMC phenomenology

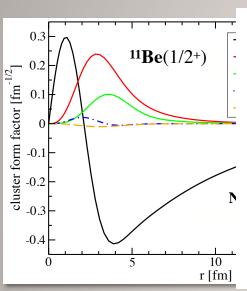


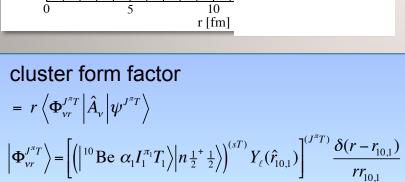
 $E_{\lambda}^{\text{NCSM}}$ energies treated as adjustable parameters Cluster excitation energies set to experimental values

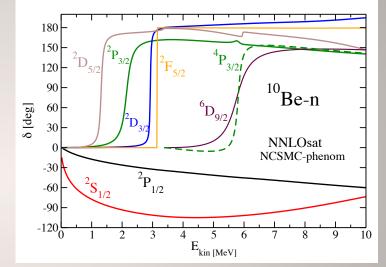
Photo-disassociation of ¹¹Be

Halo structure









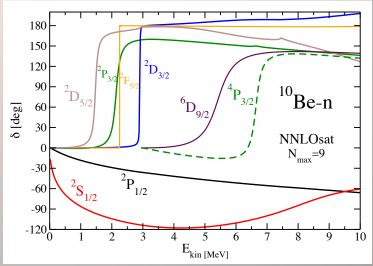
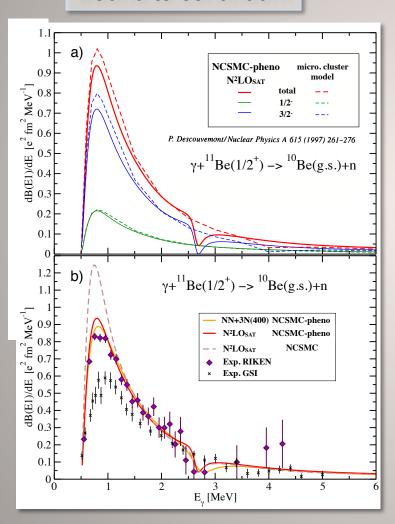
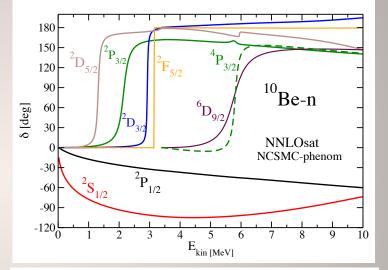


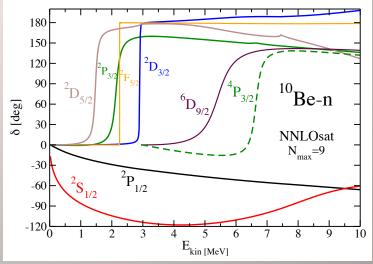
Photo-disassociation of ¹¹Be

Bound to continuum



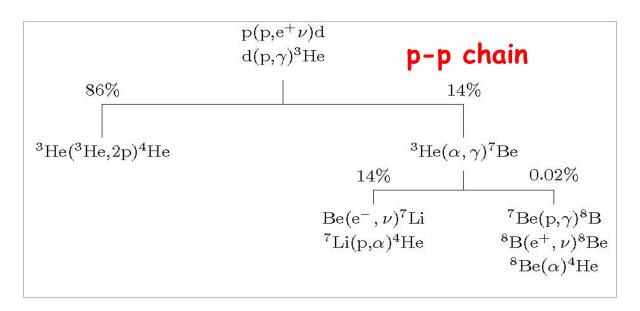
Bound to bound	NCSM	NCSMC-phenom	Expt.
B(E1; $1/2^+ \rightarrow 1/2^-$) [$e^2 \text{ fm}^2$]	0.0005	0.117	0.102(2)





- Measurement of ¹¹C(p,p) resonance scattering planned at TRIUMF
 - TUDA facility
 - ¹¹C beam of sufficient intensity produced
- NCSMC calculations of ¹¹C(p,p) with chiral NN+3N under way
- Obtained wave functions will be used to calculate ¹¹C(p,γ)¹²N capture relevant for astrophysics

¹¹C(p,γ)¹²N capture relevant in hot p-p chain: Link between pp chain and the CNO cycle - bypass of slow triple alpha capture ⁴He(αα,γ)¹²C

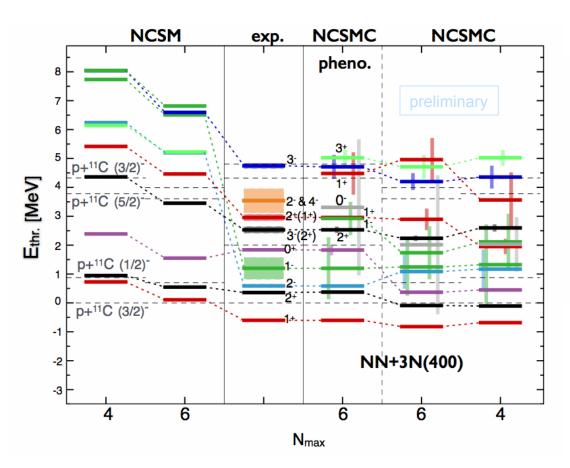


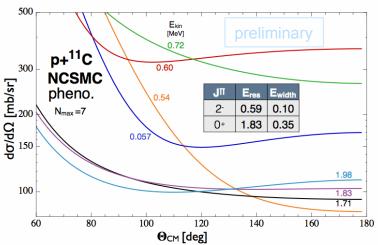
$${}^{3}He(\alpha,\gamma){}^{7}Be(\alpha,\gamma){}^{11}C(p,\gamma){}^{12}N(p,\gamma){}^{13}O(\beta^{+},\nu){}^{13}N(p,\gamma){}^{14}O$$

$${}^{3}He(\alpha,\gamma){}^{7}Be(\alpha,\gamma){}^{11}C(p,\gamma){}^{12}N(\beta^{+},\nu){}^{12}C(p,\gamma){}^{13}N(p,\gamma){}^{14}O$$

$${}^{11}C(\beta^{+}\nu){}^{11}B(p,\alpha){}^{8}Be({}^{4}He,{}^{4}He)$$

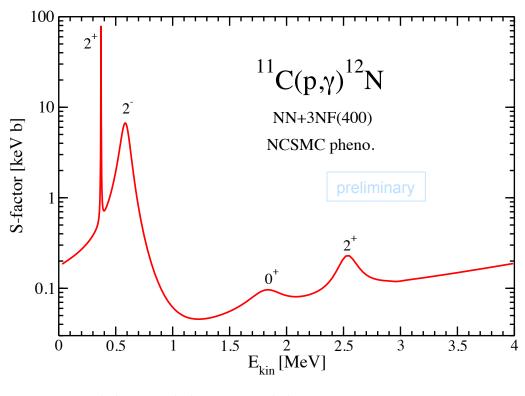
NCSMC calculations of ¹¹C(p,p) with chiral NN+3N under way

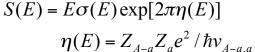


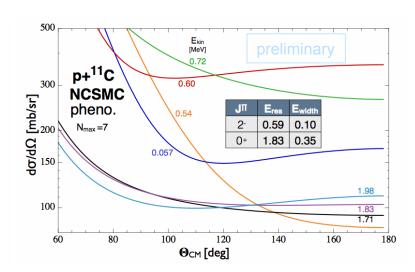


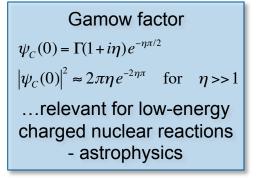
NCSMC calculations to be validated by measured cross sections and applied to calculate the ¹¹C(p,γ)¹²N capture

NCSMC calculations of ¹¹C(p,p) with chiral NN+3N under way

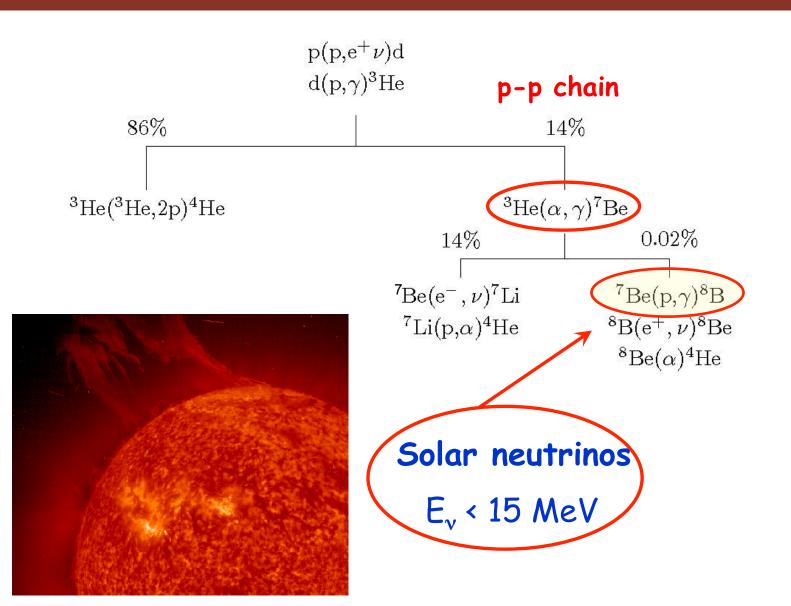








Solar p-p chain

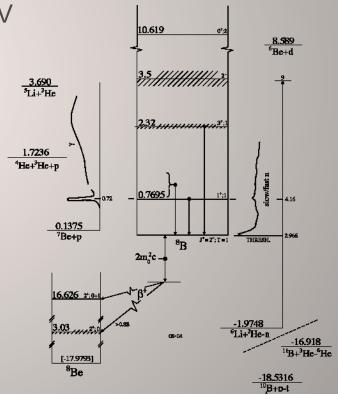


7 Be(p,γ) 8 B S-factor

- S₁₇ one of the main inputs for understanding the solar neutrino flux
 - Needs to be known with high precision
- Current evaluation has uncertainty ~ 10%
 - Theory needed for extrapolation to ~ 10 keV

$$S(E) = E\sigma(E) \exp[2\pi\eta(E)]$$
$$\eta(E) = Z_{A-a}Z_a e^2 / \hbar v_{A-a,a}$$

$$\left\langle {}^{8}\mathrm{B}_{\mathrm{g.s.}}\left|E1\right|{}^{7}\mathrm{Be}_{\mathrm{g.s.}}+\mathrm{p}\right\rangle$$

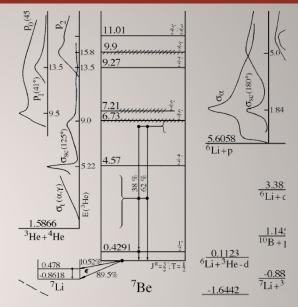


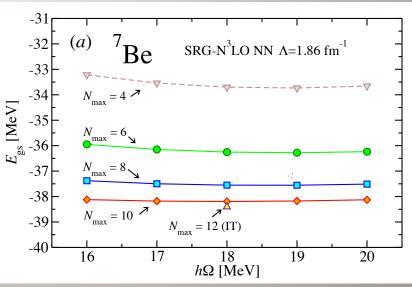
⁷Be(*p*,γ)⁸B radiative capture: Input - *NN* interaction, ⁷Be eigenstates

- Similarity-Renormalization-Group (SRG) evolved chiral N³LO NN interaction
 - Accurate
 - Soft: Evolution parameter Λ
 - Study dependence on Λ

• ⁷Be

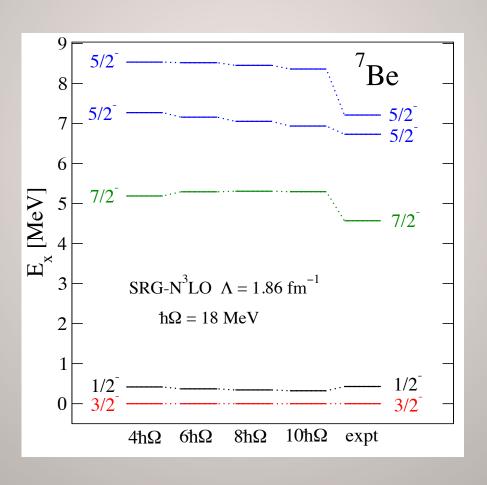
- NCSM up to N_{max} =10, Importance Truncated NCSM up to N_{max} =14
- Variational calculation
 - optimal HO frequency from the ground-state minimum
 - For the selected NN potential with Λ =1.86 fm⁻¹: h Ω =18 MeV





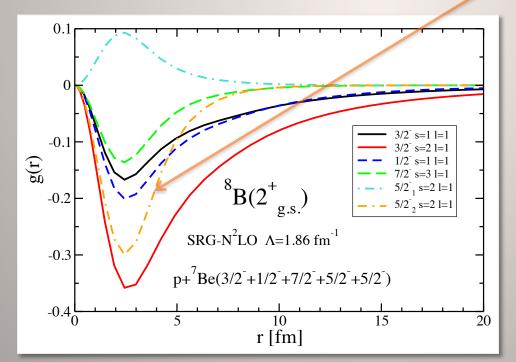
Input: ⁷Be eigenstates

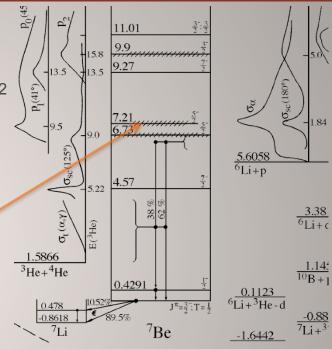
Excited states at the optimal HO frequency, ħΩ=18 MeV



Structure of the ⁸B ground state

- NCSM/RGM p-7Be calculation
 - five lowest ⁷Be states: 3/2-, 1/2-, 7/2-, 5/2-1, 5/2-2
 - Soft NN SRG-N³LO with Λ = 1.86 fm⁻¹
- 8B 2+ g.s. bound by 136 keV (Expt 137 keV)
 - Large P-wave 5/2-2 component





 $5/2^{-}_{2}$ state of 7 Be should be included in 7 Be(p, γ) 8 B calculations

p-7Be scattering

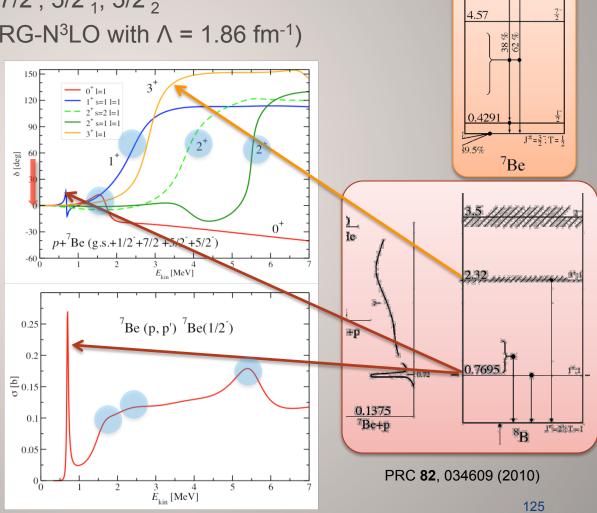
 $\frac{7.21}{6.73}$ $\frac{5}{2}$

- NCSM/RGM calculation of p- 7 Be scattering
 - ⁷Be states 3/2-,1/2-, 7/2-, 5/2-₁, 5/2-₂
 - Soft NN potential (SRG-N³LO with $\Lambda = 1.86$ fm⁻¹)

⁸B **2**⁺ g.s. **bound** by 136 keV (expt. bound by 137 keV)

New 0^+ , 1^+ , and two 2^+ resonances predicted

 $s = 1 l = 1 2^+$ clearly visible in (p,p') cross sections

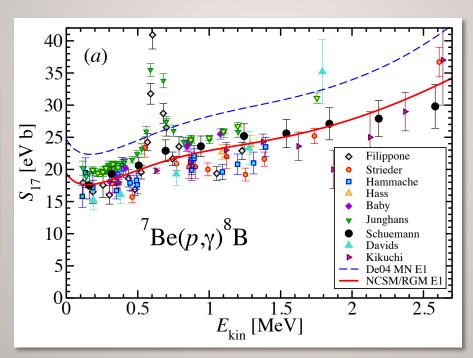


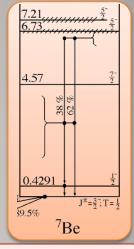
⁷Be(p,γ)⁸B radiative capture

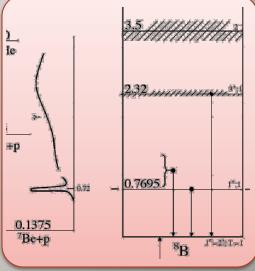
- NCSM/RGM calculation of ${}^{7}\text{Be}(p,\gamma){}^{8}\text{B}$ radiative capture
 - ⁷Be states 3/2⁻,1/2⁻, 7/2⁻, 5/2⁻₁, 5/2⁻₂
 - Soft NN potential (SRG-N³LO with Λ = 1.86 fm⁻¹)

 8 B 2+ g.s. bound by 136 keV (expt. 137 keV) $S(0) \sim 19.4(0.7) \text{ eV b}$

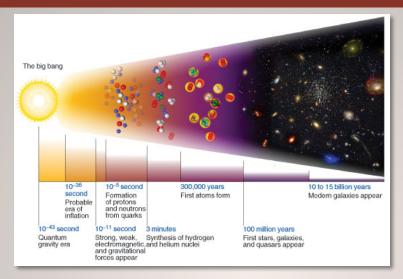
Data evaluation: S(0)=20.8(2.1) eV b

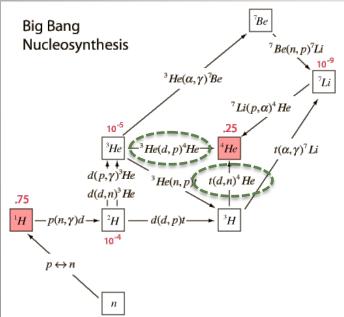






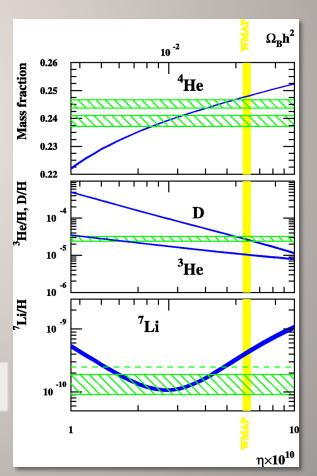
Big Bang nucleosythesis





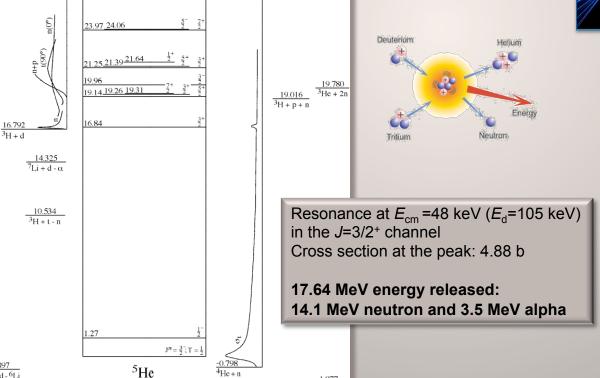
Key reactions

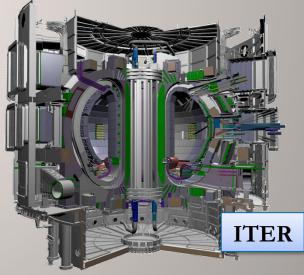
⁷Li puzzle



Deuterium-Tritium fusion: a future energy source

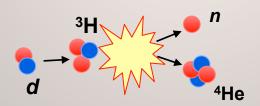
- The $d+^3H\rightarrow n+^4He$ reaction
 - The most promising for the production of fusion energy in the near future
 - Will be used to achieve inertial-confinement (laserinduced) fusion at NIF, and magnetic-confinement fusion at ITER
 - With its mirror reaction, ³He(d,p)⁴He, important for Big Bang nucleosynthesis



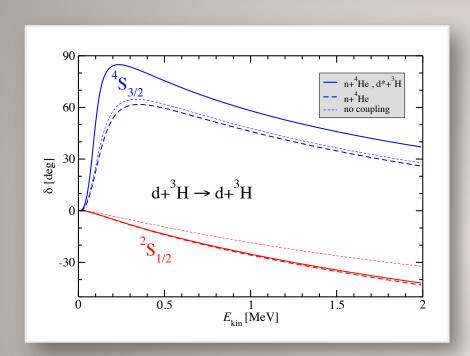


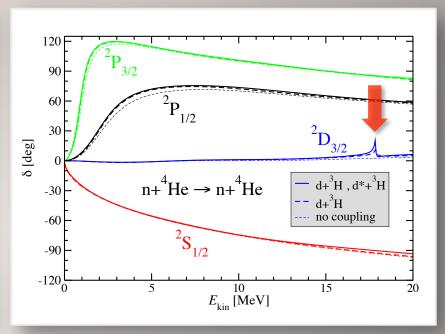
Ab initio calculation of the ³H(d,n)⁴He fusion

$$\int dr \ r^{2} \left| \begin{pmatrix} \mathbf{r} & \mathbf{r} \\ \mathbf{n} & \alpha \end{pmatrix} \hat{A}_{1}(H-E) \hat{A}_{1} \right| \mathbf{r} \\ \mathbf{r} & \mathbf{n} \end{pmatrix} \left| \begin{pmatrix} \mathbf{r} & \mathbf{r} \\ \mathbf{n} & \alpha \end{pmatrix} \hat{A}_{1}(H-E) \hat{A}_{2} \right|_{3H} \mathbf{r} \\ \mathbf{r} & \mathbf{r} \end{pmatrix} \left| \begin{pmatrix} \mathbf{g}_{1}(r) \\ \mathbf{r} \\ \mathbf{r} \end{pmatrix} \right| = 0$$



d+3H and n+4He elastic scattering: phase shifts





• d+3H elastic phase shifts:

- Resonance in the ⁴S_{3/2} channel
- Repulsive behavior in the ²S_{1/2}
 channel → Pauli principle

 d^* deuteron pseudo state in 3S_1 - 3D_1 channel: deuteron polarization, virtual breakup

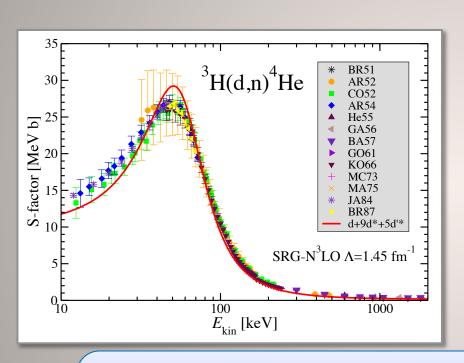
• n+4He elastic phase shifts:

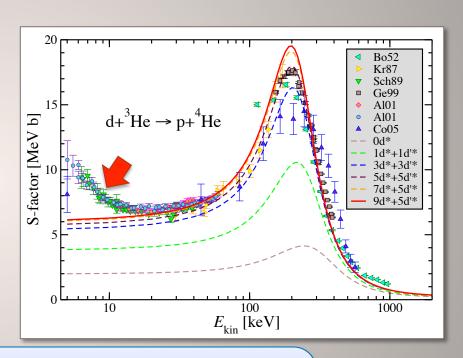
- d+3H channels produces slight increase of the P phase shifts
- Appearance of resonance in the 3/2+ D-wave, just above d-3H threshold

The d- 3 H fusion takes place through a transition of d+ 3 H is S-wave to n+ 4 He in D-wave: Importance of the **tensor force**

${}^{3}\text{H}(d,n){}^{4}\text{He & }{}^{3}\text{He}(d,p){}^{4}\text{He fusion}$

NCSM/RGM with SRG-N³LO NN potentials





Potential to address unresolved fusion research related questions:

 3 H(d,n) 4 He fusion with polarized deuterium and/or tritium,

 3 H $(d,n \gamma)^4$ He bremsstrahlung, electron screening at very low energies ...

NCSMC calculations with chiral NN+3N forces in progress...

PRL 108, 042503 (2012) PHYSICAL REVIEW LETTERS 27 JANUARY 2012

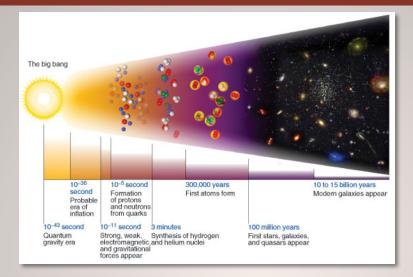
Ab Initio Many-Body Calculations of the ${}^{3}\text{H}(d,n){}^{4}\text{He}$ and ${}^{3}\text{He}(d,p){}^{4}\text{He}$ Fusion Reactions

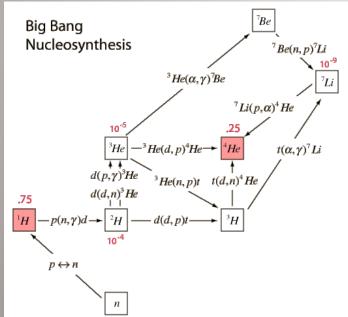
Petr Navrátil 1,2 and Sofia Quaglioni 2

Big Bang nucleosythesis

⁶Li puzzle

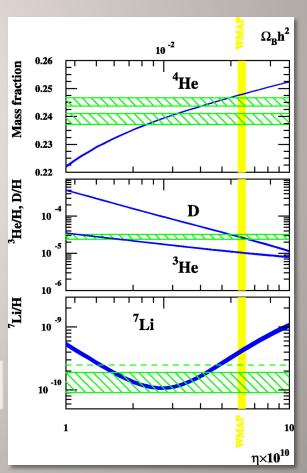
 $^{2}H(\alpha,\gamma)^{6}Li$

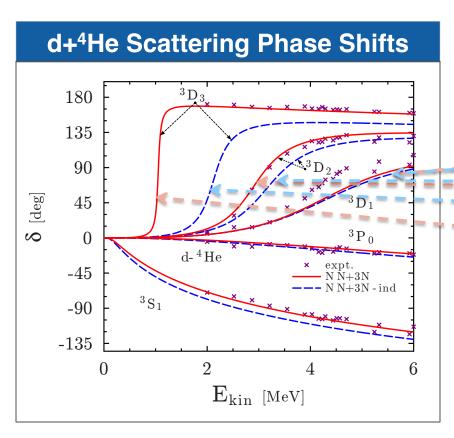


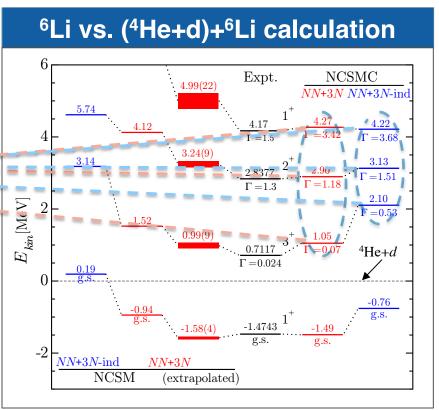


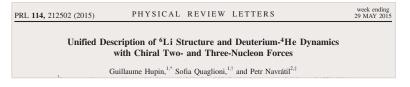
Key reactions

⁷Li puzzle

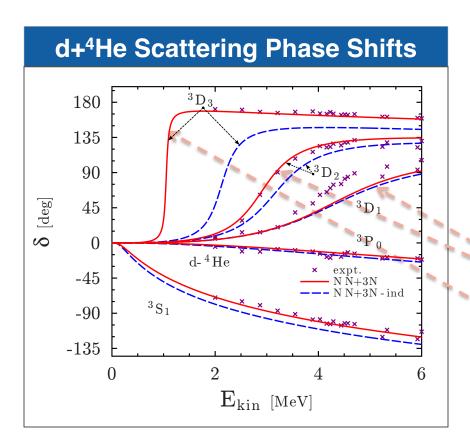


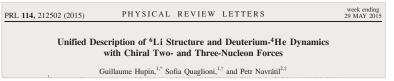


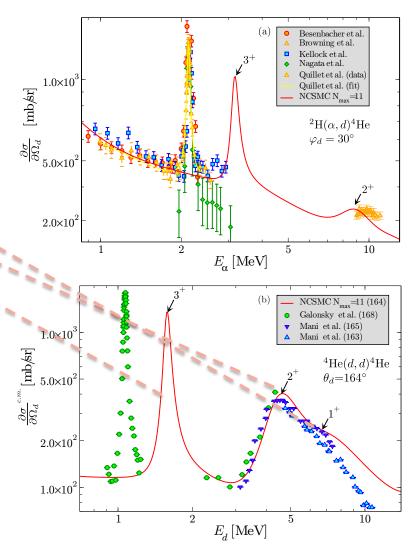


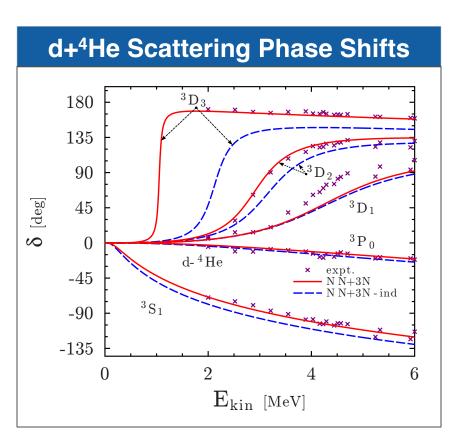


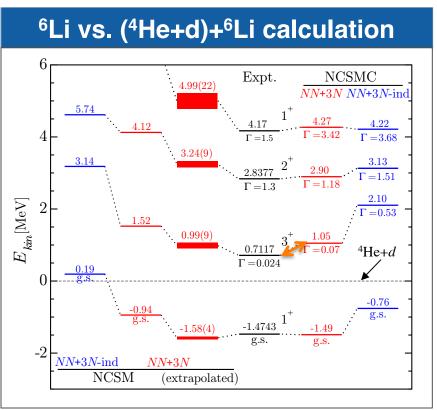


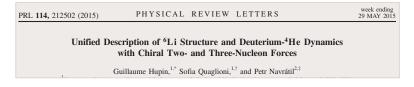


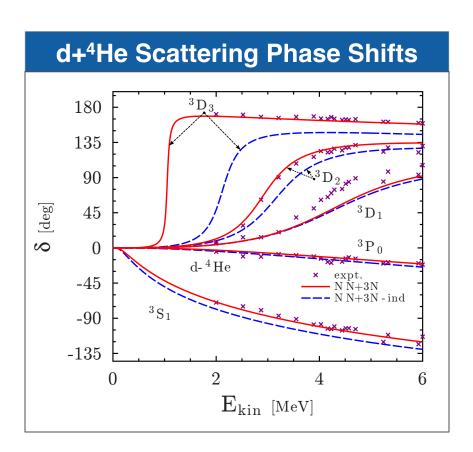


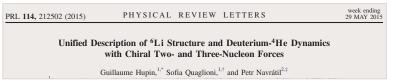


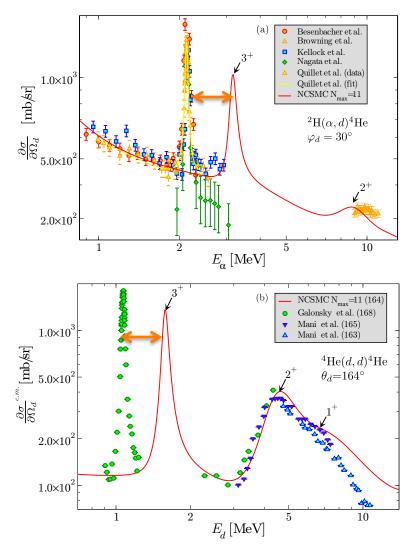


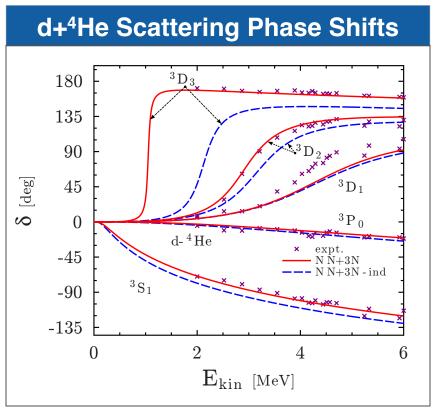


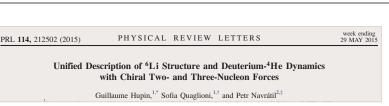


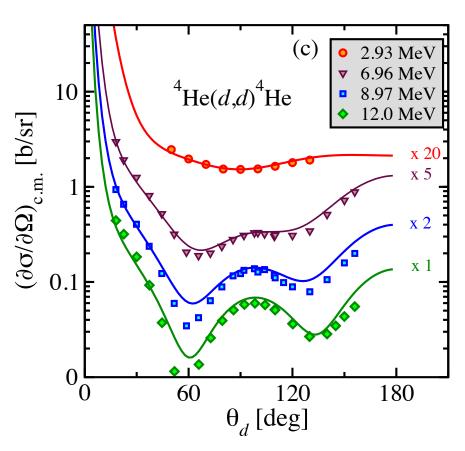




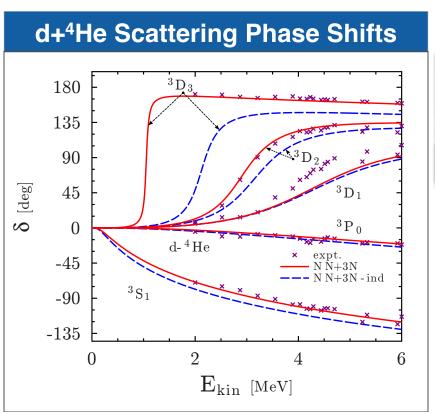








S- and D-wave asymptotic normalization constants



	NCSMC Experiment		
$C_0 [\text{fm}^{-1/2}]$ $C_2 [\text{fm}^{-1/2}]$	2.695	2.91(9) [39]	2.93(15) [38]
$C_2 [\text{fm}^{-1/2}]$	-0.074	-0.077(18) [39]	
C_2/C_0	-0.027	-0.025(6)(10) [39]	0.0003(9) [41]

- [38] L. D. Blokhintsev, V. I. Kukulin, A. A. Sakharuk, D. A. Savin, and E. V. Kuznetsova, Phys. Rev. C 48, 2390 (1993).
- [39] E. A. George and L. D. Knutson, Phys. Rev. C 59, 598 (1999).
- [41] K. D. Veal, C. R. Brune, W. H. Geist, H. J. Karwowski, E. J. Ludwig, A. J. Mendez, E. E. Bartosz, P. D. Cathers, T. L. Drummer, K. W. Kemper, A. M. Eiró, F. D. Santos, B. Kozlowska, H. J. Maier, and I. J. Thompson, Phys. Rev. Lett. 81, 1187 (1998).

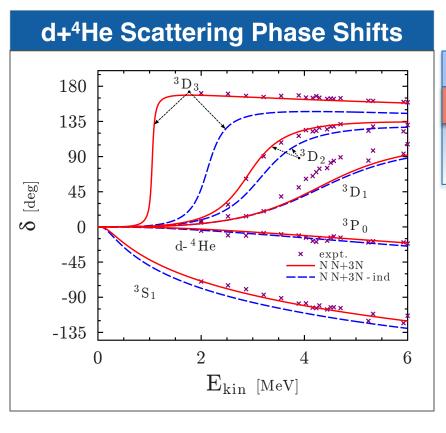
PRL 114, 212502 (2015) PHYSICAL REVIEW LETTERS

Week ending 29 MAY 2015

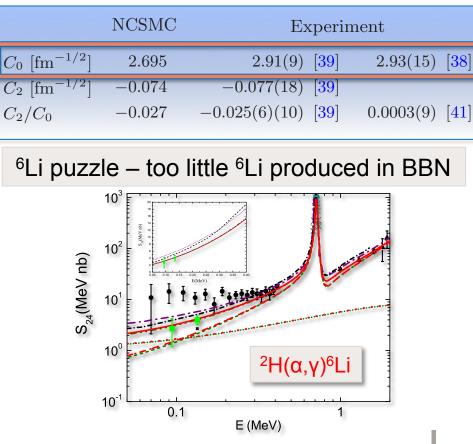
Unified Description of ⁶Li Structure and Deuterium-⁴He Dynamics with Chiral Two- and Three-Nucleon Forces

Guillaume Hupin, ^{1,*} Sofia Quaglioni, ^{1,†} and Petr Navrátil ^{2,‡}

S- and D-wave asymptotic normalization constants



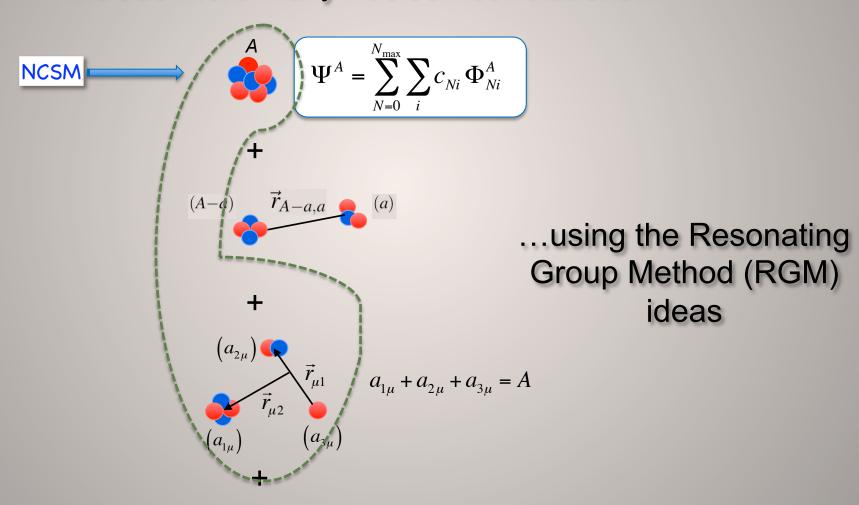
PRL 114, 212502 (2015)	PHYSICAL REVIEW LETTERS	week ending 29 MAY 2015			
Unified Description of ⁶ Li Structure and Deuterium- ⁴ He Dynamics with Chiral Two- and Three-Nucleon Forces					



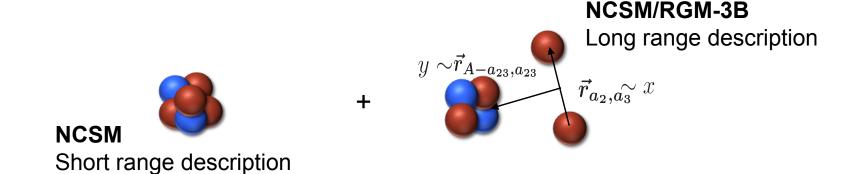
A. M. Mukhamedzhanov et al., 1602.07395

Extending no-core shell model beyond bound states

Include more many nucleon correlations...



NCSMC for three-body clusters



$$\Psi^{(A)} = \sum_{\lambda} c_{\lambda} | , \lambda \rangle + \sum_{\nu} \int d\vec{x} \, d\vec{y} \, (\vec{x}, \vec{y}) \, \hat{A}_{\nu} | , \nu \rangle$$
Unknowns

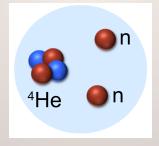
Three-body clusters in ab initio NCSM/RGM

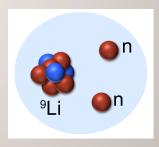
Starts from:

$$\Psi_{RGM}^{(A)} = \sum_{v_2} \int g_{v_2}(\vec{r}) \hat{A}_{v_2} \Big| \phi_{v_2 \vec{r}} \Big\rangle d\vec{r} + \sum_{v_3} \iint G_{v_3}(\vec{x}, \vec{y}) \hat{A}_{v_3} \Big| \Phi_{v_3 \vec{x} \vec{y}} \Big\rangle d\vec{x} d\vec{y}$$

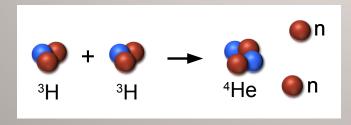
$$\begin{array}{c} \text{2-body channels} \\ \psi_{a_1}^{(A-a)} & \delta(\vec{r} - \vec{r}_{A-a,a}) \end{array} \qquad \text{plus} \qquad \begin{array}{c} \psi_{\beta_2}^{(a_2)} \\ \psi_{\beta_1}^{(A-a_{23})} & \delta(\vec{x} - \vec{r}_{a_2,a_3}) \\ \psi_{\beta_3}^{(a_3)} & \psi_{\beta_3}^{(a_3)} \end{array}$$

Two-neutron halo nuclei





Transfer reactions with three-body continuum final states



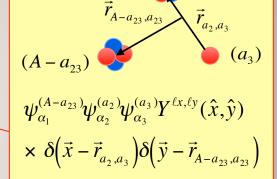
Three-cluster NCSM/RGM

The starting point:

$$\Psi_{RGM}^{(A)} = \sum_{a_2 a_3 v} \int d\vec{x} \, d\vec{y} \, G_v^{(A-a_{23}, a_2, a_3)}(x, y)$$

$$\times \hat{A}^{(A-a_{23}, a_2, a_3)} \left| \Phi_{v\vec{x}\vec{y}}^{(A-a_{23}, a_2, a_3)} \right\rangle$$

$$ho^{5/2} \sum_{K} \chi_{vK}^{(A-a_{23},a_{2},a_{3})}(
ho) \phi_{K}^{\ell x \ell y}(lpha)$$



Solves:

$$\sum_{a_2 a_3 \nu K} \int d\rho \ \rho^5 \Big[H_{a'\nu',a\nu}^{K',K}(\rho',\rho) - E \ N_{a'\nu',a\nu}^{K',K}(\rho',\rho) \Big] \ \rho^{-5/2} \chi_{\nu K}^{(A-a_{23},a_2,a_3)}(\rho) = 0$$

Where the hyperspherical coordinates are given by:

$$\rho = \sqrt{x^2 + y^2}$$
, $\alpha = \arctan\left(\frac{y}{x}\right)$ $\left(x = \rho \cos \alpha, \ y = \rho \sin \alpha\right)$

NCSMC for three-body clusters: ⁶He ~ ⁴He+n+n

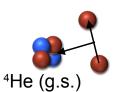
C. Romero-Redondo, S. Quaglioni, P. Navratil, G. Hupin, arXiv: 1606.00066

The **NCSM** 6-nucleon eigenstate compensates for the missing many-body correlations

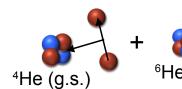
SRG N³LO NN

Experimental value -29.269 MeV

Energy of 0⁺ g.s.



λ=1.5 fm⁻¹



N _{max}	NCSM	NCSM/RGM	NCSMC (0 ⁺ ₁)
4	-27.70	-27.14	-28.29
6	-27.98	-28.91	-30.02
8	-28.95	-28.61	-29.69
10	-29.45	-28.70	-29.86
12	-29.66	-28.70	-29.86
Extrapolation	-29.84(4)		

potential

C. Romero-Redondo, S. Quaglioni, P. Navratil, G. Hupin, arXiv: 1606.00066

The **NCSM** 6-nucleon eigenstate compensates for the missing many-body correlations

 $\lambda = 2.0 \text{ fm}^{-1}$

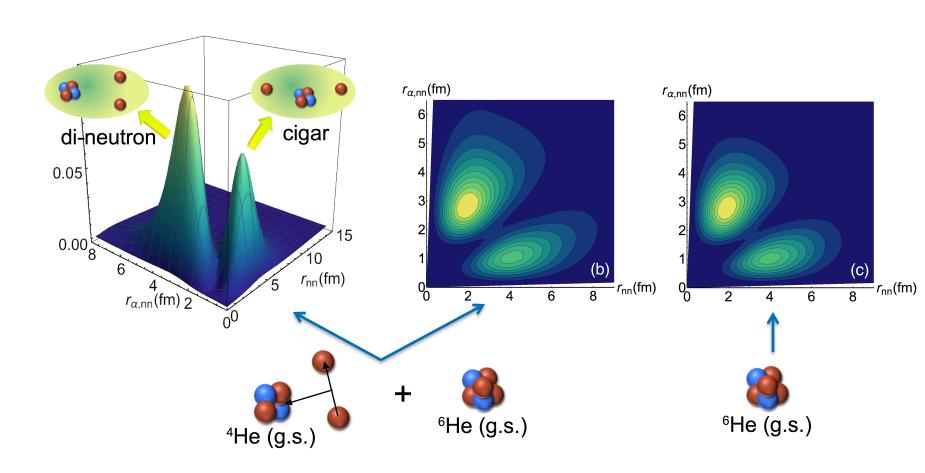
SRG N³LO NN potential

Experimental value -29.269 MeV

Energy of 0⁺ g.s.

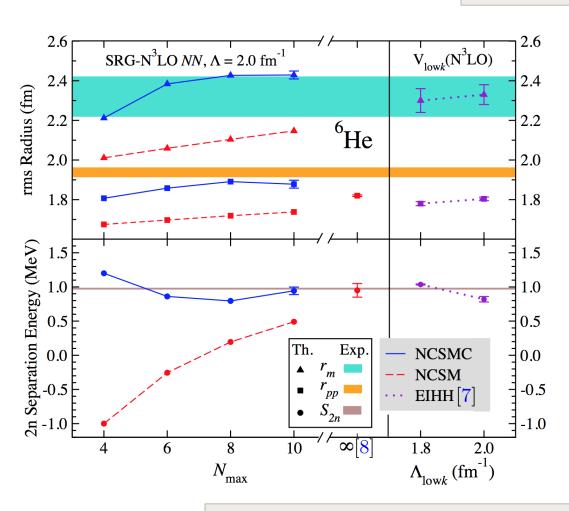
N _{max}	NCSM	NCSMC (0 ⁺ ₁)
8	-26.44	-28.81
10	-27.70	-28.97
12	-28.37	-29.17
Extrapolation	-29.20(11)*	

C. Romero-Redondo, S. Quaglioni, P. Navratil, G. Hupin, arXiv: 1606.00066

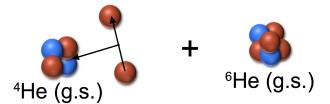


The probability distribution of the ⁶He ground state presents two peaks corresponding to the di-neutron and cigar configurations

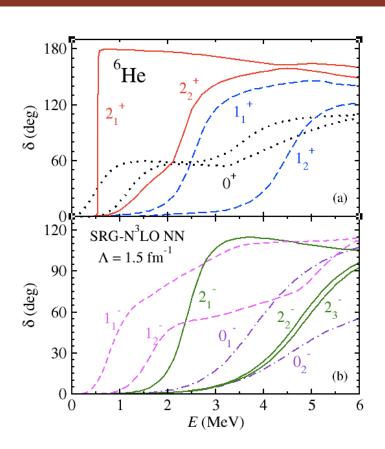
C. Romero-Redondo, S. Quaglioni, P. Navratil, G. Hupin, arXiv: 1606.00066

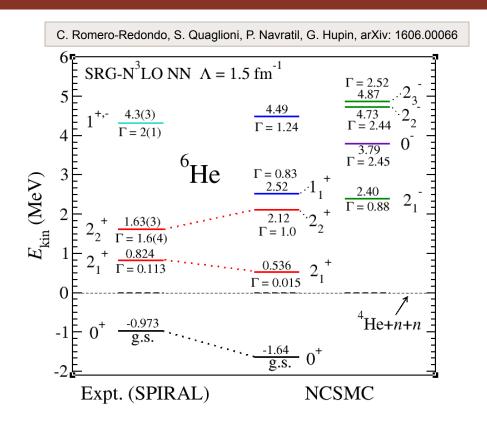


SRG N³LO NN potential with λ=2 fm⁻¹

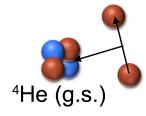


Separation energy, point proton and matter radius simultaneously consistent with experiment



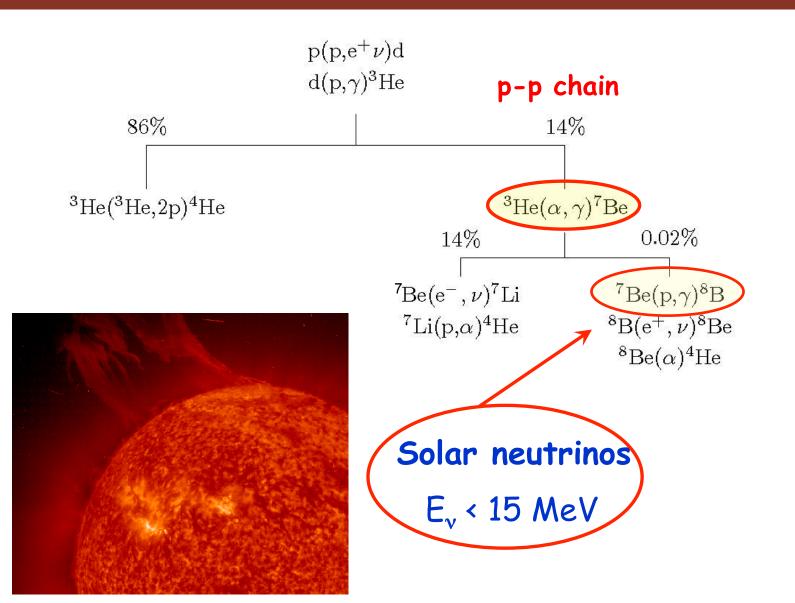


Prediction of lots of low-lying resonances. Experimental picture incomplete

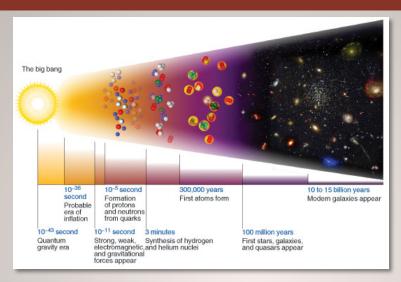


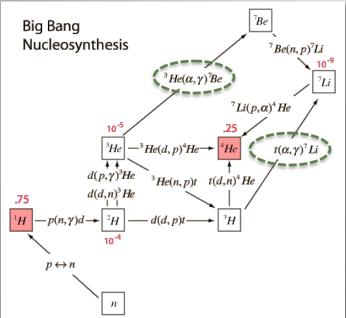
Ground-state and scattering state wave functions available. Calculation of ⁴He(nn,γ)⁶He in progress...

Solar p-p chain



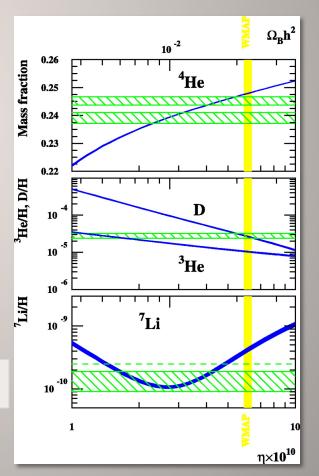
Big Bang nucleosythesis

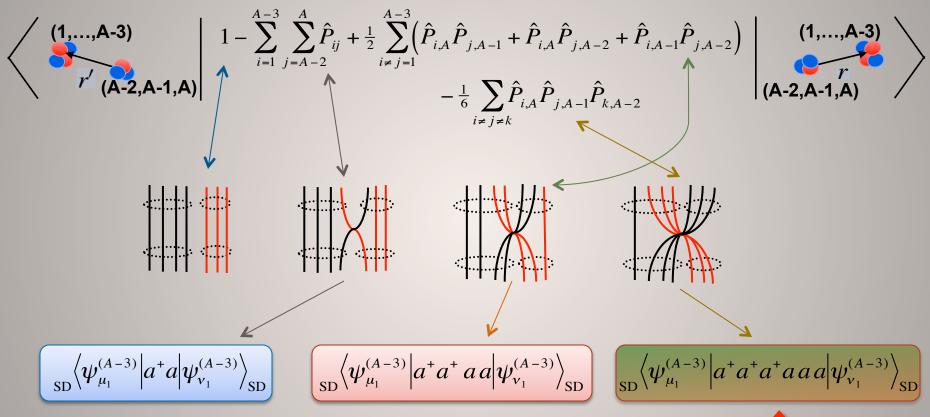


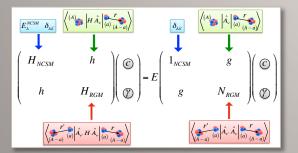


Key reactions

⁷Li puzzle

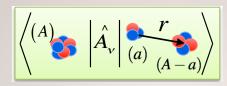






For A=7 use completeness

NCSMC coupling kernels:

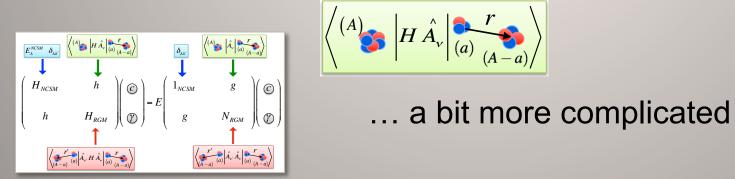


$$g \propto {}_{SD} \Big\langle A \lambda J^{\pi} M T M_{T} \Big| \mathcal{A} \Big[\Big| A - 3 \alpha_{1} I_{1} T_{1} \Big\rangle_{SD} ((\varphi_{a}(A) \varphi_{b}(A - 1))^{(I_{ab}t_{2})} \varphi_{c}(A - 2))^{(I_{abc}t_{3})} \Big]_{MM_{T}}^{(J^{\pi}T)} =$$

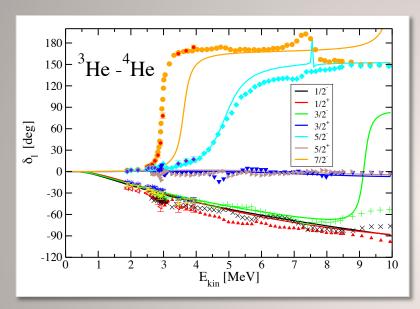
$$\sum \frac{1}{\sqrt{6}} (I_{1} M_{1} I_{abc} M_{abc} | JM) (T_{1} M_{T_{1}} t_{3} m_{t3} | TM_{T}) (I_{ab} M_{ab} j_{c} m_{c} | I_{abc} M_{abc})$$

$$\times (t_{2} m_{t2} 1 / 2 m_{tc} | t_{3} m_{t3}) (j_{a} m_{a} j_{b} m_{b} | j_{c} m_{c}) (1 / 2 m_{ta} 1 / 2 m_{tb} | t_{2} m_{t2})$$

$$\times {}_{SD} \Big\langle A \lambda J^{\pi} M T M_{T} \Big| a_{a}^{+} a_{b}^{+} a_{c}^{+} | A - 3 \alpha_{1} I_{1} M_{1} T_{1} M_{T_{1}} \Big\rangle_{SD}$$



$$\left| \left\langle \stackrel{(A)}{\circ} \middle| H \stackrel{\wedge}{A_{\nu}} \middle| \stackrel{r}{\underset{(A-a)}{\circ}} \middle\rangle \right|$$



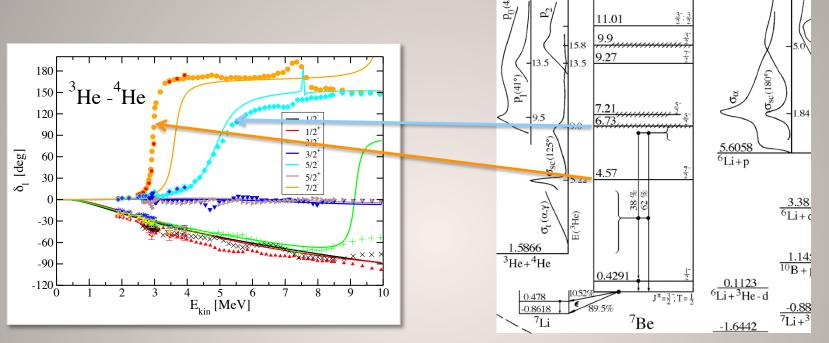
	7 Be		$^7{ m Li}$	
	NCSMC	Expt.	NCSMC	Expt.
$E_{3/2}$ [MeV]	-1.52	-1.586	-2.43	-2.467
$E_{1/2}$ [MeV]	-1.26	-1.157	-2.15	-1.989
$r_{\rm ch}$ [fm]	2.62	2.647(17)	2.42	2.390(30)
Q [e fm²]	-6.14		-3.72	-4.00(3)
$\mu [\mu_{ \mathrm{N}}]$	-1.16	-1.3995(5)	+3.02	+3.256

J. Dohet-Eraly, P.N., S. Quaglioni, W. Horiuchi, G. Hupin, F. Raimondi, PLB 757, 430 (2016)

NCSMC calculations with chiral SRG-N³LO *NN* potential (λ =2.15 fm⁻¹)

 3 He, 3 H, 4 He ground state, $8(\pi$ -) + $6(\pi$ +) eigenstates of 7 Be and 7 Li

Preliminary: N_{max} =12, h Ω =20 MeV



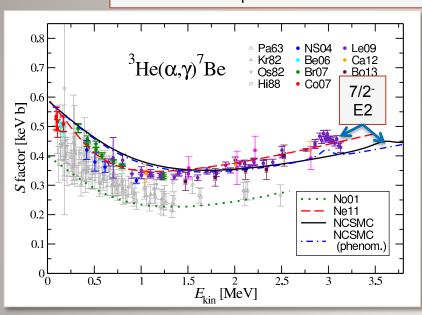
J. Dohet-Eraly, P.N., S. Quaglioni, W. Horiuchi, G. Hupin, F. Raimondi, PLB 757, 430 (2016)

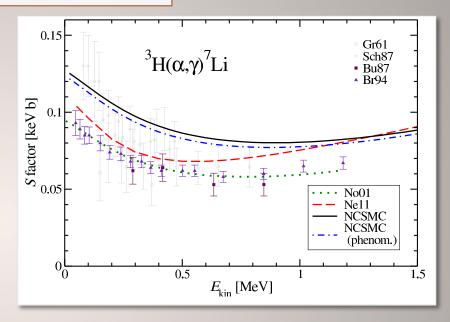
NCSMC calculations with chiral SRG-N³LO *NN* potential (λ =2.15 fm⁻¹)

 3 He, 3 H, 4 He ground state, $8(\pi$ -) + $6(\pi$ +) eigenstates of 7 Be and 7 Li

Preliminary: N_{max} =12, h Ω =20 MeV

E1 radiative capture with small E2 contribution at 7/2 resonance





J. Dohet-Eraly, P.N., S. Quaglioni, W. Horiuchi, G. Hupin, F. Raimondi, PLB 757, 430 (2016)

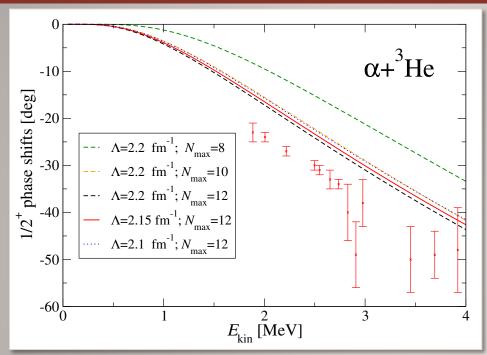
NCSMC calculations with chiral SRG-N³LO *NN* potential (λ =2.15 fm⁻¹)

 3 He, 3 H, 4 He ground state, $8(\pi$ -) + $6(\pi$ +) eigenstates of 7 Be and 7 Li

Preliminary: N_{max} =12, h Ω =20 MeV

Theoretical calculations suggest that the most recent and precise ⁷Be and ⁷Li data are inconsistent

³He-⁴He S-wave phase shifts



J. Dohet-Eraly, P.N., S. Quaglioni, W. Horiuchi, G. Hupin, F. Raimondi, PLB 757, 430 (2016)

NCSMC calculations with chiral SRG-N³LO *NN* potential (λ =2.15 fm⁻¹)

 3 He, 3 H, 4 He ground state, $8(\pi$ -) + $6(\pi$ +) eigenstates of 7 Be and 7 Li

Preliminary: N_{max} =12, h Ω =20 MeV

Conclusions and Outlook

Ab initio calculations of nuclear structure and reactions with predictive power becoming feasible beyond the latest nuclei.

Ab initio structure calculations can even reach (selected) medium & medium-heavy mass nuclei

These calculations make the connection between the low-energy QCD, many-body systems, and **nuclear astrophysics**.

Thank you!

NCSMC and NCSM/RGM collaborators

Sofia Quaglioni (LLNL)

Jeremy Dohet-Eraly, Angelo Calci (TRIUMF)

Guillaume Hupin (CEA/DAM)

Carolina Romero-Redondo (LLNL)

Francesco Raimondi (Surrey)

Wataru Horiuchi (Hokkaido)

Robert Roth (TU Darmstadt)

Literature

IOP Publishing | Royal Swedish Academy of Sciences

Physica Scripta

Phys. Scr. 91 (2016) 053002 (38pp)

doi:10.1088/0031-8949/91/5/053002

Invited Comment

Unified *ab initio* approaches to nuclear structure and reactions

Petr Navrátil¹, Sofia Quaglioni², Guillaume Hupin^{3,4}, Carolina Romero-Redondo² and Angelo Calci¹

PHYSICAL REVIEW C 87, 034326 (2013)

3

Unified *ab initio* approach to bound and unbound states: No-core shell model with continuum and its application to ⁷He

Simone Baroni, 1,2,* Petr Navrátil, 2,3,† and Sofia Quaglioni 3,‡

PHYSICAL REVIEW C 79, 044606 (2009)

Ab initio many-body calculations of nucleon-nucleus scattering

Sofia Quaglioni and Petr Navrátil