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Ab initio vs effective approach to A-nucleon problem

Ab initio approaches Effective approaches
H|V) = E|¥) gttty = pget)
® H describes NN system in vacuum ® Heff incorporates in-medium correlations
o Fit to NN scattering data & deuteron o Fit to many-body observables
® Link to QCD is usually present ® Link to QCD is usually lost
® Systematically improvable, predictive ® Model dependence to be assessed
® Requires sophisticated many-body scheme ® Allows use of simple many-body scheme
o Limited applicability (A<100) o Applicable to whole nuclear chart

How far can this strategy be pushed? — Can we derive Heff from H?



Evolution of ab initio nuclear chart
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Evolution of ab initio nuclear chart
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Evolution of ab initio nuclear chart

® Ab initio approaches for closed-shell nuclei ® AD initio approaches for open-shell nuclei
o Since 2000’s o Since 2010’s
o SCGE, CC, IMSRG o GGE BCC, MR-IMSRG
o Polynomial scaling o Polynomial scaling
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Evolution of ab initio nuclear chart

® Ab initio approaches for closed-shell nuclei ® Ab initio approaches for open-shell nuclei
o Since 2000’s o Since 2010’s
o SCGF, CC, IMSRG o GGF, BCC, MR-IMSRG
o Polynomial scaling o Polynomial scaling
- | P e ® Ab initio shell model
g o Since 2014
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. s i o Effective interaction via CC/IMSRG
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1. Introduction and basic concepts

2. Dyson equation
o Derivation from equation of motion
o Derivation from diagrammatic expansion

o Approximations for the self-energy

3. Spectral representation
o Spectral content of the Green’s function

o Connection with experiment

4. Solving Dyson equation in practise: Dyson eigenvalue problem
o Feynman rules and calculation of self-energy diagrams
o Energy-independent Dyson equation
o Krylov projection

o Examples of results in closed-shell nuclei



5. Three-body forces

6. Green’s functions for open-shell nuclei

o Degenerate systems and symmetry breaking

o Gorkov theory

o Examples of results in open-shell nuclei

7. Public Green’s function code

8. Extras
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Semantics & history

® Many-body Green’s function theory: set of techniques that originated in quantum field theory
and have then been imported to the many-body problem

® Few names for the same thing
o Green'’s function
o Propagator

o Correlation function

® Many-body Green’s functions are applicable to different many-body systems: crystals,
molecules, atoms, atomic nuclej, ...

® Self-consistent Green’s functions: many-body Green’s functions with dressed propagators
(see later)

®© Many-body Green’s functions are not Green’s function Monte Carlo

® Few decades of developments
o Late 1950s, 1960s: import of ideas from QFT and development of formalism
© 1970s — today: technical developments and applications in several fields of physics

© 1990s — today: implementation as an ab initio method in nuclear physics



Green’s functions in one slide

® The goal is to solve the A-body Schrédinger equation

H|y) = B [0)

® Instead of working with the full A-body wave function |\If§?> , rewrite the Schrodinger equation
in terms of 1-, 2-, .... A-body objects Gi1=G, G, ... Ga (Green’s functions)

= A-1 coupled equations

® 1-, 2-, .... A-body Green’s functions yield expectation values of 1-, 2-, .... A-body operators

= In practise, one usually needs 1- and /or 2-body objects

® One-body Green’s function obtained by solving Dyson equation (derived from Schrodinger eq.)

G=GY+c%xq

L/ \

unperturbed Green’s function many-body effects contained in the self-energy =

® Bonus: one-body Green’s function contains information about A+1 excitation energy spectra

= Spectral or Lehmann representation of the Green’s function



Green’s functions in maths

® In mathematics: solution of an inhomogeneous differential equation

[z —L(»)]G(r,v;2)=08(r — ')
/

Hermitian operator Green’s function

L(r)pn(r) = Ann(T)

® GF contains information about eigenstates & eigenvalues of L

1 1 n)(@n | T’
Glr,v32) = (r| —— [Z |¢n><¢n] ) = Y el a7y = 3 el 01T
more generall L ) N\ On(r)e;, (T7) / ¢c(r)9r (17)
& y [G(r,r,z)zn: E—— + [ de —
e e’ e e’
discrete spectrum continuous spectrum

® Substituting L(r) — H(r), 2 — E with H(r) a one-particle Hamiltonian

Y

[E —H(r)|G(r,r"; E) =8(r —r')



From one to many

® By introducing second-quantised annihilation & creation operators one can express

G, s2) = - 19kl 7) _ g Ol ) 0)  one-body

z—F, B
\ 4

<\I!é\7|ar | \IJN+1><\IJN+1 |aT \\II(J)V> <\I!N]aT, | \I!N_1><\I!N_1 la |\I!N>
G(r,r':z) = § = K r + E 0 " r' !l v i 0 many-bod

= two terms: addition, but also removal of a particle

4 )
o) > (Exact) ground state of N-body system

(g VED > K-excited state of (N+1)-body system
with . . :
Ef = ENT' - B/ —— one-particle (addition) separation energy

E,; = E; — E)™' —— one-particle (removal) separation energy

v

\_ J




Propagator

® General definition

Gap(t,t') = —iWY|T |aa(t) af(t)] [2])

single-particle labels " / \

time-ordering operator
(Exact) ground state of N-body system

= |t describes the process of adding a particle at time ' and removing it at time ¢
(or viceversa if t'>t)

 Hence the equivalent name of single-particle propagator

v
o, t
t>t
O
a
| t’
O
P>t t "
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Lehmann (or spectral) representation

® Start from general definition

Gap(t,t') = =i(WR|T [aalt) af ()| [95)
For a time-independent Hamiltonian

Gap(t,t') = Gap(t — 1) Gap(2)

Fourier transform

Ud|a, | TATY (AL | of | pA Tl | WA= (A1 | g, |TA
Gup(e) = S (Vlaal VDOV 0y W) | g (Wit | 07) (007 o 93

- z— Ef +in z— Lk, —n

Lehmann representation [Lehmann 1954]



Observables

® Any one-body observable can be computed from the one-body Green function G
1019 =3 [ 3= Gu@ow  with 0w =(a|OW)
® In addition, one particular two-body observable (the total energy) can be computed from G

Eo= (V) | H| ) = /—Gba tab + 2 dap)

271

Galitskii-Migdal-Koltun sum rule [Galitskii & Migdal 1958; Koltun 1972]

= t» are matrix elements of the kinetic energy operator
= [t can be proven using (anti)commutation relations of creation/annihilation operators
= Exact if a two-body Hamiltonian is employed

= Additional term(s) needed if higher-body operator(s) present

® All other two-body observables necessitate the two-body GF.

® In general, N-body observables necessitate N-body GFs.



® One can define up to A-body Green’s functions (GFs).
® The two-body GF reads

Gaabed(tas tos tes ta) = —i(WE' [T ay(th) aa(ta) al(te) al(ta) | 5

 This is also called the 4-point GF.

= Depending on the ordering of the 4 times one can then define the two-particle (or two-hole) GF
G (1) = WS |T [an(t) aa(t) al(#) al(t)] 190

or the particle-hole (~polarisation) propagator

Grhogt:t') = =i |T |af (1) au(t) al(t)) aat))] 7))

® Similarly, one can introduce up to 2A-point GFs.



Single-particle Green’s function «+ Schrédinger equation

® Single-particle GF: matches (psychological & practical) needs of handling one-body objects

® For certain (typically one-body) properties, the exact single-particle GF contains the same
information as the exact many-body wave function

 E.g. expectation values of a one-body operator in the ground state

= Ground-state energy is an exception

® For others (typically many-body) it does not, and one need to resort to higher-body GFs.

 E.g. expectation values of a many-body operator in the ground state

® The knowledge of the (A-body) ground state gives us information about (A+1-body) excited
states in a single calculation (the magic of Green’s functions!).

= Pro: consistent one-shot calculation of neighbouring systems

= Con: calculations computationally heavier
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I. Equation of motion method

® In an interacting many-body system, Green’s functions obey a hierarchy of equations

= Hierarchy = integro-differential system of coupled equations

= [t can be derived starting from the eq. of motion of annihilation/creation operators

® The first equation reads [1 = (r1,¢1) and (1,27) = (r1,t1, ra2, t1 + 07)]

. 0 v’lz“l + +
(Z(‘)tl + 2m)G(1,2)_5(1,2)—/d3v(1 13)Ga(1,3:2,3T)

= The second one connects G»> and Gs(and so on)

= [f three-body forces are present, one more G is coupled (and so on)

® First option: approximate directly G

= Simple example: Hartree approximation G(1,2;1',2") =~ G(1,1") G(2,2')

2
i0 + Vi, + Vy(1)] G(1,2) = 6(1,2) with Vu(l) = /d2v(1,2) G(2,27)
0t1 2m

i.e. a particle that moves independently in the potential Vx



® Second option: introduce a new object, the self-energy =

/d3v(1+,3)G2(1,3;2,3+) — i/dSZ(l,S)G(B,Q)

 Higher-body correlations all contained in the self-energy
~ Can be seen as a (non-local energy-dependent) effective potential

= Advantage is that it is a “one-body” object

® Equation of motion is rewritten into Dyson equation

G(1,2) :G0(1,2)+/d3 G0(1,3)VH(3)G(3,2)+/d4d3 Go(1,3)2(3,4)G4,2)
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Dyson equation

II. Diagrammatic method

® Basic idea:
1) Separate full Hamiltonian into unperturbed part + perturbation
H="Ho+Hi1
2) Compute unperturbed propagator
Go(z) = (z = Ho) ™

3) Express full propagator in terms of Go and H1

® Simple in the case of one-particle system:

—1

G(z) = (z—Ho—Hy) ' = {(Z — Ho) [1 — (2 —Ho)™" Hl}}

—1

= [1 — (2 — Ho)_l H1} (z — Ho)_l
— [1 — Go(2)H1] " Go(2) .

‘r expand (1 — GoH;)~ " in power series

G =Gy + GoHy (G0—|—G0H1Go—|—'--) = Go + GoH1G



Dyson equation

® Many-body case more complicated:

= Separation H = H, + H; exploited by working in interaction representation

 One-body Green’s function is expanded as (now H; = v)

4n+2 \:a\rlables  terms

Z...//...G§(33+1(E71/;2’2/;373/;,,T) Ve-eev---

Z---//---GSB(Z,Z’;B,B’;---)v---v---
- N — ) N———

n terms

G(1,1) =

4n variables

= Unperturbed many-body GFs can be written just as products of one-body GFs

~ ~ /
G(2(7)1)(}7 1,2,253,35-- )= Y (_1)Pg(0)<1’ 1) G (2n, 2n’) (Wick theorem)

-~

tati
pertutations 2n one-body GFs

4n variables

= Several terms cancel out (all disconnected combinations of variables), at the end:

¢="S GO..¢O... y.. .y

-~

n  connected 2n-41 propagators n interactions

® In practise: introduce Feynman diagrams and work out the expansion diagrammatically

= Approximations devised in terms of (sets of) diagrams



Diagrammatic expansion

® Depict exact & unperturbed propagators and interaction lines as

G » G((’){ V= e-----o

® Write down the expansion for G = Z Z Q(O) GO CARCARS

_J/

~
n  connected 2n-41 propagators n interactions

------------------------------------------------------------------

w :. | + Oth order (1 =0)
:' -1-.-.-.-.-.-.-.-.-.-.-.:j\:-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.
5 ‘rO L U 1storder (n=1)

------------------------------------------------------------------

------------------------------------------------------------------



Diagrammatic expansion

® Introduce (reducible) self-energy

= All diagrams without external legs




Diagrammatic expansion

® Select irreducible self-energy diagrams

= All self-energy contributions that cannot be separated in two parts by cutting a propagation line
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Diagrammatic expansion

® Select irreducible self-energy diagrams

= All self-energy contributions that cannot be separated in two parts by cutting a propagation line

|t BN
| |
I——O (4 o+
! 1‘ (=)
©
BOGHO. 1 o@
©
LA ©
f——@ Y /‘, + ;——O——O + /
T -
) I\ I Remaining diagrams generated
I\/}--Q L) o {:() - by successive self-energy insertions
\+ \\* *



Diagrammatic expansion

® Rewrite the expansion in the form of an iterative equation

\ This is itself the expansion
e T2 VA t_:() + ( for the dressed propagator
("

~
G=GY+c7Vx%ag w = + + @;D Dyson equation
. _J




Diagrammatic expansion

® One can further select irreducible skeleton diagrams

= Contributions that cannot be generated from lower-order diagrams with dressed propagators

E.g. this can be generated by the self-energy term

____(©




Diagrammatic expansion

® One can further select irreducible skeleton diagrams

= Contributions that cannot be generated from lower-order diagrams with dressed propagators

Dyson equation
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= All propagators in Xjsare dressed
w This characterises self-consistent schemes
= Selected PT terms iterated to all orders

Intrinsically non-perturbative method
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Diagrammatic expansion

® In general, not only propagation lines but also interaction lines and vertices can get dressed

® Classes of diagrams can be selected

1) Self-energy parts inserted in propagator lines

= dressed or renormalised propagators

2) Polarisation parts inserted in interaction lines

= dressed or effective or renormalised interactions

3) (Irreducible) vertex parts inserted in place of a vertex

= dressed vertices

® Each class identifies a subset of diagrams in the full expansion
® The choice of one of these options generally depends on the problem under study

® Only if the three parts are treated (= truncated) consistently one maintains Ward identity
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d-functional

® If the whole expansion is kept, Dyson equation is exact and conservation laws are fulfilled

® What if we approximate the solution, i.e. select only a subset of diagrams?

® There exist a class of self-energy approximations that by construction fulfils basic conservation laws

o The condition is the existence of a functional @ of G and v, such that

§ Q|G
¥(1,2) = [Baym & Kadanoff 1961, 1962]

 Conserved quantities (number of particles, momentum, energy...) don’t change (time-dependent)

 Thermodynamic relations are fulfilled (finite temperature)
® Common approximations are ¢-derivable

Hartree Fock 2nd order T-matrix

® 1/2 OO 1/2 1/4 <><> 1/2n Q[D




First and second order

® First-order diagrams in the self-energy expansion correspond to Hartree and Fock terms

lg

[Soma et al. unpublished]

Hartree Fock
—-O N o
O Hartree: particles in a common potential, " 0.1
contains unphysical self-interaction ”
0.1
o Fock: removes self-interaction
o Account for static correlations 0.1
® Second-order diagrams often referred to as Born approximation
—_ 0.1}
1
+ exchange .
0.1
= Analogous to CCD (2p-1h & 2h-1p) N
0.1

= [ntroduces leading dynamical correlation
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L.adder

® Ladder-type or T-matrix diagrams account for repeated two-particle scattering

Ladder self-energy or Introduce T-matrix — T-matrix self-energy

+ exchanges [Galitskii 1958; ...]

o Contains an infinite number of skeleton diagrams (second iterative layer!)
o Resums contributions relevant at low-density and in strongly-interacting systems

o Quality decreases at high density as screening becomes important

® Electronic systems

o Works well at low densities, i.e. close to completely filled or empty bands

o Extensively used in Hubbard models

®© Nuclear systems

o Treats the repulsive short-range part of nuclear interactions
o Method of choice for nuclear matter (self-consistency obligatory for high densities)

o Applications to finite nuclei computationally demanding



Rings

® Resummation of particle-hole excitations (bubbles or rings) leads to a screened interaction

o Random Phase Approximation (RPA) or ring ladder or ph ladder

o Can be seen as an expansion for the polarisation propagator 1M

Y. |
@ = A Y + g#—-¢ + + oo Tamm-Dancoff

- fON - £ OOV - |

[Bohm & Pines 1951, 1952; Gell-Mann & Brueckner 1957; ...]

> RPA

The name comes from the fact that Pauli correlations are partially neglected,
but one assumes that missing corrections cancel each other randomly.



GW

® RPA can be applied to resum an interaction (typically electron-electron) in the medium

---
- - [Hedin 1965]
GaEEE®D _ o---9 4 + - + ..
- — —
> — — —

- - -9
=& —-=--9 +
LN

W(a,w) = o)+ v(@) 19(qw) Wig,w) wp LV (w) =i / C;% / (57133 Glk — K, w— ') W (K, w)

Lindhard function 119 (q, w)

= Accounts for screening effects

= For electrons only Fock term in GW (Hartree — constant electrostatic repulsion)

~ Different degrees of self-consistency possible (and debated)

GYWY GW GW

-y,

>—>e—> > e > £ >3 >
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Lehmann (or spectral) representation

® Start from general definition

Gap(t,t') = =i(WR|T [aalt) af ()| [95)
For a time-independent Hamiltonian

Gap(t,t') = Gap(t — 1) Gap(2)

Fourier transform

Use integral representation of Heaviside function

1 +00 itz
O(t) = lim —/ dz -

n—0+t 271 Z —1n

— OO0

Ul a, | UATLY (AL | of g d TA| ol | GA-1Y (WA= | o |TA
Guplz) — 3 Wl VDOV |96 | (it | W1 (U1 o )
H v

z—E;,JL%—z'n z—FE, —n

Lehmann representation [Lehmann 1954]



Spectral representation: finite vs infinite systems

® Poles of the propagator represent one-particle excitation energies

i.e. energies of the A+1-body system w.r.t. the ground state of the A-body system

G b(z) _ Z <\Ijé4|aa | \Ijﬁ+1><\j[jﬁ+1 ‘al-‘;l\j[j64> 4 Z <\1164’a,2 ’ \Ij;j{_1><\:[j;/4—1 |a/a|\1164>
) 7 Z_Elj—l_zn y Z—E,/_—’I,n
4Imz
_ pA+1 A
XX XXX Re z ) E::Eu—l_ _EO
> with

XXXXIXXXXXXXXX

E, =E{ — E;""

4 Im z = A continuum contribution can be added
T. Re z
X X XXX I +o00 A A+1 A+l T A
xxxxxxxx_I: n / IE <\PO |aa’\Ij’yE ><\Ij’yE ‘ab‘qj0>
—~ . z—FE 4+
$Imz = For extended systems (large N) spectrum is degenerate
Re z

= Jsolated poles no longer meaningful

GR/A(kaz) = /

dw A(k,w)
2T 2z —w




® The spectral function describes the dispersion in energy of modes with a given momentum

® Excitation of the system would then show up as peaks in A

t Alk,w)

dw  A(k,w)
GR/A(k’Z):/sz—w:I:in Tk

= [dea: associate a well-defined peak with a quasiparticle.

® Quasiparticles will have, in general

o Modified or renormalised “single-particle” properties (e.g. an effective mass)
o A finite lifetime, physically associated with the damping of the excitation
o The lifetime is given by the width of the quasiparticle peak 7 ~ 7, '

o Quasiparticle properties computed from the GF pole

k2
;\1_1 .
k /Z /Z Z k Z D



Quasiparticle pole

® Quasiparticle pole can be extracted

o
o

0.15

Spectral function, A [MeV™]
o

0.05

Width, T [MeV]

z(k) = 2k—

m

Symmetric nuclear matter

| N
\ /| \
BV2NE NP ~

L T TTRUTE 1 |-
HEN IR ] N RANAN
At Tk
AT mii il ie
r\ (\/( *);// 4/ / ) \\ \\\ // | \\ \\ \\i\ UI } N

[Rios & Soma 2012]

+ ReX(k, 2(k)) + ilm 2(k, z(k))

Electron-phonon Einstein model

ER[(DO] ER[(OO]

[Eiguren, Ambrosch-Draxl] & Echenique 2009]



Nucleon mean free path

Vi OkEl

® Mean free path computed from quasiparticle lifetime and (group) velocity A\, = — =

® Crucial ingredient in transport codes

100

CD-Bonn

LN IIIIIIl

i

T=5 MeV

"IIIIIIIIIIIIIIIIIIIIIIIIII

-50

0 50 100 150 200 250
e—1L [MeV]

[Rios & Soma 2012 + in preparation]

Vi Yk

o Mean-free path extracted from “nuclear stopping”

o Heavy-ion collisions

o INDRA collaboration at GANIL

N
o|||||||||||||||||||||II|III|

L [ R AN T AN SR AT SR N S R R
20 30 40 50 60 70 80 90 100
Incident Energy (MeV/nucleon)

[Lopez et al. 2014]




Spectral representation: finite systems

® Numerator contains spectroscopic information

Gab(z) — Z

(T |ag | TATY (WA [ of B

z— Ef +in

Vb

v

.

(W' ay | U1+
= (Ug]ay |9 7")

g spectroscopic amplitudes h
b
U, =

_/

-

&

EZ S:Lr

HEH At

spectral function

5(z—EN+> S, §(z—E;)

vEH A1

~

(W ay | 22 [ aq |05

"2

z—FE, —n

(spectroscopic probabilities matrices R

S—I—ab

Sab

J

(U5 aa [Pt o) [05)
(U5 lal 25 (05 |as| )

4 spectroscopic factors
SFF="Try, [SH] = Y |Us

aceHq

\ aEH1

\

SF, =Try, [S; ] = > [V

_/

\ HEH At

4 spectral strength distribution

S(z) = Try, [S(2))
=Y SFEFé(z-EN+ Y SF;i(z—E,)

veEH A1

~

J




Spectral representation: finite systems

® Combine numerator and denominator of Lehmann representation

Gu(e) = 3 VLD 5~ )V

p z—E[f—i—in z—FE, —in

174

denominator spectral strength distribution
N N1 ~ + numerator
L, =L," -k " S(kx)= Y SEré(z-EN+ Y SF, (- E))
EU_ = Eév — Eiv_l HEH At vEH A1
A
Even N N+1 Even N Si(N)
: =N 0 0 | Sk
2 E(;L(N)
2 +(N)
5 k.
an
= B
E EZ(N) -
T ’ — BV —
@) EN+ SFt = Ty [S—i_} . Z ’Ua 2
Y 0 E}N'H—l po T T Pe ) ®
0 S acHq
i SF, =Try, [S,] = Ve
[figures from J. Sadoudi] spectroscopic factors y o, [S] = ) VY

acEH



Odd-even systems

® Working equations (see later) typically implemented for J™ = 0+ states
o Great simplification of the equations: J-coupled scheme, block-diagonal structure, ...

o Critical step for realistic calculations

o Applicable to even-even nuclei

® There are two possibilities to compute g.s. energies of odd-even systems

1. From separation energies spectrum 2. From fully-paired even number-parity state
(Either from A-1 or A+1) (“Fake” odd-A plus correction)

A-1 Even A A+1 Even N N+1 N+2

Odd Nucleus
(BCS)

@

Change of N

Perturbative :
blocking ;

~
~
~
~
-
N

Virtual odd Nucleus
(BCSE)

Binding energy

BINDING ENERGY
[100T ‘1v 12 39n3n(q]

Even Nucleus ‘\“\.
(BCS=BCSE)

= Different methods agree (typically within 200-300 hundred keV)
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Connection with experiments

® Basic idea: spectroscopy via knock-out reactions

o External probe transferring energy w and momentum q
o Cross section  do ~ Z d(w+ E; — Ey) |<\ij|R(q>|\Iji>|2 with R(q) = Z aL ap—q
f P

o Reconstruct energy and momentum of struck nucleon
2

p _
Emz’ss:%_w:E({)ﬁl_Eﬁl
Pmiss = P —d

o Information contained in the spectral function!
Ay |2
¥5)|

do ~ Z(S(Emiss - E64 + E;?_l) ’<\I];3_1‘G’Pmiss

Target (A-body)

® Two assumptions
o Impulse approximation (all energy transferred to one nucleon)

o No final state interactions



Connection with experiments

® Example: electron scattering

- = - +
% 160 . 3/2 1/2 5/0* 1/2
mz 15 B 1/2
=
= 17 7 0
= 05 2
1290 S
-50 40 -30 -20 1 O/ O"*f 6
o[Mev] EF
w [MeV] [Mougey et al. 1980] [Cipollone, Barbieri, Navratil 2015]

Results from (e,e’p) on 1O (ALS in Saclay) GF calculations with chiral 2N+3N forces



Effective single-particle energies

® To what extent can we extract a single-particle picture from the fragmented spectrum?

+
E; = e, + AE,
—— —— ——
Outcome of Schr. equation Ind. particles  Correlations

® Baranger centroids (ESPEs) provide a model-independent procedure

ep‘:"“t [MeV]

. . , , E,* [MeV]
« Define centroid Hamiltonian —
i 712
W= D STET+ ) SE; :
. . MEH A+1 veH a1 0 :_ 30t
= Diagonalise - = +
: 1/2
10 |-
hcentwcent — ecentwcent : +
p p p : —9 It 5/2
~ ESPEs as centroids 20 5"
cent __ + + — - I
€ = Z S ME, + Z $,"E, 30
MWEH 441 vEH A1 i

Ofﬁ2

ldNZ

281/7

lds),

0892
74N

Ofﬂ2

— 3
| |
\ / 0 50 100
SF,* [%]

Recollect strength in both removal and addition channels

[Duguet, Hergert, Holt, Soma 2015]
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Observables vs non-observables

® Spectroscopic factors, hence reconstructed ESPEs are non-observable quantities

 In particular, they depend on the (scale of the) particular Hamiltonian one employs

many-body observable single-particle components correlations
+ _ + cent + dyn +.
E} = S (R) 4+ s TPIO)ESNES )
' 4 r4q
invariant under U (1) - . _ N —
varies under U ()) varies under U ())

® Can be shown explicitly for a limited interval of the resolution scale Ae [1.88, 2.23] fm-!

Separation energies ESPE
3/2° p :
" 100
> 52 ‘ i o Ve N
i ¢

= 12* = % v S f

< 1 3/2"‘ vs) 80 o %
88
< o X ¥

X 60 B I v v
j 5-5 i A
— 2F 40
> 2- 109 - i3
[} 13 . v
a v

=} 12 20 | }

< 1 & i
Sl 1 1= -
< i i o L | |

ol 1 -30 -20 -10 0

Ex [MeV]
[Duguet, Hergert, Holt, Soma 2015]
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Dyson equation as eigenvalue problem

® Due to energy denominators, solving Dyson equation in this form is problematic
Gap(w) = ) + Z Gae(w) Xiq Gap(w)

® Instead, one can derive an eigenvalue equation by “extracting” the poles of G, i.e.

. + *
wl_lggl,j:(w — E7) {G )+ E GO (w) 2, (w) Gap(w )}
: UL (Uy)" (Vo )"V 0 (1 _ -1
using  Gap(w) = ) B+ + gy B and  Ggw) =(w-T),

[Z tab + Xy (W) e, | X8 = Ei Xf]
b

with — xb={v;* U} and B ={E, B}




Feynman rules

® Diagrammatic rules to derive all mth order terms in the expansion of G
o Work in energy domain (time domain analogous)
o Work with an antisymmetrised interaction v.,g5 (two-body only)

o Case of self-consistent schemes

~

/

N
~

1. Draw all topologically distinct, connected, direct, irreducible, skeleton diagrams with

o m interaction lines

o 2m+1 propagation lines



Feynman rules

® Diagrammatic rules to derive all mth order terms in the expansion of G
o Work in energy domain (time domain analogous)
o Work with an antisymmetrised interaction v.,g5 (two-body only)

o Case of self-consistent schemes

1. Draw all topologically distinct, connected, direct, irreducible, skeleton diagrams with

o m interaction lines

o 2m+1 propagation lines



Feynman rules

2. Assign an energy to each propagation line (energy is conserved at each vertex)
3. Assign two indices to each propagation line
4. Write down ¥a~gs for each interaction line and G,3(w) for each propagation line

5. Write down factors
o 1™
o 1/2 for each pair of equivalent propagation lines

o (-1)t where L is the number of closed sermonic loops

6. Sum over all internal indices and integrate over all internal energies

® Corresponding expressions for self-energy expansion obtained by cutting external legs

-0 =» =0

® In self-consistent schemes all propagators in the self-energy are dressed

O

o\

-__O » oo -



® Notation

Dressed propagator

0}

Gaop(w) = A T w

® First-order self-energy

Antisymmetrised interaction

e 5
VafB~ns = - ———- [
y 0

D
- _Z/ o D Tars i
ot 2m 2~ W' — Eif 411
B Z/ dw’ Z@avﬁé Vak*_vvk
ot 2T i '—FE, —1in



Second-order self-energy

® Second-order self-energy

gl ¢
2 / 1 1
Sow) = tw tw Lw
0 I
o] A
5 1 [ dw dw"” dw" _ _
N (w) = 5 | 575 - Vaeyd Vsppa Gys (W) G (W) Gre(w™) 6(w — w' —w" 4+ w™)
YOEPUA
1 [ dw dw” _ _
=5 5 9 D Taeys Usupr Gra(W') Gop(w") Gre(w' + 0" — w)
YOEPUA
1 [ dw' dw” o U ug AT
=72 ) 2ni 2mi 2. Vo Upp) {w’ —7E+5+i Y B }
voepu,ninang,kikaks " d k1 n

; — — —
— B, +1in w'" —E, —n W+ w’ —w— Ef 4 in W+ w’" —w— B —in

2
Un2 Ung* Vk2* ng Ung Un3>l< VkS* Vk3
w//
1
2

Um U Uy Uner Vs Ve YRyl y e yke s gras }

Z @ae'yqﬁ 'deﬂ)\ { T T — — + T — — -
'y5eqb,u,/\,n1n2n3,k1k2k3 W= (Enl _|_ EnQ o Ekfﬂ) _|_ 277 W= (En3 B Ekl o Ek2) B /[/77
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Energy-independent eigenvalue problem

® In practise, energy denominators generate (numerical) difficulties

® Eigenvalue problem can be rewritten in an energy-independent form

Define new objects

\_

[ iy k
M(Z’an 3 = Zvagﬂfy UglU,?;’QV(;S

Byo
2p1h amplitude
+ _ ot + -
ninaks — Enl _|_ En2 o EkS

2p1h energy

N§1k2n3 = Z Ve By Vﬁkl V,ka U(??\

B

2h1p amplitude

E =E, +E,;2—E;3

k‘l 1{72713

2h1p energy /




Energy-independent eigenvalue problem

® Second-order self-energy

Y ¢
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g A

1 dwo’ dw! dw'"”
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Energy-independent eigenvalue problem

® In practise, energy denominators generate (numerical) difficulties

® Eigenvalue problem can be rewritten in an energy-independent form

Define new objects

/]\lgank?’ = Z@O‘CSBV Ugl U;%QV(;]C?’ N§1k2n3 = Z’l_)a(w,y Vﬁkl V,ka U(??\

B Byd
2p1h amplitude 2h1p amplitude
— e - +
ET o = E+1 + E+2 — Ek_ Ek1k2n3 — Ekl + Ekg B En3
nin2k3 n n 3

\ 2p1h energy 2h1p energy /
) 4

Compact form of second-order self-energy

1 M’I’Ll’I’Lng MnankS*
2(2) w) = = &« B +

w—F
ninaong,ki1kaoks ninzks

* kik
(N§1k2n3) ngl zng}

w — Ek1k2n3 —1n



Energy-independent eigenvalue problem

Define new objects

(By, — B

ninsks

)nganS = Z(Mglngkg,)* Xk

(8%
(8%

L — k1k2n3 — klkzng k
87

\ 4

Rewrite energy-dependent Dyson equation as

5 s+ 3] 0+ 3 A st 4 S (b ke = )

) ninzks kikans

\ 4

/ Energy-independent eigenvalue equation \

1% t+2@) A NF X X
E.| W — MT Bt 0 4% =l W
z ). NT 0 E— Z ), A

\_ /




ADC expansion

® Algebraic Diagrammatic Construction (ADC) [Schirmer, Cederbaum & Walter 1983]
o Exact summation of the self-energy reformulated into a simple algebraic form

o ADC(n) includes complete n-th order (dressed) perturbation theory diagrams for G

o Results in Hermitian eigenvalue problems within limited spaces of N+1 systems

ADC (23) ! ADC(45):
: t

lp/lh-  2p-th  2h-1p 13p-2h 3h-2p |

E+2(@) | U U U U S i
| % | 7 ADC(Z) ﬂ O
(K+C) % C Z _______
N /R
(K+C) AVC o B
el /4 ADC(3) O

o Pole structure of 2nd order maintained — energy-independent eigenvalue equation to be solved
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Scaling of Dyson matrix

® Dyson (eigenvalue) equation has to be solved iteratively

% t+ 2 N* X X
E. | W — MT 0 wl| == w

T _
z ), NQE z ). z ).

+ _ ot + —
E =F, +E,, -k

ningks

= At each iteration the number of poles increases — so does the dimension of Dyson matrix

® Schematically, dimensions grow as follows

N
N, { 2 M N o First iteration
alE ; N, ~ (ng) ~ N?lf &  dim(E) = N ~ N} /3
o Second iteration * dim(E) ~ N,
M - o n'h jteration = dim(E) ~ N}

~ Severe scaling prevents the exact treatment of all poles



Krylov projection

® Use Lanczos algorithm (Krylov-space technique) to reduce dimensions of

( o) g
==\ g0t S
= & Project into subspace

® Build set of Lanczos vectors (see next slide) £

a4 )
LTEL
/ —_—

= (0 o) .

L ) Projected matrix
and accordingly * / =) 70O
5n— 8 =

) @t g

= 2@ _ g (ﬁ)

5Dt @ = (£f £f) g1

L J

® Krylov subspace can have arbitrary dimensions from 1 to dim(F)

= The goal is to choose a small enough dim(L£" E £) < dim(E) without spoiling the accuracy



Lanczos algorithm

® Krylov space defined as

K™ =span {p, Ep, E*p, E’p,...,E" ' p}

® Lanczos algorithm: iterative method to build a Krylov space for Hermitian matrices

__y pivot
ooh r (eji)* =V|E forall i.j
€;; = (€55 =V, V; or all 7,
Evy = e11 vy +e21 v * N g v g
EV25612V1—|—€22V2—|—632V3 ez'j:O for ‘7/_]‘22
. .
Ev. 1 =eigp_yvi+ - +e @) Ve Projected matrix is Hermitian and tridiagonal
® Possible strategy: use a multi-pivot Lanczos algorithm
EEEED ™
1= COnSIder Np prOt VeCtOI'S (typlcally Np = Nb) DE\EEEI;DDDEDDDDDDDDDDDDDDDDDDDDDDDDD O }
{(pW;i=1,...N,} |y r2
= Each vector is iterated r; times E=1 f ’
N, ﬁ D s
= Dimension of projected matrix Np =» S i
P / g i -3
o o o ..AI.j!

Fishbone structure from orthogonalisation of new pivots - ~- -




Properties of Krylov projection

® Current implementation different from usual application of Lanczos/ Arnoldi
= In shell model, CC, ... Lanczos algorithm used to extract low-energy eigenvalues

~ Here we are interested in key/ global features of the spectral function

® Krylov projection conserves first moments of the pivots

= Choosing components of the spectral function as pivots ensures that its first
few moments are approximately conserved

® Lanczos algorithm yields fast convergence at the extremes of the spectrum

= Performing separate Lanczos for E* and E- guarantees accuracy around Fermi surface

E— & =

LTEL
~LVEL

o~

-Ecutoff E- (2h1p energies) Er E* (2p1h energies) Ecutoff

Accuracy



Performance of Krylov projection

® Krylov-projected energy can be compared with exact result in small model spaces

-782 B 44Ca
o 784 ?f\_N o]
Ll —_ - —h— =
m S : . Nmax_ 1
< ) max
< S 786 —— N =13
() L i X X
(@) I = 2 A
= -788 qu A n
790 F
I 1 1 P | 1 1
0 10 20 30 40 50
K% [%] Ny

® Projected density of states and spectral strength distribution

(3]

Density of states [MeV"]
w
Spectral strength [MeV]

0 200 400 600 800
o [MeV]
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Results: oxygen ground-state energies

® Oxygen chain: importance of three-body forces and benchmark case for ab initio calculations

o Hamiltonian: chiral N3LO 2N (500 MeV) + N2LO 3N (400 MeV), SRG-evolved to 2.0 fm1

[Entem & Machleidt 2003; Navratil 2007; Roth et al. 2012]
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Results: oxygen spectra

® Oxygen chain: spectral strength distribution (separation energies and spectroscopic factors)
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= . — : 9/2+ :_ -
0 —_— “ 3 2 s 10—-';_ = a L 9/2*
= - =_ B o 3/2°
—10:0 = r ] = - —— —— —
— _ = = — = LI 327 ®
E & e E i = | —— 1/2* 2
= = = A 5/2* =
+:“ —20r— - 1/2+7 +|t“ 10 i - / | g
Yol 3 52" v : — L N
— 1 - .
; — - 1/2° g : | @
o] {0 [P0l F| [Fof ¢t L | ~
_4O—I_ ‘ l . ‘!— 3/2 30 |14O| |16O| ;:|220| : _ Z
S| N | S _ A | N | SN | S| S >
0051 051 051 051 051 005 105 1 05 1 05 1 05 1 S
SF*/2j+1) [%] SF*/(2j+1) [%] =
S
® Full spectral function in coordinate space >

‘._> ‘._'_|

2 1.5 F >

™ =

g 17 >

305 ,;\

£ .60 % 02 -

0 %) 2520151045 0 5 10 15°

Er  w[Mev



Plan of the lectures

5. Three-body forces

6. Green’s functions for open-shell nuclei

o Degenerate systems and symmetry breaking

o Gorkov theory

o Examples of results in open-shell nuclei

7. Public Green’s function code

8. Extras



Three-body forces

® Hamiltonians describing A-nucleon systems contain in principle up to A-body operators
®© At least three-body forces need to be included in realistic ab initio calculations
® In Green'’s function theory, one has to re-work out the perturbative expansion of G

® Le. in the diagrammatic expansion of the self-energy additional terms appear

VZN: ——-——o V3N: — — — —— — — — o

¢
e )+ -0

RN I N IR S N Y



Three-body forces

® Diagrammatic expansion can be simplified by exploiting the concept of effective interactions

effective 1-body effective 2-body

AANAK = oX e----©+% — Ay — — et e — —e— —
T @

® One also introduces interaction-irreducible diagrams

Combining the two allows to greatly reduce the number of diagrams to be computed

4
WREILY
.

This will generate the first four terms above

[€T0T STI0d ‘S0Ry ‘Ha1qreq ‘suofjodr) ‘auoqre])]



Three-body forces

® In general, the irreducible skeleton self-energy is given by

o

F4—pt

where 4- and 6-point vertices are generated by self-consistent equations

Y «Q
A ;
+ Y
F4—pt F4—pt
m ° -
ex.
(c)
8 « oL _ _’V_ o
1"47pt N A:\A/\g\\ Y n A & A
FG% FGfpt
A A .
) g 0 5 3 5
() (g)
Y
F4—pt
«Q A A k g\\ AER\ )
" Ai_ - _j:\ " )FSIJ
F4—pt - - )
(k)
I} )

[€T0T STI0d ‘S0Ry ‘Ha1qreq ‘suofjodr) ‘auoqre])]



Three-body forces

® Galitskii-Migdal-Koltun sum rule needs to be modified to account for 3N term W

1 [€F 1 <
Ef =5 | do Y (Tup + 08p)im Gpa(w) — (0 |W]07')
&

[Carbone, Cipollone, Barbieri, Rios, Polls 2013]

® Effective interactions can be seen as a generalisation of normal-ordered interactions

~ Here contractions are performed with the fully correlated density matrix

® Extra correlation provided by the use of dressed propagators can be tested in realistic calculations

—60
-+ dOO

4 1 ) _80~ -= dd0 1
ONRRRGK = Cumeae X —|-.____® +- - --- 1 i -o- ddd ]

1 b : : I - ddd(TDA) I
/s -1op = — Exp hw=24 MeV :

YV 2
2 _120" ]
g = oooee- ¢ + f———+—--® S :
~140 !
—~160 l
J : . :
_1800 i | |

140 160 250 240 280

Genuine three-body term neglected
[Barbieri unpublished]
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(Near-)degenerate systems

® “Exact” methods grasp all (types of) correlations

o Hard scaling with A (exponential)

® Approximate/truncated methods grasp some correlations
o Softer scaling with A (polynomial)

o Typical way of capturing correlations is via an expansion in ph excitations

® Open-shell nuclei are (near-)degenerate with respect to ph excitations

a b
fiji —0-0-0-0-
closed-shell a open-shell
1 1 j oa b

(ab|o]ij)

€ T € — €4 — €p

/

when ¢€; + €; = €, + €, the expansion breaks down

1

: 2) TN
o E.g. consider MBPT(2) AE® = 2% (ij[o]ab)

abij




Symmetry breaking

® Standard expansion schemes fail when superfluid correlations are essential

® Two possibilities to tackle (near-)degenerate systems:
o Go to a multi-reference scheme
o Formulate the expansion around a symmetry-breaking reference state

= Symmetry-breaking solution allows to lift the degeneracy

® Case of open-shell nuclei
o Singly-open shells (either protons or neutrons)

= Breaking of U(1) associated with particle number conservation

= [.e. work with a Bogoliubov reference state

© Doubly-open shells (both protons and neutrons)

= Breaking of SU(2) associated with angular momentum conservation

= ].e. work with a deformed Slater determinant

® Symmetries must be eventually restored (see later)
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Gorkov theory

® Idea: expand around an auxiliary many-body state

[Gorkov 1958]

Breaks particle-

cven number symmetry
o) = ZCA vg) /

A

= Introduce a “grand-canonical” potential 2 = H — A
= |Uy) minimizes Qg = (VUy|Q|¥y) under the constraint A = (¥y|A|¥y)

= Observables of the A-body system {2}y = Z car)? 964, ~ B — pA
A/

set of 4 propagators

]
|
———

i Gl 1) = (ol T {aa(D)al(t) } [Wo) = u i G2 (1,1) = (WolT {af (1)af (t) } [wo)

i GA2(t, ) = (Wo|T {au(t)ay ()} [o) i G (t,t") = (Wo| T {a ()ay (1) } |Wo)

]
Q
—a— =
1]
———



Gorkov equation & self-energy expansion

® After perturbation expansion, Wick theorem, definition of self-energy, one gets to

(;11(60) (;12(60)
Gap(w) = GO (w) + Z GO w) Gap(w) where  G(w) = (Gzl(a)) G2 (w)
(and similarly for G©® and X*)

® Implemented so far first- and second-order self-energy diagrams

& C®====—- d
SHUNE R G T 520 =
b d

" l w///
" e —
/ 1 " 17; w \ b B l_)
d g d g —-- -y
——————— —— g d g J)d
b h b ]tL '\ CU//
/ - w,

. . . , ) [Soma, Duguet & Barbieri 2011]
= Number of topologically distinct diagrams increases

 Because of symmetry properties, only 2 out of 4 self-energies need to be computed



Gorkov equation & self-energy expansion

® Next step: inclusion of ADC(3) O O
® Normal 3rd-order self-energy X" reads | _____ O _____ O

________ QO 10 D

_____ O 1.0

Arr = Ago = A1p = Ao Cos Cao Ca1

e~ =

DN | =

[\ N | =
8 | | 8 | | |
| | | | | |
| | | | |
5 | | ey | | |
w @ w @

1 1 1
+ 2 L 4 20 D
B B3> = B Bos =B Bi1 = Ba2 = B2 = Bay C C Cui
n 1 2 3
Dyson 1 1 2

ADC(n)
# diagrams Gorkov 2 4 34



Gorkov equation & self-energy expansion

> (

Energy-dependent eigenvalue problem

tab — tab + Eclbé (CU)

Sap(w) )

() -
Wi Vb

r N r \
Gorkov equation Gl =Y [ Uiy n ViV |
(0) h “ . o —wp +in o+ wp —in |
Gab( G "‘ Z G<O) )Gdb( ) where k ok Dokk 77k
G12(a)) — Z j Z/{a Vb _|_ Va Z/[b 1
\ < ab - o —wr+in w4+ oy —in |
‘ \ y,
r N

\

Lehmann representations hold!

\

}
}

J

- D (w) —tab + Hab + L2 (w) /‘
~ J
4 ) 3 B
211 (2/42") (w) _ Z ) 6571162163 (C(lflkizkis)* (’Dslk’gkg)* «Dll)ﬁkgkg
" ki1kaks \ w_Ek1k2k3 ‘|"l77 w+Ek1k2k3 _277
using , i )
212 (2’ +2//)( ) B Z J C§1k2k3 (Dkzlkzk:?,)* N (D]ai‘lkgkg)* Cll;:lkzgk'g
ab - . .
\ kEikaks \ w wzn w—i_Eklk?k?) —
g )
Energy-independent eigenvalue problem
T—p+A h C U* U~ From 2p-1h & 2h-1p to 3qp
hi — — _Df k k I
gT b g A ED )]/}V = wy, )]/}V = Many more possibilities
_ X .
D Ct 0 Z Z,



Dyson vs Gorkov dimensions

® In Gorkov theory, no distinction between “particles” and “holes”

 Dimension of Gorkov matrix larger than in Dyson case

2N,
Ns N,
7 N\ 7\
Nb{ h M N Nb{ h| & C D*
2N = —
’ Rt | —h D c*
E 0
M T o°
O ct | pt E N0
\')A'\J (,0&
N 0 E I
D | ct 0 —E
7 N 7
Ny = Np + Np 2N, = 2(Np, + N,)
NsN — Nf% Np
tot __ 2 2
NM:N2Nh * Ns _Nth+Np Nh, N;ot:2(Nh_|_Np)3
s D
\_ ) .

® Both computation of the matrix itself and Krylov projection numerically more costly

 Generalised Lanczos algorithm can be developed — small Krylov spaces work fine



Spectral strength distribution: Dyson vs Gorkov

Dyson 1%t order (HF) Gorkov 1st order (HFB)
1 ] 1 1
0.1 l' 12t 39C3 : 41Ca . 0.1 r 1/2% 43ca : 45Ca
! Fragmentation !
1 % 1 1 :. . 1 . . . 1 . . . 1 . 1 é . . . . . 1 .: . . 1 . | . 1 . . . 1 .
Ho00F 30t ! 401k ot |
%M : 5{4 3/2 :
1 E 1 1 :. 1 1 1 E L L L 1 L L 1 .: L 1 1 1
' . . |
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E 1 1 l. L 1 L L L 1 L L L 1 L E L L L 1 L L L 1 .l L 1 1 1
1 ) > 1 ;
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| Dynamical |
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1k :|.| Y S - .:..|.......I.
I ]
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Oxygen g.s. energies

® Calculation of full isotopic chains becomes possible

® Example of oxygen: Dyson-ADC(3) vs Gorkov-ADC(2)

o Hamiltonian: chiral N3LO 2N (500 MeV) + N2LO 3N (400 MeV), SRG-evolved to 2.0 fm!

hw=24 MeV -
ASRGZZ.O fm-l —-

=== Dys-ADC(3), NN+3N(ind) ]
—e— Dys-ADC(3), NN+3N(full) ]
=== Gorkov-2nd, NN+3N(full) ]

- Exp 1

[Entem & Machleidt 2003; Navratil 2007; Roth et al. 2012]

13N ISN 17N 19N 2 IN 23N 25N 27N

| | | | | | | |
=== Dys-ADC(3), NN+3N(ind) -
—e— Dys-ADC(3), NN+3N(full) -
=== Gorkov-2nd, NN+3N(full)

- Exp
e - ]
.\.\0\- \\. ]
- \\3\&9 —
- .\ —
* ~
how=24 MeV TNo. T

ASRGZQ' . 0 fm-l

ISF 17F 19F 21F 23F 25F 27F 29F

[Cipollone, Barbieri & Navratil 2015]

= Correlation energy from 3 order amount to a few percent (for soft interactions)

 Trend (i.e. energy differences) well captured at second order



Up to the calcium region

® Gorkov GF led to the first ab initio calculations of isotopic chains around Z=20

[ TN --%- GGF [NN + 3N (ind. ] .
300 F a =, T GOF NN LNl - o 3NF overbind but correct overall trend
- '\\. ---4-- ADC(3) "corrected" I . .
= 350} X - ¢ IM-SRG [NN + 3N (full)] o Two-neutron separation energies reproduced
Q
Z ] _ pZN _ ZN-2
—_— 400 F ] Szn == EO - EO
<o i
&S
450 F g © 3NF necessary for magic gaps
I T R TR N ST R SR T R . . .
36 38 40 42 44 46 48 50 52 o Consistent picture across 5 chains
ACa
0F . - ]
A " Experiment ] ]
35F —=— NN + 3N (full) 1 _'
. \ -*= NN + 3N (ind.) ]
— 30F " &\ —— SM (NN +3N) _ ]
% sk cc ; > ;
2 25 F i O i
=, ; ] = ]
IS 20 F - o -
v f : »A ]
I5F E ;
10F - f
3 S P N R R S R R [ ]
38 40 42 44 46 48 50 52 0 : I I I I I I I I

ACa 18 20 22 24 26 28 30 32
[Soma et al. 2014] N



Potassium masses and g.s. (re)inversion

® Gorkov-Green’s functions can tackle odd Z chains

ISOLTRAP COLLAPS

N
- ; —— . 18 20 22 24 26 28 30 32 34
20k HFB calculations 18 30 — * * * * . = —_— " *
S , — | --@-- Experimen
18 2 ""‘~~3::;::_ \ A % % 150 MeV fm 16 % 25 4 /?A\\ --&-- Ab initio (shifted)
16 _ TN o, mmmmmees mmmmeee -200 MeV fm 114 = | ///’ “\
: S A - - 12" — 204 7\
124 10 i Ns4 N A,
% 10_ ............. ] 8 E 1 10 1 ‘\\‘\\ /// \\\
< el 6 3| 1871 & ] PRt A// h
% 6f T > - 4 2 980 - 05 - A3 A /
5 - ISOLTRAP, Wienholtz et al. —&— w - = > o /
5 4f  ISOLTRAP, present data —@— ) D61 474 4 T Y S
£ g AME2012 ——— 92 0.0 4 N/ .
g 20 — AA ....... ) 'k f i 18 K dK AR B s AT Ao sk 05 - (a) .
5 18 e 16 '
§ 16F O 14
o ; O
Sl N . [Papuga et al. 2014]
: ‘o, B SEL%]
§ 12¢ K \.& a 20Ca 10 1 10 1001 10 1001 10 100 1 10 100 1 10 100 1 10 100 1 10 100 1 10 100 1 10 100
H 10 :_ @ __________ E 8 8 SR LRI ILILARALL D AL INNLAILLALL LRI B AL DRRLLLALL INLAILLALL B AL INNLELILALLLL DRRLALILLLAL N G ORI NRLELILALLL BN A LELALLL DL B R DERLELAARAL O LA IOLLLRALL DL BN AL DL B |
- T @u..,'_g}\ ‘\A _ r 37K i 39K i 41K i 43K . 45K i 47K - 49K i SIK 53K
e 16 SO = - N N - - - -
V i i ———— [
6} e {4 2 aFEL 0t — — | : - :
4t - Gorkov-Green function theory, Ca * 1o o7 : [ i [
i Gorkov Green function theory K -—6—- ai 3/2% - - ] ] ] ] i i
26 28 30 32 34 ok

Neutron number

= Relative trend well reproduced
[Rosenbusch et al. 2015]

~ New mass measurements challenge theory

= General fair agreement, but N=32 gap overestimated



Oxygen & calcium radii

® Ab initio calculations over mid-mass chains as test tools to develop new Hamiltonians

® Example: two sets of 2N+3N chiral interactions

= Conventional®* N3LO 2N (500 MeV) + N2LO 3N (400 MeV) [EM]
[Entem & Machleidt 2003; Navratil 2007; Roth et al. 2012]

= Unconventional® N2LO 2N+3N (450 MeV)

* With respect to the usual reductionist strategy of ab initio calculations

[Ekstrom et al. 2015]

o LECs fitted on A<25

[NNLOsa] o Simultaneous optimisation

© Non-local 3NF regulator

® NNLOs,t considerably improves on the description of nuclear radii

[Lapoux et al. 2016]

3.4

3.2f

L NNLO,, |* GGF

=* IMSRG

EM # GGF

* IMSRG

EXP
- ¢— and (p,p)

-8- (p.p)

3.7 F — Exp. o]

[ e NNLOsat . d ]

36F ¢ EM . ° .

- o ]

- . o« o ]

3.5 C o 4 ‘/_‘A‘W ;

ui 34F .
S 33F -
= - .
32F -

31 F ]

N S N R N SR N S N SR SR N SR

36 38 40 42 44 46 48 50 52 54 56 58 60
ACa

[Soma et al. in preparation]



Symmetry breaking and restoration

® Variance in particle number as an indicator of symmetry breaking

2.5

[ —0— 7/
—o— N (1st order)
—&— N (2nd order)

36 38 40 42 44 46 48 50 52 54 56 58 60
ACa

® Eventually, symmetries need to be restored

oA = \/<A2> — (4)?

= Only concerns neutron number

= Decreases as many-body order increases

® Only recently the formalism was developed for MBPT and CC

o Case of SU(2) [Duguet 2014]

o Case of U(1) [Duguet & Signoracci 2016]

® Symmetry-restored Gorkov GF formalism still to be developed
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BoccaDorata code

® A public version of a GF code implemented for finite nuclei is publicly available at

http: / / personal.ph.surrey.ac.uk /~cb0023 /bedor /bedor/Comp_Many-Body_Phys.html

Computational Many-Body Physics

:

-g i t2 . PazPi2fse2 Welcome
”; 4 ) From here you can download a public version of my self-consistent Green's function (SCGF) code for
§ 05 nuclear physics. This is a code in J-coupled scheme that allows the calculation of the single particle
;z ) M— ‘ . ‘ _— propagators (a.k.a. one-body Green's functions) and other many-body properties of spherical nuclei.

;‘4 " This version allows to:

2% ST R T R 10 - Perform Hartree-Fock calculations.

© [MeV) - Calculate the correlation energy at second order in perturbation theory (MBPT2).
- Solve the Dyson equation for propagators (self consistently) up to second order in the self-energy.
Download - Solve the coupled cluster CCD (doubles only!) equations for the correlation energy.
When using this code you are kindly invited to follow the creative commons license agreement, as

Documentation

detailed at the weblinks below. In particular, we kindly ask you to refer to the publications that led the
development of this software.

Relevant references (which can also help in using this code) are:
Prog. Part. Nucl. Phys. 52, p. 377 (2004),
Phys. Rev. A76, 052503 (2007),
Phys. Rev. C78, 064313 (2009),
Phys. Rev. C89, 024323 (2014).

m This work is licensed under a Creative Commons Attribution 3.0 Unported License.

Carlo Barbieri

Department of Physics, FEPS
University of Surrey

Guildford GU2 7XH

UK.

E-mail : C.Barbieri@surrey.ac.uk Last updated: Monday 27nd July, 2015


http://personal.ph.surrey.ac.uk/~cb0023/bcdor/bcdor/Comp_Many-Body_Phys.html

BoccaDorata code

v The name Bocca Dorata comes from a Brazilian priestess
in the comic series Corto Maltese by Hugo Pratt

® Self-consistent Green’s function code for finite systems
® Public version of the code includes up to 2nd-order self-energy and handles two-body interactions

® Bonus (also in the public version):

o MBPT(2)

o Coupled-cluster doubles
v Main developer: C. Barbieri (Surrey)

® Extensions (non-public): v Other developers:

o ADC(3) (and more, in fact) self-energy A. Cipollone (Surrey/Bologna)

o Treatment of three-body interactions V.Soma (Saclay)

o Gorkov scheme (for open-shells)



Data types

® BoccaDorata builds on 4 main data types (C++ classes)

1. Model space
o Defines the set of (HO) basis states that enter the calculation

o Serves as reference for other data types

o Can be generated within the code or read from file

2. One-body propagator

o Central object on which most operation are performed

o Can be generated within the code or read from file

3. Self-energy
o Mainly used to build Dyson matrix (final eigenvalue problem)

o Can be generated within the code or read from file

4. (Two-body) interaction

o Needs to be generated externally (but can be manipulated in BoccaDorata)



General structure

® Needed objects are loaded /initialised

® (If it’s a 2nd-order calculation) dimensions of self-energy / propagator arrays are estimated

@ Iterations start

= Loop over partial waves starts
= HF self-energy is computed
= Kinetic energy is added
= (If it's a 2nd-order calculation) dynamic self-energy is computed /read from file

= (If it's a 2nd-order calculation) Lanczos algorithm is run

= Dyson matrix is built and diagonalised
= Partial wave contributions to N, Z and E are computed
= Loop over partial waves ends
= Old G is erased, new G will be input for the next iteration
® Iterations end

® Final results are written to screen/ file



Single-particle propagator

® This is how a one-body propagator looks like

# Quasi- particle and hole fragments of the sp propagator

* Gab(z) _ Z U#(Uﬁ)* 4+ Z (Vay)* by

# number of (ilj\pi) subshells, max n. of radial orbitals: + : - :
# 30 4 ) L Z—EM—FZ?? Z—Eu—“?
# Total numbers of gp and gh stored here:
# 66 6
# Subshell:
E—|— # v_sl/2 ; . U/“L
# # —> tot n. of quasiparticles
H i\“‘-\. 45.300293 100.000 -3.779214e-03 -1.0881792e-01 4.159454e-01 9.029243e-01 —*””,’— .
16.812094 100.000 1.102827e-01 -2.187659%e-01 -8.901109%e-01 3.842940e-01
9.324998 100.000 -2.221997e-01 9.395954e-01 -1.753774e-01 1.924329e-01
# ¥ —= tot n. of quasiholes
100. 000 (-9.687367e-01 -2.399983e-01 -6.272807e-02 -3.912206e-03)
— /,/’f/g:;shell: \\\\\\\\
EU # v_p1/2 VvV
: : a
# 3 # -> tot n. of quasiparticles
60.401165 100.000 -7.885525e-02 -1.627880e-02 5.268234e-01 8.461524e-01
27.506481 100.000 -1.638212e-01 5.133379e-01 7.126959e-01 -4,491230e-01
7.710524 100.000 1.200694e-01 -8.372168e-01 4.506958e-01 -2.855253e-01
# 1 # -> tot n. of quasiholes
-16.294481 100.000 9.759753e-01 1.878491e-01 1.067473e-01 2.810576e-02
# Subshell:
# v_p3/2
# 3 # -> tot n. of quasiparticles
56.750438 100.000 -6.220491e-02 -5.608834e-02 4.054804e-01 8.645714e-01
25.320437 100.000 -1.987774e-01 4.398073e-01 7.659408e-01 -4,247255e-01
6.715028 100.000 2.021342e-01 -8.552241e-01 3.952311e-01 -2.674431e-01
# 1 # -> tot n. of quasiholes
-26.046202 100.000 9.569534e-01 2.683567e-01 1.078248e-01 2.446737e-02
# Subshell:
# v_d3/2
# 3 # -> tot n. of quasiparticles
50.931715 100.000 -3.039998e-02 4,831755e-01 B.749956e-01
21.326080 100.000 3.9750944e-01 8.090090e-01 -4,329239%e-01
7.058846 100.000 9.170576e-01 -3.347324e-01 2.167017e-01

# ® # -> tot n. of quasiholes
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Green’s functions in art

Forze nello spazio I Forze nello spazio II

Meo Carbone (2014)



