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IDEX	Paris-Saclay	
Appel	à	manifestation	d’intérêt	

«	Initiatives	de	Recherche	Stratégiques	»	
Sous	réserve	que	l’IDEX	Paris-Saclay	soit	prolongé	au-delà	du	30	juin	2016,	l’Université	Paris-Saclay	
envisage	de	soutenir	6	à	10	«	Initiatives	de	recherche	stratégiques	»	avec	un	budget	de	12	M€	sur	
la	période	2016-2019.	Le	 financement	apporté	par	 l’IDEX	à	chaque	 initiative	pourra	être	compris	
entre	0,6	et	2	M€,	en	appui	de	co-financements	par	d’autres	sources.		
	
Cette	 action	 s’inscrit	 dans	 le	 cadre	 de	 la	 trajectoire	 IDEX	 2016-2019	 décrite	 dans	 le	 rapport	
d’évaluation	 de	 décembre	 2015,	 et	 dont	 le	 1er	 jalon	 (au	 30/09/2016)	 s’engage	 sur	:	 «	Finalize	 the	
proposition	of	a	global	research	strategy	currently	being	discussed	from	the	initial	propositions	of	the	
departments.	»,	avec	 la	 cible	 :	 «	White	book	with	 clear	propositions	 for	 funding	new	priorities	with	
IDEX	funding,	including	the	future	of	LIDEX	projects,	as	soon	as	September	2016.	»	
	
Le	mode	 de	 décision	menant	 à	 ce	 jalon	 est	 encadré	 par	 l’article	 10.1.1	 du	 règlement	 intérieur	 de	
l’Université	Paris-Saclay	:	«	La	stratégie	partagée	de	l'Université	Paris-Saclay	est	notamment	élaborée	
à	partir	des	contributions	de	chacun	des	départements	dans	leur	domaine	de	compétence	et	proposée	
par	 le	conseil	des	 tutelles	Recherches	au	conseil	d'administration	qui	délibère,	après	avis	du	conseil	
des	 Membres	 et	 du	 conseil	 académique.	 Dans	 ce	 cadre,	 les	 départements	 ont	 pour	 mission	 de	
contribuer	à	accroître	l’attractivité,	la	visibilité	et	l’ambition	de	l’ensemble	des	acteurs	de	la	recherche	
de	Paris-Saclay,	et	à	les	porter	au	tout	premier	plan	au	niveau	international.	»	

Processus	mis	en	place	
A	 court	 terme,	 il	 s’agit	 de	 focaliser	 les	 moyens	 de	 l’IDEX	 post-période	 probatoire	 sur	 des	 enjeux	
majeurs,	en	soutenant	des	initiatives	d’excellence	inter-établissements	qui	s’appuient	sur	la	richesse	
des	compétences	présentes	au	sein	du	périmètre	de	l’IDEX	Paris-Saclay.	Pour	les	3	ans	à	venir,	à	côté	
des	structures	d’excellence	déjà	en	place	telles	les	LABEX	et	les	EQUIPEX,	qui	sont	actifs	jusque	2019,	
ces	initiatives	permettront	de	co-construire	la	stratégie	de	recherche	partagée	de	l’Université	Paris-
Saclay.	Elles	en	constitueront	des	projets	phare,	aptes	à	répondre	à	des	enjeux	et	défis	scientifiques	
majeurs,	et	visibles	à	l’international.		
La	mise	en	place	de	ces	initiatives	en	octobre	2016	s’articule	avec	la	fin	des	financements	actuels	des	
projets	 LIDEX	 de	 la	 période	 2013-2016.	 Ces	 projets	 sont	 incités	 à	 discuter	 leur	 avenir	 avec	 les	
départements	concernés,	dans	le	cadre	de	cet	Appel	à	manifestations	d’intérêt	(AMI).	
Un	deuxième	point	de	rencontre	majeur	est	programmé	en	2018.	Il	s’agira	de	proposer	l’organisation	
du	périmètre	d’excellence	 recherche	dans	 la	période	post-LABEX	 (à	partir	de	2020),	en	phase	avec	
l’évaluation	HCERES	des	laboratoires	de	l’Université	Paris-Saclay.	
Dans	ce	cadre,	après	avis	du	Conseil	des	Tutelles	Recherche	puis	du	Comité	IDEX,	il	est	proposé	un	
processus	en	deux	étapes	successives	:		

1. Première	définition	de	priorités	stratégiques	et	présélection	de	manifestations	d’intérêt	
Une	première	étape	de	présélection	comportera	deux	réflexions	menées	en	parallèle	:	

• le	présent	Appel	à	manifestations	d’intérêt	(AMI),	lancé	auprès	des	départements	de	l’Université	
Paris-Saclay,	 et	 décrit	 ci-dessous.	 Cet	 AMI	 fera	 remonter	 des	 descriptions	 synthétiques	
(maximum	 3	 pages	 chacune)	 d’initiatives	 stratégiques	 jugées	 prioritaires	 par	 chaque	



Ab initio vs effective approach to A-nucleon problem

⦿ H describes NN system in vacuum
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Ab initio approaches Effective approaches

⦿ Heff incorporates in-medium correlations
○ Fit to NN scattering data & deuteron ○ Fit to many-body observables

⦿ Link to QCD is usually present ⦿ Link to QCD is usually lost

⦿ Systematically improvable, predictive ⦿ Model dependence to be assessed

How far can this strategy be pushed? Can we derive Heff from H?

⦿ Requires sophisticated many-body scheme ⦿ Allows use of simple many-body scheme

○ Limited applicability (A<100) ○Applicable to whole nuclear chart



⦿ “Exact” ab initio approaches
○ Since 1980’s
○ Monte Carlo, CI, …
○ Factorial scaling
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Evolution of ab initio nuclear chart
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⦿ Ab initio approaches for closed-shell nuclei
○ Since 2000’s

○ Polynomial scaling

⦿ “Exact” ab initio approaches
○ Since 1980’s

○ Factorial scaling

2010

○ SCGF, CC, IMSRG

○ Monte Carlo, CI, …

Evolution of ab initio nuclear chart
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⦿ Ab initio approaches for closed-shell nuclei
○ Since 2000’s

○ Polynomial scaling

⦿ Ab initio approaches for open-shell nuclei
○ Since 2010’s

○ Polynomial scaling

⦿ “Exact” ab initio approaches
○ Since 1980’s

○ Factorial scaling

2013

○ SCGF, CC, IMSRG ○ GGF, BCC, MR-IMSRG

○ Monte Carlo, CI, …

Evolution of ab initio nuclear chart



Evolution of ab initio nuclear chart
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⦿ Ab initio approaches for closed-shell nuclei
○ Since 2000’s
○ SCGF, CC, IMSRG
○ Polynomial scaling

⦿ Ab initio approaches for open-shell nuclei
○ Since 2010’s
○ GGF, BCC, MR-IMSRG
○ Polynomial scaling

⦿ Ab initio shell model
○ Since 2014
○ Effective interaction via CC/IMSRG
○ Mixed scaling

2016

⦿ “Exact” ab initio approaches
○ Since 1980’s

○ Factorial scaling
○ Monte Carlo, CI, …



Plan of the lectures

1. Introduction and basic concepts

2. Dyson equation

○ Derivation from equation of motion

○ Derivation from diagrammatic expansion

○ Approximations for the self-energy

3. Spectral representation

○ Spectral content of the Green’s function

○ Connection with experiment

4. Solving Dyson equation in practise: Dyson eigenvalue problem

○ Feynman rules and calculation of self-energy diagrams

○ Energy-independent Dyson equation

○ Krylov projection

○ Examples of results in closed-shell nuclei



Plan of the lectures

5. Three-body forces

6. Green’s functions for open-shell nuclei

○ Degenerate systems and symmetry breaking

○ Gorkov theory

7. Public Green’s function code

○ Examples of results in open-shell nuclei

8. Extras
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Semantics & history

⦿  Many-body Green’s function theory: set of techniques that originated in quantum field theory 
and have then been imported to the many-body problem

○ Green’s function

⦿ Many-body Green’s functions are applicable to different many-body systems: crystals, 
molecules, atoms, atomic nuclei, …

○ Late 1950s, 1960s: import of ideas from QFT and development of formalism
○ 1970s ➝ today: technical developments and applications in several fields of physics

⦿ Self-consistent Green’s functions: many-body Green’s functions with dressed propagators 
(see later)

⦿ Many-body Green’s functions are not Green’s function Monte Carlo

○ Propagator

⦿ Few names for the same thing

○ Correlation function

⦿ Few decades of developments

○ 1990s ➝ today: implementation as an ab initio method in nuclear physics



Green’s functions in one slide

⦿ The goal is to solve the A-body Schrödinger equation

⦿ Instead of working with the full A-body wave function            , rewrite the Schrödinger equation 
in terms of 1-, 2-, …. A-body objects G1=G, G2, … GA (Green’s functions)

⦿ 1-, 2-, …. A-body Green’s functions yield expectation values of 1-, 2-, …. A-body operators

⦿ One-body Green’s function obtained by solving Dyson equation (derived from Schrödinger eq.)

⦿ Bonus: one-body Green’s function contains information about A±1 excitation energy spectra

➟ Spectral or Lehmann representation of the Green’s function

➟ In practise, one usually needs 1- and/or 2-body objects
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unperturbed Green’s function many-body effects contained in the self-energy Σ
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➟ A-1 coupled equations



Green’s functions in maths

1

Time-Independent Green’s Functions

Summary. In this chapter, the time-independent Green’s functions are defined,
their main properties are presented, methods for their calculation are briefly dis-
cussed, and their use in problems of physical interest is summarized.

1.1 Formalism

Green’s functions can be defined as solutions of inhomogeneous differential
equations of the type1

[z − L(r)] G (r, r′; z) = δ (r − r′) , (1.1)

subject to certain boundary conditions (BCs) for r or r′ lying on the surface
S of the domain Ω of r and r′. Here we assume that z is a complex variable
with λ ≡ Re {z} and s ≡ Im {z} and that L(r) is a time-independent, linear,
hermitian2 differential operator that possesses a complete set of eigenfunctions
{φn(r)}, i.e.,

L(r)φn(r) = λnφn(r) , (1.2)

where {φn(r)} satisfy the same BCs as G(r, r′; z). The subscript n may stand
for more than one index specifying uniquely each eigenfunction and the corre-
sponding eigenvalue. The set {φn} can be considered as orthonormal without
loss of generality (see Problem 1.1s at the end of Chap. 1), i.e.,

∫

Ω
φ∗

n(r)φm (r) dr = δnm . (1.3)

1 Several authors write the right-hand side (rhs) of (1.1) as 4πδ(r − r′) or
−4πδ(r − r′).

2 A linear operator, L, acting on arbitrary complex functions, φ(r) and ψ(r), de-
fined on Ω and satisfying given BCs is called hermitian if

R
Ω

φ∗(r)[Lψ(r)]dr =
{

R
Ω

ψ∗(r)[Lφ(r)]dr}∗ =
R

Ω
[Lφ(r)]∗ψ(r)dr.
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⦿ In mathematics: solution of an inhomogeneous differential equation

Hermitian operator Green’s function

⦿ GF contains information about eigenstates & eigenvalues of L

1.1 Formalism 5

The left-hand side (lhs) of the last relation can be written as follows:

zG (r, r′; z) − ⟨r |LG(z) | r′⟩ .

By introducing the unit operator,
∫

dr′′ |r′′⟩ ⟨r′′|, between L and G in the last
expression we rewrite it in the form

zG (r, r′; z) −
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dr′′ ⟨r |L |r′′⟩ ⟨r′′ |G(z) | r′⟩ .

Finally, taking into account (1.6) we obtain

zG (r, r′; z) − L(r)G (r, r′; z) = δ (r − r′) ,

which is identical to (1.1). The usefulness of the bra and ket notation is that

(i) The intermediate algebraic manipulations are facilitated and
(ii) One is not restricted to the r-representation (e.g., one can express all

equations in the k-representation, which is equivalent to taking the Fourier
transform with respect to r and r′ of the original equations).

If all eigenvalues of z − L are nonzero, i.e., if z ̸= {λn}, then one can solve
(1.1′) formally as
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Since L is a hermitian operator, all of its eigenvalues {λn} are real. Hence,
if Im {z} ̸= 0, then z ̸= {λn}, which means that G(z) is an analytic function
in the complex z-plane except at those points or portions of the real z-axis
that correspond to the eigenvalues of L. As can be seen from (1.12) or (1.13),
G(z) exhibits simple poles at the position of the discrete eigenvalues of L;
the inverse is also true: the poles of G(z) give the discrete eigenvalues of L. If
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⦿ Substituting 

3

Physical Significance of G.
Application to the Free-Particle Case

Summary. The general theory developed in Chap. 1 can be applied directly to the
time-independent one-particle Schrödinger equation by making the substitutions
L(r) → H(r), λ → E, where H(r) is the Hamiltonian. The formalism presented in
Chap. 2, Sects. 2.1,2.2 is applicable to the time-dependent one-particle Schrödinger
equation.

3.1 General Relations

The nonrelativistic, one-particle, time-independent Schrödinger equation has
the form

[E −H(r)]ψ(r) = 0 , (3.1)

and the corresponding Green’s function satisfies the equation

[E −H(r)]G(r, r′; E) = δ(r − r′) . (3.2)

Here H(r) is the Hamiltonian operator in the r-representation, and G(r, r′; E)
as a function of r or r′ satisfies the same boundary conditions as the wave-
function ψ(r), i.e., continuity of ψ(r) and ∇ψ (unless the potential has an
infinite discontinuity) and finite (or zero) value at infinity. It is clear that the
general formalism developed in Chap. 1 is directly applicable to the present
case with the substitutions
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1.1 Formalism 5

The left-hand side (lhs) of the last relation can be written as follows:

zG (r, r′; z) − ⟨r |LG(z) | r′⟩ .

By introducing the unit operator,
∫

dr′′ |r′′⟩ ⟨r′′|, between L and G in the last
expression we rewrite it in the form

zG (r, r′; z) −
∫

dr′′ ⟨r |L |r′′⟩ ⟨r′′ |G(z) | r′⟩ .

Finally, taking into account (1.6) we obtain

zG (r, r′; z) − L(r)G (r, r′; z) = δ (r − r′) ,

which is identical to (1.1). The usefulness of the bra and ket notation is that

(i) The intermediate algebraic manipulations are facilitated and
(ii) One is not restricted to the r-representation (e.g., one can express all

equations in the k-representation, which is equivalent to taking the Fourier
transform with respect to r and r′ of the original equations).

If all eigenvalues of z − L are nonzero, i.e., if z ̸= {λn}, then one can solve
(1.1′) formally as

G(z) =
1

z − L
. (1.10)

Multiplying (1.10) by (1.4′) we obtain

G(z) =
1

z − L

∑

n

|φn⟩ ⟨φn| =
∑

n

1
z − L

|φn⟩ ⟨φn| =
∑

n

|φn⟩ ⟨φn|
z − λn

. (1.11)

The last step follows from (1.2′), and the general relation F (L) |φn⟩ =
F (λn) |φn⟩ valid by definition for any well-behaved function F . Equation
(1.11) can be written more explicitly as

G(z) =
∑

n

′ |φn⟩ ⟨φn|
z − λn

+
∫

dc
|φc⟩ ⟨φc|
z − λc

, (1.12)

or, in the r-representation,

G (r, r′; z) =
∑

n

′ φn(r)φ∗
n (r′)

z − λn
+

∫
dc

φc(r)φ∗
c (r′)

z − λc
. (1.13)

Since L is a hermitian operator, all of its eigenvalues {λn} are real. Hence,
if Im {z} ̸= 0, then z ̸= {λn}, which means that G(z) is an analytic function
in the complex z-plane except at those points or portions of the real z-axis
that correspond to the eigenvalues of L. As can be seen from (1.12) or (1.13),
G(z) exhibits simple poles at the position of the discrete eigenvalues of L;
the inverse is also true: the poles of G(z) give the discrete eigenvalues of L. If
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From one to many

➟ two terms: addition, but also removal of a particle
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➟ It describes the process of adding a particle at time t’ and removing it at time t !
    (or viceversa if t’>t)

➟ Hence the equivalent name of single-particle propagator

single-particle labels

Propagator

a

a

b

b

t’

t

t

t’

t > t’

t’ > t



⦿ Start from general definition

Lehmann representation

For a time-independent Hamiltonian

Variance in particle number

G(r , r 0; z) =
X

k

hr | kihk | r 0i
z � En

=
X

k

h0|ar | kihk | a†r 0 |0i
z � En

(1)

G(r , r 0; z) =
X

m

h N
0 |ar | N+1

m ih N+1
m | a†r 0 | N

0 i
z � E+

m
+
X

n

h N
0 |a†r 0 | N�1

n ih N�1
n | ar | N

0 i
z � E�

n
(2)

E+
m ⌘ EN+1

m � EN
0 (3)

E�
n ⌘ EN

0 � EN�1
n (4)

| N±1
k i (5)

Gab(t, t
0) ⌘ �ih N

0 |T
h
aa(t) a

†
b(t

0)
i
| N

0 i (6)

Gab(t, t
0) = Gab(t� t0) (7)

Gab(E) (8)

Gab(E) =
X

m

h N
0 |aa | N+1

m ih N+1
m | a†b| N

0 i
E � E+

m + i⌘
+
X

n

h N
0 |a†b | N�1

n ih N�1
n | aa| N

0 i
E � E�

n � i⌘
(9)

Fourier transform

2

G(r , r 0; z) =
X

µ

h N
0

|ar | N+1

µ ih N+1

µ | a†r 0 | N
0

i
z � E+

µ
+
X

⌫

h N
0

|a†r 0 | N�1

⌫ ih N�1

⌫ | ar | N
0

i
z � E�

⌫
(15)

E+

µ ⌘ EN+1

µ � EN
0

(16)

E�
⌫ ⌘ EN

0

� EN�1

⌫ (17)

| N±1

 i (18)

Gab(z) =
X

µ

h N
0

|aa | N+1

µ ih N+1

µ | a†b| N
0

i
z � E+

µ + i⌘
+

X

⌫

h N
0

|a†b | N�1

⌫ ih N�1

⌫ | aa| N
0

i
z � E�

⌫ � i⌘
(19)

U b
µ ⌘ h N

0

|ab | N+1

µ i (20)

V b
⌫ ⌘ h N

0

|a†b | N�1

⌫ i (21)

Gab(z) �! G(k, z) =

Z
d!

2⇡

A(k,!)

z � !
(22)

H = T + U| {z }
⌘ H

0

+V � U| {z }
⌘ H

1

(23)

G(0)(z) ⌘ [z �H
0

]�1 (24)

✓
i
@

@t
+

r2

r

2m

◆
G(x, x0) = �(x� x0)�

Z
dr

1

V (r � r
1

)G
2

(x, x
1

;x0, x+

1

)t1=t (25)

✓
i
@

@t
1

+
r2

r1

2m

◆
G(1, 2) = �(1, 2)�

Z
d 3 v(1+, 3)G

2

(1, 3; 2, 3+) (26)

1 ⌘ (r
1

, t
1

) (27)

G
2

(x
1

, x
2

;x0
1

, x0
2

) ⇡ G(x
1

, x0
1

)G(x
2

, x0
2

) (28)

G
2

(1, 2; 10, 20) ⇡ G(1, 10)G(2, 20) (29)


i
@

@t
+

r2

r

2m
+ VH(r)

�
G(x, x0) = �(x� x0) (30)

[Lehmann 1954]

Lehmann (or spectral) representation

derivation in lecture 2
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Observables

⦿ In addition, one particular two-body observable (the total energy) can be computed from G
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⦿ Any one-body observable can be computed from the one-body Green function G
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Galitskii-Migdal-Koltun sum rule

➟ tab are matrix elements of the kinetic energy operator

⦿  All other two-body observables necessitate the two-body GF.

[Galitskii & Migdal 1958; Koltun 1972]

⦿ In general, N-body observables necessitate N-body GFs.

➟ It can be proven using (anti)commutation relations of creation/annihilation operators

➟ Exact if a two-body Hamiltonian is employed

➟ Additional term(s) needed if higher-body operator(s) present



Many-particle Green’s functions

Variance in particle number
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⦿ One can define up to A-body Green’s functions (GFs).

⦿ The two-body GF reads

➟ This is also called the 4-point GF.

or the particle-hole (~polarisation) propagator
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⦿ Similarly, one can introduce up to 2A-point GFs.

➟ Depending on the ordering of the 4 times one can then define the two-particle (or two-hole) GF



Single-particle Green’s function ⇿ Schrödinger equation

⦿ Single-particle GF: matches (psychological & practical) needs of handling one-body objects

⦿ For certain (typically one-body) properties, the exact single-particle GF contains the same 
information as the exact many-body wave function

⦿ The knowledge of the (A-body) ground state gives us information about (A±1-body) excited 
states in a single calculation (the magic of Green’s functions!).

⦿ For others (typically many-body)  it does not, and one need to resort to higher-body GFs.

➟ E.g. expectation values of a one-body operator in the ground state

➟ E.g. expectation values of a many-body operator in the ground state

➟ Ground-state energy is an exception

➟ Pro: consistent one-shot calculation of neighbouring systems
➟ Con: calculations computationally heavier



Plan of the lectures

1. Introduction and basic concepts

2. Dyson equation

○ Derivation from equation of motion

○ Derivation from diagrammatic expansion

○ Approximations for the self-energy

3. Spectral representation

○ Spectral content of the Green’s function

○ Connection with experiment

4. Solving Dyson equation in practise: Dyson eigenvalue problem

○ Feynman rules and calculation of self-energy diagrams

○ Energy-independent Dyson equation

○ Krylov projection

○ Examples of results in closed-shell nuclei



I. Equation of motion method

⦿ In an interacting many-body system, Green’s functions obey a hierarchy of equations

⦿ The first equation reads [                    and                                             ]

➟ The second one connects G2 and G3 (and so on)

➟ Simple example: Hartree approximation
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➟ Hierarchy = integro-differential system of coupled equations
➟ It can be derived starting from the eq. of motion of annihilation/creation operators

8

pmiss = p− q

Emiss =
p2

2m
− ω = EN

0 − EN−1
n

dσ ∼
∑

n

δ(Emiss − EN
0 + EN−1

n )
∣
∣⟨ΨN−1

n |apmiss
|ΨN

0 ⟩
∣
∣
2

= Spmiss
(Emiss)

E(N,Z) = EB A+ Esurf A
2/3 + Ecoul Z

2A−1/3 + EPauli (N − Z)2/A

(1, 2+) ≡ (r1, t1, r2, t1 + 0+)

➟ If three-body forces are present, one more G is coupled (and so on) 

⦿ First option: approximate directly G2

Dyson equation



⦿ Second option: introduce a new object, the self-energy Σ

3

in turn requires knowledge of G3 and so on) [4, 6]. In order to obtain a closed expression one
can generalize G(1, 2) to G(1, 2; [']), where an external fictitious time-dependent potential '
is applied to the system. This allows one to express G2 as [7]

G2(3, 4; 2, 4+; [']) = G(3, 2; ['])G(4, 4+; [']) � �G(3, 2; ['])
�'(4)

. (4)

Note that in (4) all GFs are generalized to non-equilibrium since they depend on the perturbing
potential. The equilibria G and G2 in (3) are then obtained by taking ' = 0. Inserting (4) into (3)
yields a set of functional differential equations (DEs) [4] for the unknown G

G(1, 2; [']) = G0(1, 2) +
Z

d3 G0(1, 3)VH(3; ['])G(3, 2; [']) +
Z

d3 G0(1, 3)'(3)G(3, 2; ['])

+ i
Z

d4d3 G0(1, 3)v(3+, 4)
�G(3, 2; ['])

�'(4)
, (5)

where VH(3) = �i
R

d4 v(3, 4)G(4, 4+; [']) is the Hartree potential. Since the Hartree potential
contains the GF, this term makes the equations nonlinear. We are interested in the solution of
equation (5) for ' = 0. Its calculation would, hence, require the solution of a set of coupled,
nonlinear, first-order DEs, which is clearly a non-trivial task. Moreover, one would need a new
initial condition to completely define the desired solution of this DE, since the derivative �G

�'
has

been introduced. Therefore, usually another route is taken: one includes the functional derivative
in (5) in the definition of a self-energy [4]

6(1, 3) = i
Z

d4d2 v(1+, 4)
�G(1, 2; ['])

�'(4)

�

�

�

'=0
G�1(2, 3), (6)

which, inserted into equation (5) for ' = 0, gives

G(1, 2) = G0(1, 2) +
Z

d3 G0(1, 3)VH(3)G(3, 2) +
Z

d4d3 G0(1, 3)6(3, 4)G(4, 2). (7)

This is the Dyson equation for G, where 6 contains all the many-body effects (beyond
the Hartree contribution) present in the system. Of course, �G

�'
and therefore 6 are still not

known and, in practice, 6 has to be approximated. A good starting point is obtained by
reformulating the problem in terms of a coupled set of equations containing the one-particle
GF, the polarizability P , the self-energy 6, the screened Coulomb interaction W and the vertex
0. These equations are most often solved within the so-called GW approximation (GW A) [8],
where the vertex 0 is set to unity, resulting in 6 ⇡ iGW . Over the last two decades, the GW
method has become the tool of choice for calculations of quasi-particle band structures ([9] and
references therein; [10] and references therein) of many materials and direct and inverse photo
emission spectra (see, e.g., [11–14]) improving substantially on the results provided by static
mean-field electronic structure methods.

However, the GW A suffers from some fundamental shortcomings (see, e.g., [15–18]) and,
with 6 being of first order in W , is not expected to describe strong correlation. Higher orders
in W could be added by iterating the equations, but this is technically difficult, and there is no
guarantee that results will quickly improve. It is therefore necessary to find guidelines.
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P = −
Ω

V

S

A
=

1

T

(
E

A
− µ+

P

ρ

)

G = G(0) +G(0) ΣG

∫

d 3v(1+, 3)G2(1, 3; 2, 3
+) −→ i

∫

d 3Σ(1, 3)G(3, 2)

➟ Higher-body correlations all contained in the self-energy

➟ Can be seen as a (non-local energy-dependent) effective potential

➟ Advantage is that it is a “one-body” object

⦿ Equation of motion is rewritten into Dyson equation

Dyson equation



Plan of the lectures

1. Introduction and basic concepts

2. Dyson equation

○ Derivation from equation of motion

○ Derivation from diagrammatic expansion

○ Approximations for the self-energy

3. Spectral representation

○ Spectral content of the Green’s function

○ Connection with experiment

4. Solving Dyson equation in practise: Dyson eigenvalue problem

○ Feynman rules and calculation of self-energy diagrams

○ Energy-independent Dyson equation

○ Krylov projection

○ Examples of results in closed-shell nuclei



⦿ Basic idea:
1) Separate full Hamiltonian into unperturbed part + perturbation

2) Compute unperturbed propagator

56 4 Green’s Functions and Perturbation Theory

The Green’s functions G0(z) and G(z) corresponding to H0 and H, re-
spectively, are

G0(z) = (z −H0)
−1 and (4.2)

G(z) = (z −H)−1 . (4.3)

Using (4.1) and (4.2) we can rewrite (4.3) as follows:

G(z) = (z −H0 −H1)
−1 =

{
(z −H0)

[
1 − (z −H0)

−1 H1

]}−1

=
[
1 − (z −H0)

−1 H1

]−1
(z −H0)

−1

= [1 − G0(z)H1]
−1 G0(z) . (4.4)

Expanding the operator (1 − G0H1)−1 in power series we obtain

G = G0 + G0H1G0 + G0H1G0H1G0 + · · · . (4.5)

Equation (4.5) can be written in a compact form

G = G0 + G0H1 (G0 + G0H1G0 + · · · ) = G0 + G0H1G (4.6)

or
G = G0 + (G0 + G0H1G0 + · · · )H1G0 = G0 + GH1G0 . (4.7)

In the r-representation, (4.6) becomes

G (r, r′; z) = G0 (r, r′; z)

+
∫

dr1dr2G0 (r, r1; z)H1 (r1, r2)G (r2, r
′; z) . (4.6′)

Usually H1 (r1, r2) has the form δ (r1 − r2)V (r1); then (4.6′) becomes

G (r, r′; z) = G0 (r, r′; z)

+
∫

dr1G0 (r, r1; z)V (r1)G (r1, r
′; z) , (4.8)

i.e., G(r, r′; z) satisfies a linear inhomogeneous integral equation with a kernel
G0 (r, r1; z)V (r1). Equation (4.7) can be written also in a similar form. If we
use the k-representation, we can rewrite (4.6) as follows:

G (k, k′; z) = G0 (k, k′; z) +
∑

k1k2

G0 (k, k1; z)H1 (k1, k2)G (k2, k
′; z) . (4.9)

Taking into account that ⟨r |k⟩ = eik · r/
√

Ω and that

∑

k

= Ω

∫
dk

(2π)d
, (4.10)

3) Express full propagator in terms of        and 
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⦿ Simple in the case of one-particle system:
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⦿ Many-body case more complicated:

➟ Separation                         exploited by working in interaction representation

➟ One-body Green’s function is expanded as (now             )
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➟ Unperturbed many-body GFs can be written just as products of one-body GFs
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➟ Several terms cancel out (all disconnected combinations of variables), at the end:

⦿ In practise: introduce Feynman diagrams and work out the expansion diagrammatically

(Wick theorem)
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➟ Approximations devised in terms of (sets of) diagrams

Dyson equation



⦿ Write down the expansion for
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Multiplying by Xk†
f from the left, summing over f and renaming (f, d) to (a, b), one finally obtains the normalization condition

∑

a

∣∣Xk
a

∣∣2 = 1 +
∑

ab

Xk†
a

∂"ab(ω)
∂ω

∣∣∣∣
ωk

Xk
b, (A10)

where only the proper self-energy appears as a result of the energy independence of the auxiliary potential. Similarly, one can
derive a condition for Gorkov’s amplitude Y

∑

a

∣∣Yk
a

∣∣2 = 1 +
∑

ab

Yk†
a

∂"ab(ω)
∂ω
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−ωk

Yk
b. (A11)

APPENDIX B: DIAGRAMMATIC

1. Diagrammatic rules

A convenient way to express the expansion of the single-
particle propagator is via diagrammatic techniques. By giving
the interaction and the single-particle propagator a graphical
representation and by establishing a set of rules one can
generate diagrams that are in one-to-one correspondence with
the terms appearing in the expansion. As it provides an
immediate insight to physical processes associated with the
various contributions, the diagrammatic expansion is of great
help when choosing a suitable approximation. It is relevant
to discuss diagrammatic rules in some detail here given that
there exist differences compared to rules applicable to the
diagrammatic expansion involving normal contractions only.

In the present work, antisymmetrized interaction matrix
elements are represented by a dashed line labeled by four
single-particle indices,

V̄abcd ≡
c d

a b
. (B1)

Single-particle unperturbed propagators, i.e., Green’s func-
tions associated with the unperturbed Hamiltonian $U intro-
duced in Eq. (31), are depicted as solid lines labeled by two
indices and one energy flowing from the second to the first
index

G11 (0)
ab (ω) ≡ ↑ ω

b

a

, (B2a)

G12 (0)
ab (ω) ≡ ↑ ω

b̄

a

, (B2b)

G21 (0)
ab (ω) ≡ ↑ ω

b

ā

, (B2c)

G22 (0)
ab (ω) ≡ ↑ ω

b̄

ā

. (B2d)

One should notice that, as opposed to traditional graphical
representations of Dyson’s propagator, Gorkov’s propagators
carry two arrows specifying whether a given propagator
results from the contraction of two creation operators, of two
annihilation operators, or of one creation (annihilation) and
one annihilation (creation) operator.

With building blocks (B1) and (B2) one can construct, order
by order, the (diagrammatic) perturbative expansion for each
of the four Gorkov propagators (22). To obtain all terms of the
expansion at a certain order m and for one of the four Gorkov
propagators, the following rules are employed:

(i) Draw all topologically distinct connected direct dia-
grams with m horizontal interaction lines (with 4 single-
particle indices) and 2m + 1 directed propagation lines
(with 2 single-particle indices each, connecting the 4m
indices of the interaction and the 2 external ones).
Notice that exactly two incoming and two outgoing
lines must be attached to a given interaction vertex,
i.e., the left diagram in Fig. 6 is allowed while right
diagram is not. Topologically distinct diagrams cannot
be transformed into each other by any translation
(in the two-dimensional plane) of any of the vertices
without disconnecting or reconnecting propagation

c

a

d

b

c

a

d

b

FIG. 6. Allowed (left) and forbidden (right) interaction lines.
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a set of gauge-angle dependent Gorkov calculations.
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Appendix A: Notations and useful formulae

1. Properties of Clebsch-Gordan coefficients

The following relations involving Clebsch-Gordan co-
efficients are used throughout the paper

CJM
j1m1j2m2

= (−1)j1+j2−J CJ−M
j1−m1j2−m2

, (A1)

C00
j1m1j2m2

= δj1j2 δm1−m2

(−1)j1−m1

√
2j1 + 1

, (A2)

Cj2m2
j1m100

= δj1j2 δm1m2 , (A3)

∑

Mm3

CJM
j1m1j3m3

CJM
j2m2j3m3

=
2J + 1

2j1 + 1
δj1j2 δm1m2 , (A4)

CJM
jmj−m = δM0 C

J0
jmj−m , (A5)

∑

m

(−1)j−m CJ0
jmj−m = δJ0

√

2j + 1 , (A6)

∑

m1m2

CJM
j1m1j2m2

CJ′M ′

j1m1j2m2
= δJJ′ δMM ′ , (A7)

∑

m2m3m5m6

Cj1m1

j2m2j3−m3
Cj4m4

j5m5j6−m6
Cj5m5

j7m7j2−m2
Cj3m3

j6m6j8m8

= (−1)j3+j5−j7+j8−m1+m8

×
√

(2j1 + 1)(2j3 + 1)(2j4 + 1)(2j5 + 1)
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Cj9m9
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⎧
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⎩

j3 j2 j1
j6 j5 j4
j8 j7 j9

⎫

⎬

⎭
, (A8)

⎧

⎨

⎩

j3 j2 j1
j6 j5 j4
j8 j7 0

⎫

⎬
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(2j3 + 1)(2j7 + 1)

× (−1)j2+j3+j4+j7

{

j3 j2 j1
j5 j6 j8

}

. (A9)

Appendix B: Perturbative expansion and Wick’s
theorem in Gorkov’s formalism

[...]

One obtains an expression for the four Gorkov prop-
agators in the form of an expansion, order by order, in-
volving the interacting Hamiltonian ΩI

G11
ab(t, t

′) = −i
∞
∑

m

(−i)m

m!

∫

dt1...

∫

dtm ⟨Ψ0|T
[

ΩI(t1)...ΩI(tm) aa(t) a
†
b(t

′)
]

|Ψ0⟩C , (B1a)

G12
ab(t, t
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(−i)m

m!

∫

dt1...

∫
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†
b(t

′)
]

|Ψ0⟩C , (B1c)
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ab(t, t

′) = −i
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∑
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(−i)m

m!

∫

dt1...

∫

dtm ⟨Ψ0|T
[

ΩI(t1)...ΩI(tm) ā†a(t) āb(t
′)
]

|Ψ0⟩C , (B1d)

where the subscript C indicates that only contributions
that are completely connected to the operators aa and a†b
enter the expansion.

Appendix C: Diagrams in Gorkov’s formalism

1. Diagrammatic rules

A convenient way to write down the expansion of
the single-particle propagator discussed in Appendix B
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a set of gauge-angle dependent Gorkov calculations.
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Appendix B: Perturbative expansion and Wick’s
theorem in Gorkov’s formalism

[...]

One obtains an expression for the four Gorkov prop-
agators in the form of an expansion, order by order, in-
volving the interacting Hamiltonian ΩI
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†
b(t

′)
]

|Ψ0⟩C , (B1c)

G22
ab(t, t

′) = −i
∞
∑

m

(−i)m

m!

∫

dt1...

∫

dtm ⟨Ψ0|T
[

ΩI(t1)...ΩI(tm) ā†a(t) āb(t
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where the subscript C indicates that only contributions
that are completely connected to the operators aa and a†b
enter the expansion.

Appendix C: Diagrams in Gorkov’s formalism

1. Diagrammatic rules

A convenient way to write down the expansion of
the single-particle propagator discussed in Appendix B
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a set of gauge-angle dependent Gorkov calculations.
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Appendix A: Notations and useful formulae

1. Properties of Clebsch-Gordan coefficients

The following relations involving Clebsch-Gordan co-
efficients are used throughout the paper

CJM
j1m1j2m2

= (−1)j1+j2−J CJ−M
j1−m1j2−m2

, (A1)

C00
j1m1j2m2

= δj1j2 δm1−m2

(−1)j1−m1

√
2j1 + 1

, (A2)

Cj2m2
j1m100

= δj1j2 δm1m2 , (A3)

∑

Mm3

CJM
j1m1j3m3

CJM
j2m2j3m3

=
2J + 1

2j1 + 1
δj1j2 δm1m2 , (A4)

CJM
jmj−m = δM0 C

J0
jmj−m , (A5)

∑

m

(−1)j−m CJ0
jmj−m = δJ0

√

2j + 1 , (A6)

∑

m1m2

CJM
j1m1j2m2

CJ′M ′

j1m1j2m2
= δJJ′ δMM ′ , (A7)

∑

m2m3m5m6

Cj1m1

j2m2j3−m3
Cj4m4

j5m5j6−m6
Cj5m5

j7m7j2−m2
Cj3m3

j6m6j8m8

= (−1)j3+j5−j7+j8−m1+m8

×
√

(2j1 + 1)(2j3 + 1)(2j4 + 1)(2j5 + 1)

×
∑

j9m9

Cj9m9
j7m7j8−m8

Cj9m9
j4m4j1m1

⎧

⎨

⎩

j3 j2 j1
j6 j5 j4
j8 j7 j9

⎫

⎬

⎭
, (A8)

⎧

⎨

⎩

j3 j2 j1
j6 j5 j4
j8 j7 0

⎫

⎬

⎭
=

δj1j4 δj7j8
√

(2j3 + 1)(2j7 + 1)

× (−1)j2+j3+j4+j7

{

j3 j2 j1
j5 j6 j8

}

. (A9)

Appendix B: Perturbative expansion and Wick’s
theorem in Gorkov’s formalism

[...]

One obtains an expression for the four Gorkov prop-
agators in the form of an expansion, order by order, in-
volving the interacting Hamiltonian ΩI

G11
ab(t, t

′) = −i
∞
∑

m

(−i)m

m!

∫

dt1...

∫

dtm ⟨Ψ0|T
[

ΩI(t1)...ΩI(tm) aa(t) a
†
b(t

′)
]

|Ψ0⟩C , (B1a)

G12
ab(t, t

′) = −i
∞
∑

m

(−i)m

m!

∫

dt1...

∫

dtm ⟨Ψ0|T [ΩI(t1)...ΩI(tm) aa(t) āb(t
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Appendix C: Diagrams in Gorkov’s formalism

1. Diagrammatic rules

A convenient way to write down the expansion of
the single-particle propagator discussed in Appendix B
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⦿ Select irreducible self-energy diagrams
➟ All self-energy contributions that cannot be separated in two parts by cutting a propagation line
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Remaining diagrams generated !
by successive self-energy insertions

⦿ Select irreducible self-energy diagrams
➟ All self-energy contributions that cannot be separated in two parts by cutting a propagation line

Diagrammatic expansion
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⦿ Rewrite the expansion in the form of an iterative equation

This is itself the expansion !
for the dressed propagator
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Diagrammatic expansion
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⦿ One can further select irreducible skeleton diagrams

E.g. this can be generated by the self-energy term

➟ Contributions that cannot be generated from lower-order diagrams with dressed propagators
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Diagrammatic expansion
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⦿ One can further select irreducible skeleton diagrams

Dyson equation

➟ Contributions that cannot be generated from lower-order diagrams with dressed propagators
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➟ This characterises self-consistent schemes

➟ All propagators in ΣIS are dressed

➟ Selected PT terms iterated to all orders

Intrinsically non-perturbative method

Diagrammatic expansion



1) Self-energy parts inserted in propagator lines
➟ dressed or renormalised propagators

2) Polarisation parts inserted in interaction lines
➟ dressed or effective or renormalised interactions

3) (Irreducible) vertex parts inserted in place of a vertex
➟ dressed vertices

⦿ The choice of one of these options generally depends on the problem under study

⦿ Only if the three parts are treated (= truncated) consistently one maintains Ward identity

⦿ In general, not only propagation lines but also interaction lines and vertices can get dressed

⦿ Each class identifies a subset of diagrams in the full expansion

⦿ Classes of diagrams can be selected 

Diagrammatic expansion



Plan of the lectures

1. Introduction and basic concepts

2. Dyson equation

○ Derivation from equation of motion

○ Derivation from diagrammatic expansion

○ Approximations for the self-energy

3. Spectral representation

○ Spectral content of the Green’s function

○ Connection with experiment

4. Solving Dyson equation in practise: Dyson eigenvalue problem

○ Feynman rules and calculation of self-energy diagrams

○ Energy-independent Dyson equation

○ Krylov projection

○ Examples of results in closed-shell nuclei



𝛷-functional
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⦿ There exist a class of self-energy approximations that by construction fulfils basic conservation laws

⦿ Common approximations are 𝛷-derivable

[Baym & Kadanoff 1961, 1962]

⦿ If the whole expansion is kept, Dyson equation is exact and conservation laws are fulfilled

⦿ What if we approximate the solution, i.e. select only a subset of diagrams?

➟ Conserved quantities (number of particles, momentum, energy…) don’t change (time-dependent)

➟ Thermodynamic relations are fulfilled (finite temperature)

○ The condition is the existence of a functional Φ of G and v, such that 9
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First and second order

Fock

○ Hartree: particles in a common potential, !
    contains unphysical self-interaction
○ Fock: removes self-interaction
○ Account for static correlations
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[Somà et al. unpublished]

⦿ First-order diagrams in the self-energy expansion correspond to Hartree and Fock terms

Hartree

⦿ Second-order diagrams often referred to as Born approximation

➟ Analogous to CCD (2p-1h & 2h-1p)

➟ Introduces leading dynamical correlation
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Ladder

or

+ exchanges

⦿ Electronic systems
○ Works well at low densities, i.e. close to completely filled or empty bands
○ Extensively used in Hubbard models

⦿ Nuclear systems
○ Treats the repulsive short-range part of nuclear interactions
○ Method of choice for nuclear matter (self-consistency obligatory for high densities)

[Galitskii 1958; …]

○ Applications to finite nuclei computationally demanding

○ Resums contributions relevant at low-density and in strongly-interacting systems
○ Quality decreases at high density as screening becomes important

9

· · ·

· · · T

T

T

T

○ Contains an infinite number of skeleton diagrams (second iterative layer!)

⦿ Ladder-type or T-matrix diagrams account for repeated two-particle scattering

Ladder self-energy Introduce T-matrix T-matrix self-energy
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Rings

○ Random Phase Approximation (RPA) or ring ladder or ph ladder 

Tamm-Dancoff

RPA

[Bohm & Pines 1951, 1952; Gell-Mann & Brueckner 1957; …]

The name comes from the fact that Pauli correlations are partially neglected, 
but one assumes that missing corrections cancel each other randomly.

○ Can be seen as an expansion for the polarisation propagator Π(ph)

⦿ Resummation of particle-hole excitations (bubbles or rings) leads to a screened interaction
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Tracing the latter matrices over the one-body Hilbert space H
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which are nothing but the norms of the spectroscopic amplitudes. A spectroscopic factor sums the probabilities that
an eigenstate of the A+1 (A-1) system can be described as a nucleon added to (removed from) a single-particle state
on top of the ground state of the A-nucleon system.

One can then gather the complete spectroscopic information associated with one-nucleon addition and removal
processes into the so-called spectral function S(!). The spectral function denotes an energy-dependent matrix defined
on H
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where the first (second) sum is restricted to eigenstates of H in the Hilbert space HA+1 (HA�1) associated with the
A+1 (A-1) system. Note that S(!) is directly related to the imaginary part of Dyson’s one-body Green’s function
G(!) [? ]. Taking the trace of S(!) provides the spectral strength distribution (SDD)
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where the first (second) sum is restricted to eigenstates of H in the Hilbert space HA+1 (HA�1) associated with the
A+1 (A-1) system. Note that S(!) is directly related to the imaginary part of Dyson’s one-body Green’s function
G(!) [? ]. Taking the trace of S(!) provides the spectral strength distribution (SDD)
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which is a basis-independent function of the energy.

⌧ ⇠ ��1

k

�k = 0 �! ⌧ = 1

zk = "k + i�k

G(k, z)⇤ = G(k, z⇤)

⇧(0)(q,!)

W = v + v⇧W

⌃GW (k,!) = i
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(2⇡)3
G(k� k0,! � !0)W (k0,!0)

➟ Accounts for screening effects
➟ For electrons only Fock term in GW (Hartree ➝ constant electrostatic repulsion)

➟ Different degrees of self-consistency possible (and debated)

GWGW0G0W0

⦿ RPA can be applied to resum an interaction (typically electron-electron) in the medium

[Hedin 1965]
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⦿ Start from general definition

Lehmann representation

For a time-independent Hamiltonian

Variance in particle number
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[Lehmann 1954]

Lehmann (or spectral) representation
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Use integral representation of Heaviside function
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Spectral representation: finite vs infinite systems

Im z
Re z

Im z
Re z

Im z
Re z

⦿ Poles of the propagator represent one-particle excitation energies

i.e. energies of the A±1-body system w.r.t. the ground state of the A-body system
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➟ A continuum contribution can be added

➟ For extended systems (large N) spectrum is degenerate
➟ Isolated poles no longer meaningful
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Spectral representation and quasiparticles

⦿ The spectral function describes the dispersion in energy of modes with a given momentum

A(k,ω)

ω

➟ Idea: associate a well-defined peak with a quasiparticle. 

⦿ Excitation of the system would then show up as peaks in A

⦿ Quasiparticles will have, in general
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Tracing the latter matrices over the one-body Hilbert space H
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provides spectroscopic factors
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which are nothing but the norms of the spectroscopic amplitudes. A spectroscopic factor sums the probabilities that
an eigenstate of the A+1 (A-1) system can be described as a nucleon added to (removed from) a single-particle state
on top of the ground state of the A-nucleon system.

One can then gather the complete spectroscopic information associated with one-nucleon addition and removal
processes into the so-called spectral function S(!). The spectral function denotes an energy-dependent matrix defined
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○Modified or renormalised “single-particle” properties (e.g. an effective mass)
○A finite lifetime, physically associated with the damping of the excitation
○ The lifetime is given by the width of the quasiparticle peak
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○Quasiparticle properties computed from the GF pole
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Quasiparticle pole

 0

 0.05

 0.1

 0.15

 0.2

Sp
ec

tra
l f

un
ct

io
n,

 A
 [M

eV
-1

]

k=0 k=kf k=2kf

-100 -80 -60 -40 -20  0
Energy, E [MeV]

-40

-30

-20

-10

 0

 10

W
id

th
, K

 [M
eV

]

 0

 0.5

 1

 1.5

 2

 2.5

-80 -60 -40 -20  0  20
Energy, E [MeV]

 0

 1

 2

 3

 4

 5

 60  80  100  120  140  160
Energy, E [MeV]

 0

 0.5

 1

 1.5

 2

 2.5

 3

Since we have considered a coupling constant given by
!=−!"R!E" /!E #E=0=1, the real part of the renormalization
factor at the Fermi level !ER=0" is Re!Zqp"$1 / !1+!"
$1 /2 at E=0, for both T=0 and T=#0 /10. Note that
Re!Zqp" vanishes continuously when going to ER→#0. At
higher temperatures, such as T=#0, the same qualitative be-
havior is observed, but Re!Zqp" is significantly weakened for
ER$#0. For all temperatures and ER%#0 the damped elec-
tron dominates the full spectral weight since Re!Zqp"→1 for
high energies.

Figures 4 and 5 show the electron spectral functions for
&k=2 at temperatures T=0 and T=#0 /10, respectively. The
bottom panels represent the analytically continued spectral
function Ak!z"=−Im%G̃k!z"& /' for &k=2#0. The top panels
demonstrate Ak!ER" in the real axis. At T=0, two poles are
clearly visible !bottom panels", one located at the real axis at
ER'0.8#0 and the other one at !ER'1.8#0 , EI'−2#0".
The first one corresponds to the polaron state, while the other
one is a damped electron. At finite temperatures, these two
states are again discernible, but several additional states
show up with smaller spectral weight.

D. Momentum-dependent self-energy in real materials

Besides the electron and phonon band structures, a key
ingredient for calculating electron-phonon interaction related
properties is the Eliashberg function6

(2Fi,k!#" = (
q,)

j

#gq,)
i,j #2*!# − #q,)"*!&n!,k+q − &n,k" . !31"

This function is basically the phonon density of states
weighted by the electron-phonon matrix elements, and gives

the probability of an electron-phonon scattering event trans-
ferring energy # at T=0. i and j label the different electron
bands, k and q are the electron and phonon wave vectors,
and #q,) and gq,)

i,j stand for the phonon energy and the
electron-phonon matrix elements !related to the phonon
mode )", respectively.

The Eliashberg function corresponding to the Einstein
model with phonon energy #0 and matrix element g,

(2FEi!#" =
#g#2

#0
*!# − #0" , !32"

is basically a Dirac delta function. Thus Eq. !31" may be
reinterpreted as the superposition of effective Einstein modes
with energies # and (2Fi,k!#" playing the role of the inter-
action strength. In this way, the total second-order self-
energy for an electron with band index i and momentum k
may be written as a sum of contributions of effective Ein-
stein modes.

"̃i,k!z" = )
0

+

d#(2Fi,k!#""̃Ei!z,#" . !33"

"̃i,k!z" is analytic across the real axis because so is "̃Ei!z ,#".
Hence one can use Eq. !33" in the complex Dyson equation
to describe any arbitrary system.

III. IMPLEMENTATION

Equation !33" gives the analytic continuation of the re-
tarded electron self-energy from the upper into the lower half
complex plane, i.e., from the physical into the unphysical

FIG. 4. !Color online" Representations of the analytically con-
tinued spectral function Ak!z"=−Im%G̃k!z"& /' for &k=2#0 and T
=0. The bottom panel shows Ak!z" in the complex plane, and the
top panel demonstrates Ak!ER" in the real axis.

FIG. 5. !Color online" Representations of the analytically con-
tinued spectral function Ak!z"=−1 /' Im%G̃k!z"& for &k=2#0 and T
=#0 /10. The bottom panel shows Ak!z" in complex plane, and top
panel demonstrates Ak!ER" in the real axis.
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may be written as a sum of contributions of effective Ein-
stein modes.
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Hence one can use Eq. !33" in the complex Dyson equation
to describe any arbitrary system.

III. IMPLEMENTATION

Equation !33" gives the analytic continuation of the re-
tarded electron self-energy from the upper into the lower half
complex plane, i.e., from the physical into the unphysical
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tinued spectral function Ak!z"=−Im%G̃k!z"& /' for &k=2#0 and T
=0. The bottom panel shows Ak!z" in the complex plane, and the
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[Eiguren, Ambrosch-Draxl & Echenique 2009]

Electron-phonon Einstein modelSymmetric nuclear matter

[Rios & Somà 2012]

⦿ Quasiparticle pole can be extracted
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Nucleon mean free path
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FIG. 5. (Color online) Correlation between the probability C
of accepted collisions and the stopping ratio S for two Fermi
spheres separated by relative energies of 30A,60A,90A,110A MeV
(symbols). The curves correspond to the fits Sβ , with the β values
displayed in the inserted table and their corresponding reduced χ2

values.

form between the stopping ratio S and the percentage of NN
collisions C for the corresponding available phase space. In the
following, we will use this quantity C calculated from Eq. (4)
to extract information on NN collisions.

C. Mass scaling and characteristic length

To understand the mass hierarchy observed in Figs. 3 and 4,
we scale the latter quantity C by A

γ
tot, Atot being the total mass

number of the system, and γ varying between 1/4 and 2/3.
The results are shown in Fig. 6. For γ ≈ 1

3 , all experimental
points collapse on a single curve for the whole range of
incident energy and for all systems; the agreement is somehow
particularly impressive for incident energies above the Fermi
energy.
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FIG. 6. (Color online) Scaled quantity C/A
γ
tot (see text), here

multiplied by 100, as a function of incident energy for γ = 0.25,
0.333,0.5,0.667. Symbols are the same as for Fig. 3.

This result suggests defining a characteristic quantity A
1/3
tot ,

homogeneous to a length, connected to the radial extent of
the system formed in central collisions. This length appears to
be a key quantity for describing the amount of stopping and
hence the percentage of NN collisions. In a Glauber picture,
this can be seen as the characteristic length associated with
NN collisions in nuclear matter. From this, we can infer that the
corresponding reduced valueC/A

1/3
tot is related to the associated

mean free path for NN collisions.

IV. IN-MEDIUM EFFECTS

A. Nucleon mean free path

In this section, we estimate the mean free path for a nucleon
from the stopping ratio S and the related quantity C. We
postulate from the previous findings that the mean free path
λNN can be simply expressed as the inverse of C:

λNN ≈ L/C, (5)

where L is a characteristic length proportional to A
1/3
tot ,

taken equal to the average nuclear radius L = r0A
1/3 with

r0 = 1.2 fm and A = Atot/2 ≈ Aprojectile ≈ Atarget. L can be
interpreted as a quantity related to the average distance traveled
by a nucleon. Also, we assume implicitly that the quantity
C = Sβ corresponds to the percentage of NN collisions when
the two incoming nuclei fully overlap in r-space, as one
can expect for central collisions. At this stage, we do not
expect any significant change for λNN if we consider a higher
density (ρ/ρ0 ≈ 1.2), hence a slightly smaller L value, for the
colliding system.

Applying Eq. (5), we plot the results in Fig. 7. We see
that λNN is maximum around Einc = 35A–40A MeV, thus
corresponding to a minimum value for the stopping as observed
in Figs. 3 and 4, and reaches λNN = 9.5 ± 2 fm. This depicts
the fact that the Pauli principle suppresses to a large extent NN
collisions at low incident energy and consequently increases
the mean free path around the Fermi energy [12]. The decrease
observed at lower incident energy is here attributed to mean-
field effects, for which the dissipation mechanism is mainly
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FIG. 7. Mean free path for a nucleon in nuclear matter as a
function of incident energy. Symbols are the same as for Fig. 3.
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○Mean-free path extracted from “nuclear stopping”

○ INDRA collaboration at GANIL

○Heavy-ion collisions

[Lopez et al. 2014]

[Rios & Somà 2012 + in preparation]

⦿ Mean free path computed from quasiparticle lifetime and (group) velocity

⦿ Crucial ingredient in transport codes
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Tracing the latter matrices over the one-body Hilbert space H
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which are nothing but the norms of the spectroscopic amplitudes. A spectroscopic factor sums the probabilities that
an eigenstate of the A+1 (A-1) system can be described as a nucleon added to (removed from) a single-particle state
on top of the ground state of the A-nucleon system.

One can then gather the complete spectroscopic information associated with one-nucleon addition and removal
processes into the so-called spectral function S(!). The spectral function denotes an energy-dependent matrix defined
on H

1
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µ ) +
X
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S�
⌫ �(z � E�
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where the first (second) sum is restricted to eigenstates of H in the Hilbert space HA+1 (HA�1) associated with the
A+1 (A-1) system. Note that S(!) is directly related to the imaginary part of Dyson’s one-body Green’s function
G(!) [? ]. Taking the trace of S(!) provides the spectral strength distribution (SDD)

S(z) ⌘ TrH1 [S(z)] (46)
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which is a basis-independent function of the energy.
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⦿ Numerator contains spectroscopic information
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Spectral representation: finite systems
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spectroscopic factors

4

Tracing the latter matrices over the one-body Hilbert space H
1

provides spectroscopic factors

SF+

µ ⌘ TrH1

⇥
S+

µ

⇤
=

X

a2H1

��Ua
µ

��2 (45a)

SF�
⌫ ⌘ TrH1

⇥
S�
⌫

⇤
=

X

a2H1

|V a
⌫ |

2 (45b)

which are nothing but the norms of the spectroscopic amplitudes. A spectroscopic factor sums the probabilities that
an eigenstate of the A+1 (A-1) system can be described as a nucleon added to (removed from) a single-particle state
on top of the ground state of the A-nucleon system.

One can then gather the complete spectroscopic information associated with one-nucleon addition and removal
processes into the so-called spectral function S(!). The spectral function denotes an energy-dependent matrix defined
on H

1

through

S(z) ⌘
X

µ2HA+1

S+

µ �(z � E+

µ ) +
X

⌫2HA�1

S�
⌫ �(z � E�

⌫ )

where the first (second) sum is restricted to eigenstates of H in the Hilbert space HA+1 (HA�1) associated with the
A+1 (A-1) system. Note that S(!) is directly related to the imaginary part of Dyson’s one-body Green’s function
G(!) [? ]. Taking the trace of S(!) provides the spectral strength distribution (SDD)

S(z) ⌘ TrH1 [S(z)] (46)

=
X

µ2HA+1

SF+

µ �(z � E+

µ ) +
X

⌫2HA�1

SF�
⌫ �(z � E�

⌫ )

which is a basis-independent function of the energy.

}

⦿ Combine numerator and denominator of Lehmann representation

2
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Spectral representation: finite systems



1. From separation energies spectrum
Inside the Green’s function

✪ Separation energy spectrum

2. From fully-paired even number-parity state

⦿ Working equations (see later) typically implemented for JΠ = 0+ states

⦿ There are two possibilities to compute g.s. energies of odd-even systems

Such a perturbative qp creation on top of the odd fully
paired state, instead of the even neighbor’s one, has already
been introduced by Ring et al. !6" and has been used with
success in Ref. !7". Its main justification was simplicity with
respect to the self-consistent blocking, but not the formal
step achieved with respect to a perturbative qp creation per-
formed on the even vacuum.
The introduction of an intermediate reference vacuum re-

quires one to study an odd nucleus in two steps. This proce-
dure, illustrated on Fig. 1, eliminates the inconsistency be-
tween the addition of a nucleon and the creation of an
energetically favorable qp excitation. From a mathematical
point of view, it shows that the odd fully paired state is better
grounded than an even neighbor ground state as the zero-
order reference for a perturbation theory of odd nuclei. In the
rest of this paper, we will analyze these steps from a physical
point of view and use them to separate self-consistent calcu-
lations in two identified processes.

C. Limit of zero pairing

The description of an odd nucleus with respect to an even
neighbor is at first sight less complicated in the absence of
pairing. Indeed, there is no problem related to the particle
number and an odd nucleus is simply obtained by adding a
nucleon on the first empty level in the even neighbor’s HF
state. Two different approximations are used within this pic-
ture.
If time-reversal invariance is not broken, each single-

particle state is at least doubly degenerate and the odd
nucleon is added using the filling approximation: the first
pair of empty levels in the even neighbor are identically oc-
cupied with probability 0.5 in the odd state.3

If time-reversal symmetry breaking is properly taken into
account and for a deformed configuration, all degeneracies
are lifted and the first pair of empty levels in the even isotope
are occupied with probability 1 and 0 in the odd neighbor.4
Let us now analyze how the standard HF picture matches

with the zero-pairing limit of the perturbative method de-
scribed in Sec. II B. Most of the developments presented in
this section have straightforward zero-pairing limits. Let us
look explicitly to the limit for odd states only.
The limit of the perturbative one qp BCS state with an

odd particle number is

!#n
BCS$N!1 %&→!#n

HF$N!1 %&"an
†'

k"1

N/2

ak
†ak 
†!0&, $3%

whereas the fully paired odd vacuum leads to

!#BCSE$N!1 %&→!#HFE$N!1 %&

"
1
!2

$1!an
†an 
†
%'

k"1

N/2

ak
†ak 
†!0&. $4%

One can check that

!#n
HF$N!1 %&"(n

†!#HFE$N!1 %& $5%

where (n
†"1/!2(an

†#an ) is the singular5 zero-pairing limit
for the lowest qp creation operator.
The wave function !#HFE(N!1)& introduced as the limit

of the BCSE state is none of the two currently used HF wave
functions. However it leads to the same one-body density
matrix, and thus to the same energy as the HF wave function6
obtained using the filling approximation.
The HF ground state for odd nuclei is now described by a

one qp excitation on top of the HFE state and not as in the
usual procedure directly on top of the HF wave function of
an even neighbor through particle operators. The two-step
picture defined in the BCS case is thus extended to the zero-
pairing limit and will allow an analysis of the OES for any
pairing correlations intensity.
The zero-pairing limit illustrates the physical content of

the nucleon addition process. The nucleon is added in the
HFE wave function by increasing the occupation of each
state of the last couple of degenerate orbits by 0.5. For odd
N, the qp excitation specifies which one of the two states will
eventually be occupied by the single nucleon in the odd

3For spherical nuclei, one adds 1/2j!1 particle in each state of
the last degenerate j shell.

4For spherical nuclei, one orbital of the shell is completely filled,
thus lifting the degeneracies. Several tries have to be made in order
to get the lowest in energy.
5Other qp operators (k

(†) (k)n ,n ) tend to standard particle cre-
ation or annihilation operators ak

(†) .
6The filling approximation is actually defined through a density
operator that is a statistical mixture of the two Slater determinants
where one of the two time-reversed orbitals at the Fermi energy is
filled. The !#HFE& state $4% for odd nuclei is a linear combination of
the two neighboring even HF states.

FIG. 1. Schematic picture of the two-step procedure proposed to
determine the ground state of an odd isotope.

PAIRING CORRELATIONS. I. DESCRIPTION OF . . . PHYSICAL REVIEW C 65 014310

014310-3

[D
uguet et al. 2001]

○ Great simplification of the equations: J-coupled scheme, block-diagonal structure, ...

(“Fake” odd-A plus correction)(Either from A-1 or A+1)

Odd-even systems

○ Critical step for realistic calculations

○ Applicable to even-even nuclei

➟ Different methods agree (typically within 200-300 hundred keV)



Plan of the lectures

1. Introduction and basic concepts

2. Dyson equation

○ Derivation from equation of motion

○ Derivation from diagrammatic expansion

○ Approximations for the self-energy

3. Spectral representation

○ Spectral content of the Green’s function

○ Connection with experiment

4. Solving Dyson equation in practise: Dyson eigenvalue problem

○ Feynman rules and calculation of self-energy diagrams

○ Energy-independent Dyson equation

○ Krylov projection

○ Examples of results in closed-shell nuclei



Connection with experiments

⦿ Basic idea: spectroscopy via knock-out reactions

⦿ Two assumptions
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○ Impulse approximation (all energy transferred to one nucleon)

○No final state interactions

with○ Cross section

○ Reconstruct energy and momentum of struck nucleon 

○ External probe transferring energy ω and momentum q

○ Information contained in the spectral function!

Target (A-body)
(A-1)-body
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Connection with experiments

⦿ Example: electron scattering

Results from (e,e’p) on 16O  (ALS in Saclay)

[Mougey et al. 1980]ω [MeV]

p [M
eV

]

A. CIPOLLONE, C. BARBIERI, AND P. NAVRÁTIL PHYSICAL REVIEW C 92, 014306 (2015)
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FIG. 9. (Color online) Diagonal part of the complete proton
spectral function [Eq. (A1)] for closed-subshell isotopes 14,16,22,24,28O.
The discretized energy peaks that appear as energy δ functions
in Eq. (3) have been smeared with Lorentzians of suitable with.
Energies below the Fermi surface, EF , correspond to the hole part of
the spectral distribution, while those above are for particle addition.
Energies ω > 0 MeV (plotted in red) correspond to proton-nucleus
scattering states.
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FIG. 10. (Color online) Same as Fig. 9, but for neutrons.
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strength distribution

S(ω) ≡ TrH1 [S(ω)]

=
∑

µ∈HA+1

SF+
µδ(ω − E+

µ ) +
∑

ν∈HA−1

SF−
ν δ(ω − E−

ν ), (7)

which is a basis-independent function of the energy.
We also introduce the nth moment of the spectral function

M(n) ≡
∫ +∞

−∞
ωnS(ω)dω, (8)

which defines an energy-independent matrix on H1. Using the
anticommutation rule of creation and annihilation operators
{ap,a

†
q} = δpq , the zero moment is shown to be nothing but

the identity matrix

M(0) =
∑

µ∈HA+1

S+
µ +

∑

ν∈HA−1

S−
ν = 1. (9)

This sum rule provides each diagonal matrix element of S(ω)
with the meaning of a probability distribution function (PDF)
in the statistical sense, i.e., the combined probability of adding
a nucleon to or removing a nucleon from a specific single-
particle basis state |p⟩ integrates to 1 when summing over all
the final states of the A ± 1 systems.

The first moment M(1) of the spectral function defines the
so-called centroid matrix

hcent ≡
∑

µ∈HA+1

S+
µE+

µ +
∑

ν∈HA−1

S−
ν E−

ν . (10)

Effective single-particle energies are nothing but the eigenval-
ues {ecent

p } of the centroid field [10,29], and they are obtained
by solving

hcentψcent
p = ecent

p ψcent
p . (11)

Solving the eigenvalue problem (11) not only provides ESPEs
but also the corresponding single-particle states the nucleon is
effectively added to or removed from. The associated spherical
basis of H1 is denoted as {c†p}. In that basis, ESPEs are
expressed in terms of diagonal spectroscopic probabilities,

ecent
p ≡

∑

µ∈HA+1

S+pp
µ E+

µ +
∑

ν∈HA−1

S−pp
ν E−

ν . (12)

We see that ESPEs are nothing but centroids, i.e., an arithmetic
average, of one-nucleon separation energies weighted by
the probability to reach the corresponding A + 1 (A − 1)
eigenstates by adding (removing) a nucleon to (from) a single-
particle state ψcent

p . Centroid energies are by construction in
one-to-one correspondence with states spanning H1. The step
from one-neutron separation energies to neutron ESPEs is
illustrated in Fig. 3 for an ab initio self-consistent Gorkov
Green’s function (G-SCGF) calculation [30,31] of 74Ni with
a next-to-next-to-next-to-leading order (N3LO) 2N chiral
interaction [32] evolved down to a scale of 2 fm−1 via a SRG
transformation (see Sec. III for details).

It is worth noting that Baranger ESPEs defined through
Eqs. (10)–(12) display three fundamental properties that make
them fundamentally superior to any other definition of single-
particle energies used in the literature: They (i) only invoke

FIG. 3. (Color online) Self-consistent Gorkov Green’s function
calculation of 74Ni with a realistic 2N chiral interaction [32]. (Left)
Spectral strength distribution for one-neutron addition (above the
dashed line) and removal (below the dashed line) processes. (Right)
Baranger ESPEs.

outputs of the many-body Schrödinger equation, (ii) do not de-
pend on the single-particle basis used to expand the many-body
problem, and (iii) reduce to HF single-particle energies in the
HF approximation; i.e., they satisfy Koopmans’ theorem [33]
in such a limit. Eventually, the model-independent character
of Baranger ESPEs relates to the fact they can be computed
unambiguously within any (re)formulation (i.e., scheme) of the
nuclear many-body problem, e.g., shell-model formulations,
ab initio formulations, cluster models, etc.

The fact that model-independent Baranger ESPEs reduce
to HF single-particle energies in the HF approximation or to
standard monopole ESPEs when employing a naive filling is
best seen by applying the identity [34,35]

M (n)
pq =

〈
%A

0

∣∣{
n commutators︷ ︸︸ ︷

[. . . [[ap,H ],H ], . . .],a†
q}

∣∣%A
0

〉
(13)

to n = 1 [10,36,37],

hcent
pq = tpq +

∑

rs

v2N
prqsρ

[1]
sr + 1

4

∑

rstv

v3N
prtqsvρ

[2]
svrt

≡ h∞
pq, (14)

where

ρ[1]
pq ≡

〈
%A

0

∣∣a†
qap

∣∣%A
0

〉
=

∑

µ

V p
µ

∗V q
µ , (15a)

ρ[2]
pqrs ≡

〈
%A

0

∣∣a†
r a

†
s aqap

∣∣%A
0

〉
, (15b)

denote one- and two-body density matrices of the correlated
A-body ground state, respectively. As Eq. (14) stipulates,
the centroid field is equal to the one-body Hamiltonian
h∞ ≡ T + '(∞) whose potential part is nothing but the
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The discussion proposed here is not meant to disqualify
the notion of shell structure and the use of ESPEs in our
interpretation of experimental data but to specify the terms,
i.e., the exact sense and conditions, in which this can be
done meaningfully. Still, it is crucial to state up front that
the nonobservable character of the shell structure establishes
that nuclear shells have no counterpart in the empirical
world, i.e., in experiment, and that any apparent correlation
between ESPEs and actual observables can only exist in a
nonabsolute sense. Indeed, ESPEs change with a “parameter”
that is internal to the theory and that can be tuned at will
without modifying actual observables. As shown below, this
“parameter” presently takes the form of a momentum scale
λ parametrizing families of unitary transformations that can
be arbitrarily applied on the many-body Hilbert space. While
these unitary transformations do not modify the physics
output, i.e., true observables3 O, they typically change any
quantity that results from partitioning these observables, e.g.,
O ≡ o1(λ) + o2(λ) or O ≡ o1(λ) × o2(λ).

The nonobservable nature of the one-nucleon momentum
distribution [14], of spectroscopic factors [15], or of the
one-nucleon shell structure [13] is not as esoteric or shocking
as it may seem at first as it parallels situations encountered
in other fields of physics. As a matter of fact, quantum
mechanics and quantum field theories possess internal degrees
of freedom (e.g., the gauge symmetry) that are essential to
their formulation but that are not observable; i.e., nothing
in the empirical world can fix their value. Eventually, one
can fix this freedom arbitrarily (and conveniently) such that
nonobservable quantities depending on it acquire a fixed value
as well. Still, one must comply with the fact that the behavior
of observables cannot be correlated with nonobservable
quantities in an absolute sense, but only when the internal
degree of freedom is fixed to a particular value. Conversely,
it is mandatory to agree on the way to fix this freedom prior
to doing any comparison or even formulating any discourse
on nonobservable quantities [13,14]. The very same care
associated with partitioning or factorizing observables is also
routine in the discussion of parton distributions in hadronic
physics (see, e.g., Ref. [16]).

The nonobservable character of ESPEs make them both
resolution scale and theoretical scheme dependent. The present
paper focuses on the former by studying at length the “running”
of ESPEs with the scale λ characterizing similarity renormal-
ization group (SRG) transformations of the Hamiltonian [17].
Figure 2 anticipates this discussion by illustrating this feature
from a microscopic shell-model calculation [18–20] of 22,24O.
This calculation is performed in a sd valence space and is
based on realistic two-nucleon (2N ) and three-nucleon (3N )
chiral effective field theory (χ -EFT) interactions (see, e.g.,
Refs. [22,23]) that are evolved to low momenta and further
renormalized to the sd shell through third-order many-body
perturbation theory [18]. The resolution scale characterizing
the 2N interaction is varied from 1.8 to 2.2 fm−1 while keeping

3In the present text we use the same wording and/or notation to
denote the self-adjoint operator associated with an observable and
the corresponding eigenvalues accessed in a measurement.
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FIG. 2. (Color online) Comparison between the Fermi gap in the
ESPE spectrum and the first 2+ excitation energy in 22,24O. Results are
obtained from a microscopic shell model [18–20] based on realistic
2N and 3N interactions. Calculations are displayed for three different
values of the resolution scale characterizing the 2N interaction; see
Ref. [20,21] and the text for details.

the regulator of the 3N interaction unchanged [20,21]. In Fig. 2
the resulting values of the Fermi gap in the Baranger ESPE
spectrum are compared with the first 2+ excitation energies.
We observe that, while the ESPE Fermi gap typically changes
by more than 1 MeV for both nuclei, the 2+ excitation energy
varies by 400 keV in 22O and only 30 keV in 24O. Moreover,
whereas the Fermi gap is relatively close to the 2+ energy
for the lowest resolution scale, it can differ by up to 1 MeV
for the highest one. Consequently, after varying the resolution
scale the correlation between both quantities alluded to in
connection with Fig. 1 is weakened, while the observable 2+

excitation energy is unchanged.
The paper is organized as follows. Section II provides the

detailed formal basis for the proper definition of ESPEs and to
characterize their nonobservable nature. Section III illustrates
the formal proofs via state-of-the-art many-body calculations
based on χ -EFT 2N and 3N interactions. Conclusions are
given in Sec. IV.

II. NUCLEAR SHELL ENERGIES

A. Rationale

As already alluded to above, the interest of referring to
single-nucleon shells resides in the hypothesis that low-energy
observables reflect key patterns of the ESPE spectrum. Besides
2+ excitation energies, this is supposed to apply first and
foremost to one-nucleon separation energies E±

k . Such a
rationale translates into the assumption that the observables
can be partitioned into a dominant “independent-particle-like”
component complemented by many-body correlations, i.e.,
that one can write schematically

E±
k︸︷︷︸

Outcome of Schr. equation

= ep︸︷︷︸
Ind. particles

+ #Ep→k︸ ︷︷ ︸
Correlations

. (2)

Equation (2) is a basic tenet of numerous many-body
methods. For instance, in many-body perturbation theory,
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strength distribution

S(ω) ≡ TrH1 [S(ω)]

=
∑

µ∈HA+1

SF+
µδ(ω − E+

µ ) +
∑

ν∈HA−1

SF−
ν δ(ω − E−

ν ), (7)

which is a basis-independent function of the energy.
We also introduce the nth moment of the spectral function

M(n) ≡
∫ +∞

−∞
ωnS(ω)dω, (8)

which defines an energy-independent matrix on H1. Using the
anticommutation rule of creation and annihilation operators
{ap,a

†
q} = δpq , the zero moment is shown to be nothing but

the identity matrix

M(0) =
∑

µ∈HA+1

S+
µ +

∑

ν∈HA−1

S−
ν = 1. (9)

This sum rule provides each diagonal matrix element of S(ω)
with the meaning of a probability distribution function (PDF)
in the statistical sense, i.e., the combined probability of adding
a nucleon to or removing a nucleon from a specific single-
particle basis state |p⟩ integrates to 1 when summing over all
the final states of the A ± 1 systems.

The first moment M(1) of the spectral function defines the
so-called centroid matrix

hcent ≡
∑

µ∈HA+1

S+
µE+

µ +
∑

ν∈HA−1

S−
ν E−

ν . (10)

Effective single-particle energies are nothing but the eigenval-
ues {ecent

p } of the centroid field [10,29], and they are obtained
by solving

hcentψcent
p = ecent

p ψcent
p . (11)

Solving the eigenvalue problem (11) not only provides ESPEs
but also the corresponding single-particle states the nucleon is
effectively added to or removed from. The associated spherical
basis of H1 is denoted as {c†p}. In that basis, ESPEs are
expressed in terms of diagonal spectroscopic probabilities,

ecent
p ≡

∑

µ∈HA+1

S+pp
µ E+

µ +
∑

ν∈HA−1

S−pp
ν E−

ν . (12)

We see that ESPEs are nothing but centroids, i.e., an arithmetic
average, of one-nucleon separation energies weighted by
the probability to reach the corresponding A + 1 (A − 1)
eigenstates by adding (removing) a nucleon to (from) a single-
particle state ψcent

p . Centroid energies are by construction in
one-to-one correspondence with states spanning H1. The step
from one-neutron separation energies to neutron ESPEs is
illustrated in Fig. 3 for an ab initio self-consistent Gorkov
Green’s function (G-SCGF) calculation [30,31] of 74Ni with
a next-to-next-to-next-to-leading order (N3LO) 2N chiral
interaction [32] evolved down to a scale of 2 fm−1 via a SRG
transformation (see Sec. III for details).

It is worth noting that Baranger ESPEs defined through
Eqs. (10)–(12) display three fundamental properties that make
them fundamentally superior to any other definition of single-
particle energies used in the literature: They (i) only invoke

FIG. 3. (Color online) Self-consistent Gorkov Green’s function
calculation of 74Ni with a realistic 2N chiral interaction [32]. (Left)
Spectral strength distribution for one-neutron addition (above the
dashed line) and removal (below the dashed line) processes. (Right)
Baranger ESPEs.

outputs of the many-body Schrödinger equation, (ii) do not de-
pend on the single-particle basis used to expand the many-body
problem, and (iii) reduce to HF single-particle energies in the
HF approximation; i.e., they satisfy Koopmans’ theorem [33]
in such a limit. Eventually, the model-independent character
of Baranger ESPEs relates to the fact they can be computed
unambiguously within any (re)formulation (i.e., scheme) of the
nuclear many-body problem, e.g., shell-model formulations,
ab initio formulations, cluster models, etc.

The fact that model-independent Baranger ESPEs reduce
to HF single-particle energies in the HF approximation or to
standard monopole ESPEs when employing a naive filling is
best seen by applying the identity [34,35]

M (n)
pq =

〈
%A

0

∣∣{
n commutators︷ ︸︸ ︷

[. . . [[ap,H ],H ], . . .],a†
q}

∣∣%A
0

〉
(13)

to n = 1 [10,36,37],

hcent
pq = tpq +

∑

rs

v2N
prqsρ

[1]
sr + 1

4

∑

rstv

v3N
prtqsvρ

[2]
svrt

≡ h∞
pq, (14)

where

ρ[1]
pq ≡

〈
%A

0

∣∣a†
qap

∣∣%A
0

〉
=

∑

µ

V p
µ

∗V q
µ , (15a)

ρ[2]
pqrs ≡

〈
%A

0

∣∣a†
r a

†
s aqap

∣∣%A
0

〉
, (15b)

denote one- and two-body density matrices of the correlated
A-body ground state, respectively. As Eq. (14) stipulates,
the centroid field is equal to the one-body Hamiltonian
h∞ ≡ T + '(∞) whose potential part is nothing but the
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strength distribution

S(ω) ≡ TrH1 [S(ω)]

=
∑

µ∈HA+1

SF+
µδ(ω − E+

µ ) +
∑

ν∈HA−1

SF−
ν δ(ω − E−

ν ), (7)

which is a basis-independent function of the energy.
We also introduce the nth moment of the spectral function

M(n) ≡
∫ +∞

−∞
ωnS(ω)dω, (8)

which defines an energy-independent matrix on H1. Using the
anticommutation rule of creation and annihilation operators
{ap,a

†
q} = δpq , the zero moment is shown to be nothing but

the identity matrix

M(0) =
∑

µ∈HA+1

S+
µ +

∑

ν∈HA−1

S−
ν = 1. (9)

This sum rule provides each diagonal matrix element of S(ω)
with the meaning of a probability distribution function (PDF)
in the statistical sense, i.e., the combined probability of adding
a nucleon to or removing a nucleon from a specific single-
particle basis state |p⟩ integrates to 1 when summing over all
the final states of the A ± 1 systems.

The first moment M(1) of the spectral function defines the
so-called centroid matrix

hcent ≡
∑

µ∈HA+1

S+
µE+

µ +
∑

ν∈HA−1

S−
ν E−

ν . (10)

Effective single-particle energies are nothing but the eigenval-
ues {ecent

p } of the centroid field [10,29], and they are obtained
by solving

hcentψcent
p = ecent

p ψcent
p . (11)

Solving the eigenvalue problem (11) not only provides ESPEs
but also the corresponding single-particle states the nucleon is
effectively added to or removed from. The associated spherical
basis of H1 is denoted as {c†p}. In that basis, ESPEs are
expressed in terms of diagonal spectroscopic probabilities,

ecent
p ≡

∑

µ∈HA+1

S+pp
µ E+

µ +
∑

ν∈HA−1

S−pp
ν E−

ν . (12)

We see that ESPEs are nothing but centroids, i.e., an arithmetic
average, of one-nucleon separation energies weighted by
the probability to reach the corresponding A + 1 (A − 1)
eigenstates by adding (removing) a nucleon to (from) a single-
particle state ψcent

p . Centroid energies are by construction in
one-to-one correspondence with states spanning H1. The step
from one-neutron separation energies to neutron ESPEs is
illustrated in Fig. 3 for an ab initio self-consistent Gorkov
Green’s function (G-SCGF) calculation [30,31] of 74Ni with
a next-to-next-to-next-to-leading order (N3LO) 2N chiral
interaction [32] evolved down to a scale of 2 fm−1 via a SRG
transformation (see Sec. III for details).

It is worth noting that Baranger ESPEs defined through
Eqs. (10)–(12) display three fundamental properties that make
them fundamentally superior to any other definition of single-
particle energies used in the literature: They (i) only invoke

FIG. 3. (Color online) Self-consistent Gorkov Green’s function
calculation of 74Ni with a realistic 2N chiral interaction [32]. (Left)
Spectral strength distribution for one-neutron addition (above the
dashed line) and removal (below the dashed line) processes. (Right)
Baranger ESPEs.

outputs of the many-body Schrödinger equation, (ii) do not de-
pend on the single-particle basis used to expand the many-body
problem, and (iii) reduce to HF single-particle energies in the
HF approximation; i.e., they satisfy Koopmans’ theorem [33]
in such a limit. Eventually, the model-independent character
of Baranger ESPEs relates to the fact they can be computed
unambiguously within any (re)formulation (i.e., scheme) of the
nuclear many-body problem, e.g., shell-model formulations,
ab initio formulations, cluster models, etc.

The fact that model-independent Baranger ESPEs reduce
to HF single-particle energies in the HF approximation or to
standard monopole ESPEs when employing a naive filling is
best seen by applying the identity [34,35]

M (n)
pq =

〈
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0

∣∣{
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to n = 1 [10,36,37],
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〉
, (15b)

denote one- and two-body density matrices of the correlated
A-body ground state, respectively. As Eq. (14) stipulates,
the centroid field is equal to the one-body Hamiltonian
h∞ ≡ T + '(∞) whose potential part is nothing but the
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strength distribution

S(ω) ≡ TrH1 [S(ω)]

=
∑

µ∈HA+1

SF+
µδ(ω − E+

µ ) +
∑

ν∈HA−1

SF−
ν δ(ω − E−

ν ), (7)

which is a basis-independent function of the energy.
We also introduce the nth moment of the spectral function

M(n) ≡
∫ +∞

−∞
ωnS(ω)dω, (8)

which defines an energy-independent matrix on H1. Using the
anticommutation rule of creation and annihilation operators
{ap,a

†
q} = δpq , the zero moment is shown to be nothing but

the identity matrix

M(0) =
∑

µ∈HA+1

S+
µ +

∑

ν∈HA−1

S−
ν = 1. (9)

This sum rule provides each diagonal matrix element of S(ω)
with the meaning of a probability distribution function (PDF)
in the statistical sense, i.e., the combined probability of adding
a nucleon to or removing a nucleon from a specific single-
particle basis state |p⟩ integrates to 1 when summing over all
the final states of the A ± 1 systems.

The first moment M(1) of the spectral function defines the
so-called centroid matrix

hcent ≡
∑

µ∈HA+1

S+
µE+

µ +
∑

ν∈HA−1

S−
ν E−

ν . (10)

Effective single-particle energies are nothing but the eigenval-
ues {ecent

p } of the centroid field [10,29], and they are obtained
by solving

hcentψcent
p = ecent

p ψcent
p . (11)

Solving the eigenvalue problem (11) not only provides ESPEs
but also the corresponding single-particle states the nucleon is
effectively added to or removed from. The associated spherical
basis of H1 is denoted as {c†p}. In that basis, ESPEs are
expressed in terms of diagonal spectroscopic probabilities,

ecent
p ≡

∑

µ∈HA+1

S+pp
µ E+

µ +
∑

ν∈HA−1

S−pp
ν E−

ν . (12)

We see that ESPEs are nothing but centroids, i.e., an arithmetic
average, of one-nucleon separation energies weighted by
the probability to reach the corresponding A + 1 (A − 1)
eigenstates by adding (removing) a nucleon to (from) a single-
particle state ψcent

p . Centroid energies are by construction in
one-to-one correspondence with states spanning H1. The step
from one-neutron separation energies to neutron ESPEs is
illustrated in Fig. 3 for an ab initio self-consistent Gorkov
Green’s function (G-SCGF) calculation [30,31] of 74Ni with
a next-to-next-to-next-to-leading order (N3LO) 2N chiral
interaction [32] evolved down to a scale of 2 fm−1 via a SRG
transformation (see Sec. III for details).

It is worth noting that Baranger ESPEs defined through
Eqs. (10)–(12) display three fundamental properties that make
them fundamentally superior to any other definition of single-
particle energies used in the literature: They (i) only invoke

FIG. 3. (Color online) Self-consistent Gorkov Green’s function
calculation of 74Ni with a realistic 2N chiral interaction [32]. (Left)
Spectral strength distribution for one-neutron addition (above the
dashed line) and removal (below the dashed line) processes. (Right)
Baranger ESPEs.

outputs of the many-body Schrödinger equation, (ii) do not de-
pend on the single-particle basis used to expand the many-body
problem, and (iii) reduce to HF single-particle energies in the
HF approximation; i.e., they satisfy Koopmans’ theorem [33]
in such a limit. Eventually, the model-independent character
of Baranger ESPEs relates to the fact they can be computed
unambiguously within any (re)formulation (i.e., scheme) of the
nuclear many-body problem, e.g., shell-model formulations,
ab initio formulations, cluster models, etc.

The fact that model-independent Baranger ESPEs reduce
to HF single-particle energies in the HF approximation or to
standard monopole ESPEs when employing a naive filling is
best seen by applying the identity [34,35]

M (n)
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to n = 1 [10,36,37],

hcent
pq = tpq +

∑

rs

v2N
prqsρ

[1]
sr + 1

4

∑

rstv

v3N
prtqsvρ

[2]
svrt

≡ h∞
pq, (14)

where

ρ[1]
pq ≡

〈
%A

0

∣∣a†
qap

∣∣%A
0

〉
=

∑

µ

V p
µ

∗V q
µ , (15a)

ρ[2]
pqrs ≡

〈
%A

0

∣∣a†
r a

†
s aqap

∣∣%A
0

〉
, (15b)

denote one- and two-body density matrices of the correlated
A-body ground state, respectively. As Eq. (14) stipulates,
the centroid field is equal to the one-body Hamiltonian
h∞ ≡ T + '(∞) whose potential part is nothing but the
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FIG. 8. (Color online) Spectroscopic factors associated with one-
neutron addition and removal process on the ground states of
14,16,18,20,22,24O computed as a function of the associated sep-
aration energy. For each final state, results obtained for λ =
1.88,2.00,2.24 fm−1 are joined by solid lines. One-, two-, and
three-body operators are retained in the (initial and) transformed
Hamiltonians. (a) Results obtained at the HFB level. (b) Results
obtained from second-order G-SCGF calculations.

within an independent (quasi)-particle picture such that the
strength for particle addition or removal is contained almost
entirely in individual single-particle states, i.e., the eigenstates
of hcent, by construction. Spectroscopic factors are actually
not strictly equal to 1 (or 0) owing to the treatment of
pairing correlations in the HFB framework, the two 5/2+

states associated with one-neutron addition and removal in
the open-shell 20O being the most prominent example.

The picture is different in Fig. 8(b), where results from
second-order G-SCGF calculations are compiled. There is
less variation along the horizontal axis than in the HFB
case because the improved many-body treatment reduces the
scale dependence of the observable one-neutron separation
energies (cf. Fig. 5). Owing to the inclusion of dynamical
correlations, the spectroscopic strength is now fragmented.
For certain states, in particular the 1/2− and 3/2− states, the
vertical spread becomes visible and indicates that the details
of this fragmentation depend on the resolution scale λ (while
the associated separation energy does not). By improving
the treatment of the many-body problem through switching
from HFB to G-SCGF, we have thus slightly increased the
scale dependence of some of the nonobservable spectroscopic
factors significantly. Still, a larger range of λ values will have

to be used to generate any significant and systematic scale
dependence.

IV. CONCLUSIONS

The present work is dedicated to specifying and illustrating
the nonobservable nature of the one-nucleon shell structure.
After a formal demonstration, state-of-the-art multireference
in-medium SRG and self-consistent Gorkov Green’s function
many-body calculations based on chiral two- and three-
nucleon interactions are employed to illustrate that, as opposed
to observable quantities, nuclear shell energies run under
unitary SRG transformations of the Hamiltonian parametrized
by the resolution scale λ. In practice, the unitarity of the
similarity transformations is broken owing to the omission of
induced many-body interactions in the present framework and
the approximate treatment of the Schrödinger equation. The
impact of this breaking is first characterized by quantifying
the (artificial) running of observables over a (necessarily)
finite interval of λ values. Then the (genuine) running of
ESPEs is characterized and shown to be convincingly larger
than that of observables (which would be zero in an exact
calculation).

The nonobservable nature of the nuclear shell structure,
i.e., the fact that it constitutes an intrinsically theoretical object
with no counterpart in the empirical world, must be recognized
and assimilated. Indeed, the shell structure cannot be extracted
from experimental data; hence, it cannot be talked about in an
absolute sense as it depends on the nonobservable resolution
scale employed in the theoretical calculation. Consequently,
correlations that one may establish between observables,
e.g., first 2+ excitation energies or one-nucleon separation
energies, and features of the shell structure, e.g., the size
of the particle-hole gap at the Fermi energy, depend on the
resolution scale. It is only at the price of fixing arbitrarily
(but conveniently) the resolution scale in the theoretical
framework that one can establish and utilize such correla-
tions. To some extent, fixing the resolution scale provides
ESPEs (and spectroscopic factors) with a quasi-observable
character.

Ultimately, practitioners can refer to nuclear shells and
spectroscopic factors in their analyses of nuclear phenomena.
This, however, requires that it is done on the basis of a
well-defined theoretical scheme, i.e., well-specified degrees
of freedom combined with a Hamiltonian characterized by a
fixed resolution scale. It is mandatory to perform comparisons
from one nucleus to the other or from one practitioner to
the other on the basis of that very same theoretical scheme.
Incidentally, this also necessitates to use consistent structure
and reaction theoretical schemes, i.e., structure and reaction
theories based on the same degrees of freedom and the
same fixed Hamiltonian, eventually employing the same
approximations within that many-body scheme. This is, of
course, a very challenging task for the future. Still, it indicates
that, from the perspective of future theoretical developments,
there is not much value in combining, e.g., high-quality ab
initio nuclear structure quantities with inconsistent nuclear
reaction theories. The focus should rather be on consistency
because there is more value in developing less advanced, e.g.,
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Starting from one-nucleon spectroscopic amplitudes

d

dλ
V p

ν (λ) = −
〈
#A−1

ν (λ)
∣∣[η(λ),ap]

∣∣#A
0 (λ)

〉∗
, (27a)

d

dλ
Up

µ (λ) = −
〈
#A+1

µ (λ)
∣∣[η(λ),a†

p]
∣∣#A

0 (λ)
〉∗

, (27b)

one obtains flow equations for spectroscopic probability
matrices S+

µ and S−
ν as well as their traces SF+

µ and SF−
ν .

Combining Eq. (27) with the fact that observable one-nucleon
addition and removal energies are invariant because they are
differences of eigenvalues of H (λ) [see Eq. (21)],

d

dλ
E−

ν (λ) = d

dλ
E+

µ (λ) = 0, (28)

one can eventually derive flow equations for the zeroth and
first moments of the spectral function matrix8

d

dλ
M (0)

pq (λ) = 0, (29a)

d

dλ
M (1)

pq (λ) = −
〈
#A

0 (λ)
∣∣{[[η(λ),ap],H (λ)],a†

q} + {[ap,H (λ)],[η(λ),a†
q]}

∣∣#A
0 (λ)

〉
. (29b)

Equation (29) demonstrates that sum rule (9) is scale invariant
while the centroid matrix hcent(λ) and its eigenvalues ecent

p (λ)
are not. Just as for spectroscopic factors, the latter property
underlines the scale dependence of ESPEs; i.e., they “run”
with the unitary transformation U (λ), as opposed to true
observables.

4. Symmetry transformations

It is worth noting that symmetry transformations of the
Hamiltonian associated with a (locally) compact Lie groups
whose generators Ci are one-body operators do not induce
any running of spectroscopic factors and ESPEs. Using a one-
parameter group for simplicity and employing an exponential
map to represent the transformation, i.e., U (β) = eiβC , one
can show that the transformation of creation and annihilation
operators in Fock space reduces to

U (β)a†
pU †(β) =

∑

q

uqp(β)a†
q, (30a)

U (β)apU †(β) =
∑

q

u∗
qp(β)aq, (30b)

where uqp(β) ≡ ⟨q|U (β)|p⟩ is the unitary matrix representing
U (β) in the one-body Hilbert space H1. In contrast to Eq. (24),
a transformed creation (annihilation) operator remains a
linear combination of pure one-particle creation (annihilation)
operators. In this case, it is straightforward to show that
spectroscopic probability matrices and the centroid matrix
transform as standard matrices on H1 by using Eq. (30):

S
±pq
k (β) =

∑

rs

upr (β)S±rs
k u†

sq(β), (31a)

hcent
pq (β) =

∑

rs

upr (β)hcent
rs u†

sq(β). (31b)

By virtue of the unitarity of uqp(β), the spectroscopic factors,
i.e., the trace of the spectroscopic probability matrices, do not
depend on β. Because U (β) is a symmetry of H , it is also

8Starting from Eq. (13), it is straightforward to derive the flow
equation for an arbitrary moment M(n)(λ).

straightforward to show that hcent is a scalar and thus does not
depend on β either.9

Ultimately, this underlines the fact that we are presently
not concerned with symmetry transformations. The trans-
formations we are interested in are, e.g., free-space SRG
transformations defined through their generator η(λ) in such a
way that the virtual coupling between low and high momenta
is continuously reduced in H (λ) (see Ref. [17] for details).
Creation and annihilation operators are transformed on Fock
space according to the general law (24) and not the simpler
transformation (30), which, in turn, causes spectroscopic
factors and ESPEs to run with λ.

5. Discussion

The scale dependence of ESPEs generated by the flow equa-
tion (29b) has significant consequences. Despite the model-
independent and physically intuitive character of Baranger’s
ESPEs, these quantities are not observable. Like spectroscopic
factors, wave functions, or “correlations,” nuclear shells do
not qualify as an observable within the frame of quantum
mechanics because they can be modified at will under a unitary
transformation (while keeping true observables invariant). In
that respect, the partitioning provided by Eq. (18) can now be
further specified as

many-body observable

E+
µ︸︷︷︸

invariant under U (λ)

≡
single-particle components∑

p

s+pp
µ (λ)ecent

p (λ)

︸ ︷︷ ︸
varies under U (λ)

+
correlations∑

pq

s+pq
µ (λ)&dyn

qp (E+
µ ; λ)

︸ ︷︷ ︸
varies under U (λ)

, (32)

which underlines that such a partitioning is necessarily scale
dependent.10

9Simply insert a complete basis of H1 whose states span the
irreducible representations of the group in Eq. (31b).

10The flow equation for the independent-particle-like contribution
to one-nucleon separation energies can be easily worked out starting
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8Starting from Eq. (13), it is straightforward to derive the flow
equation for an arbitrary moment M(n)(λ).

straightforward to show that hcent is a scalar and thus does not
depend on β either.9

Ultimately, this underlines the fact that we are presently
not concerned with symmetry transformations. The trans-
formations we are interested in are, e.g., free-space SRG
transformations defined through their generator η(λ) in such a
way that the virtual coupling between low and high momenta
is continuously reduced in H (λ) (see Ref. [17] for details).
Creation and annihilation operators are transformed on Fock
space according to the general law (24) and not the simpler
transformation (30), which, in turn, causes spectroscopic
factors and ESPEs to run with λ.

5. Discussion

The scale dependence of ESPEs generated by the flow equa-
tion (29b) has significant consequences. Despite the model-
independent and physically intuitive character of Baranger’s
ESPEs, these quantities are not observable. Like spectroscopic
factors, wave functions, or “correlations,” nuclear shells do
not qualify as an observable within the frame of quantum
mechanics because they can be modified at will under a unitary
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further specified as

many-body observable

E+
µ︸︷︷︸

invariant under U (λ)

≡
single-particle components∑

p

s+pp
µ (λ)ecent

p (λ)

︸ ︷︷ ︸
varies under U (λ)

+
correlations∑

pq

s+pq
µ (λ)&dyn

qp (E+
µ ; λ)

︸ ︷︷ ︸
varies under U (λ)

, (32)

which underlines that such a partitioning is necessarily scale
dependent.10

9Simply insert a complete basis of H1 whose states span the
irreducible representations of the group in Eq. (31b).

10The flow equation for the independent-particle-like contribution
to one-nucleon separation energies can be easily worked out starting

034313-8



Plan of the lectures

1. Introduction and basic concepts

2. Dyson equation

○ Derivation from equation of motion

○ Derivation from diagrammatic expansion

○ Approximations for the self-energy

3. Spectral representation

○ Spectral content of the Green’s function

○ Connection with experiment

4. Solving Dyson equation in practise: Dyson eigenvalue problem

○ Feynman rules and calculation of self-energy diagrams

○ Energy-independent Dyson equation

○ Krylov projection

○ Examples of results in closed-shell nuclei



Dyson equation as eigenvalue problem

⦿ Due to energy denominators, solving Dyson equation in this form is problematic

⦿ Instead, one can derive an eigenvalue equation by “extracting” the poles of G, i.e.
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Feynman rules

1. Draw all topologically distinct, connected, direct, irreducible, skeleton diagrams with
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⦿ Diagrammatic rules to derive all mth order terms in the expansion of G

○Work in energy domain (time domain analogous)

○Work with an antisymmetrised interaction              (two-body only)

○ Case of self-consistent schemes
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where the energy integral is to be performed in the up-
per half of the complex energy plane, according to the
convention introduced in Rule 8. Inserting the Lehmann
form (38a) of the propagator one obtains
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where the residue theorem has been used, i.e. the first
term, with +i⌘ in the denominator, contains no pole in
the upper plane and thus cancels out. As in the standard
case the Hartree-Fock self-energy is energy independent.
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Ūk⇤
c V̄k

d

!0 + !k � i⌘

=
1

2

X

cd,k

V̄c̄dāb Ūk⇤
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where the same integration technique as in (B18) has
been used.

b. Second order

Let us now proceed to the computation of the second-
order contributions. The first term is the standard
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¯b ¯dāc̄ G

22

dc(!
0)

= �i
Z

C#

d!0

2⇡

X

cd,k

V̄
¯b ¯dāc̄
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Ūk⇤
d Ūk
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where the same integration technique as in (B18) has
been used.

b. Second order

Let us now proceed to the computation of the second-
order contributions. The first term is the standard
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2. Assign an energy to each propagation line (energy is conserved at each vertex)

○ im

○ 1/2 for each pair of equivalent propagation lines

3. Assign two indices to each propagation line

4. Write down             for each interaction line and                for each propagation line

22

where the energy integral is to be performed in the up-
per half of the complex energy plane, according to the
convention introduced in Rule 8. Inserting the Lehmann
form (38a) of the propagator one obtains

⌃11 (1)

ab (!) = �i
Z

C"

d!0

2⇡

X

cd,k

V̄acbd
Uk
d Uk⇤

c

!0 � !k + i⌘

� i

Z

C"

d!0

2⇡

X

cd,k

V̄acbd
V̄k⇤
d V̄k

c

!0 + !k � i⌘

=
X

cd,k

V̄acbd V̄k⇤
d V̄k

c , (B18)

⌃(1)

↵�(!) = �i
Z

C"

d!0

2⇡

X

��

v̄↵��� G��(!
0)

= �i
Z

C"

d!0

2⇡

X

��,n

v̄↵���
Un
� Un⇤

�

!0 � E+

n + i⌘

� i

Z

C"

d!0

2⇡

X

��,k

v̄↵���
V k⇤
� V k

�

!0 � E�
k � i⌘

=
X

��,k

v̄↵��� V
k⇤
� V k

�

where the residue theorem has been used, i.e. the first
term, with +i⌘ in the denominator, contains no pole in
the upper plane and thus cancels out. As in the standard
case the Hartree-Fock self-energy is energy independent.

Similarly one computes the other normal self-energy
term

⌃22 (1)

ab (!) =
b̄

c̄

d̄

ā
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where the same integration technique as in (B18) has
been used.

b. Second order

Let us now proceed to the computation of the second-
order contributions. The first term is the standard
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First-order self-energy
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where the residue theorem has been used, i.e. the first
term, with +i⌘ in the denominator, contains no pole in
the upper plane and thus cancels out. As in the standard
case the Hartree-Fock self-energy is energy independent.

Similarly one computes the other normal self-energy
term
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which reads
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¯b ¯dāc̄ G

22

dc(!
0)

= �i
Z

C#

d!0

2⇡

X

cd,k

V̄
¯b ¯dāc̄
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The anomalous contributions to the self-energy at first
order are
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and are written respectively as
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and
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where the same integration technique as in (B18) has
been used.

b. Second order

Let us now proceed to the computation of the second-
order contributions. The first term is the standard
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energy, just as for unperturbed ones, i.e.
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ā

, (B15c)

G22
ab(ω) ≡ ↑ ω

b̄

ā
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Diagrammatic rules to compute irreducible self-energies
are the same as for reducible ones, with the only dif-
ference that dressed propagators (B15) have to be used
instead of unperturbed ones.

2. Self-energies

The present section addresses the derivation of first-
and second-order self-energy diagrams.

a. First order

The first normal contribution corresponds to the stan-
dard Hartree-Fock self-energy. It is depicted as
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α
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where the energy integral is to be performed in the up-
per half of the complex energy plane, according to the
convention introduced in Rule 8. Inserting the Lehmann
form (38a) of the propagator one obtains
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where the residue theorem has been used, i.e. the first
term, with +iη in the denominator, contains no pole in
the upper plane and thus cancels out. As in the standard
case the Hartree-Fock self-energy is energy independent.
Similarly one computes the other normal self-energy

term
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ference that dressed propagators (B15) have to be used
instead of unperturbed ones.
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per half of the complex energy plane, according to the
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where the residue theorem has been used, i.e. the first
term, with +iη in the denominator, contains no pole in
the upper plane and thus cancels out. As in the standard
case the Hartree-Fock self-energy is energy independent.
Similarly one computes the other normal self-energy
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such that, using Eq. (58),

lim
ω→ωk
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Multiplying both sides of Eq. (A7) by (ω − ΩU )fe and
summing over e yields
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where the terms involving Bk cancel out after using the
conjugate Gorkov’s equation

Gab(ω) = G
(0)
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cd
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Multiplying by X
k†
f from the left, summing over f and

renaming (f, d) to (a, b) one finally obtains the normal-
ization condition
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where only the proper self-energy appears as a result of
the energy independence of the auxiliary potential. Sim-
ilarly one can derive a condition for Gorkov’s amplitude
Y
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Appendix B: Diagrammatic

1. Diagrammatic rules

A convenient way to express the expansion of the
single-particle propagator is via diagrammatic tech-
niques. By giving the interaction and the single-particle
propagator a graphical representation and by establish-
ing a set of rules one can generate diagrams that are in
one-to-one correspondence with the terms appearing in
the expansion. As it provides an immediate insight to
physical processes associated with the various contribu-
tions, the diagrammatic expansion is of great help when
choosing a suitable approximation. It is relevant to dis-
cuss diagrammatic rules in some details here given that
there exist differences compared to rules applicable to
the diagrammatic expansion involving normal contrac-
tions only.
In the present work antisymmetrized interaction ma-

trix elements are represented by a dashed line labeled by

four single-particle indices

v̄αβγδ ≡
γ δ

α β

. (B1)

Single-particle unperturbed propagators, i.e. Green’s
functions associated with the unperturbed Hamiltonian
ΩU introduced in Eq. (31), are depicted as solid lines
labelled by two indices and one energy flowing from the
second to the first index

G11 (0)
ab (ω) ≡ ↑ ω

b

a

, (B2a)

G12 (0)
ab (ω) ≡ ↑ ω

b̄

a

, (B2b)

G21 (0)
ab (ω) ≡ ↑ ω

b

ā

, (B2c)

G22 (0)
ab (ω) ≡ ↑ ω

b̄

ā

. (B2d)

One should notice that, as opposed to traditional graph-
ical representations of Dyson’s propagator, Gorkov’s
propagators carry two arrows specifying whether a given
propagator results from the contraction of two creation
(annihilation) operators or of one creation (annihilation)
and one annihilation (creation) operator.
With building blocks (B1) and (B2) one can construct,

order by order, the (diagrammatic) perturbative expan-
sion for each of the four Gorkov propagators (22). To

⦿ Notation

⦿ First-order self-energy

Dressed propagator Antisymmetrised interaction
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The anomalous contributions to the self-energy at first
order are
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and are written respectively as
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where the same integration technique as in (B18) has
been used.

b. Second order

Let us now proceed to the computation of the second-
order contributions. The first term is the standard
second-order self-energy

Σ(2)
αβ(ω) = ↑ ω′ ↑ ω′′

δ µ

↓ ω′′′

γ φ

β

α

λ

ϵ

(B25)

reading
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Notice that the minus sign coming from rule 4 is cancelled by a minus sign coming from the presence of a closed loop
(rule 7). The integrations over the two energy variables are performed in this case using two successive applications
of the formula

I(E) =

∫ +∞

−∞

dE′

2πi

{
F1

E′ − f1 + iη
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}
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F1B2

E − (f1 − b2) + iη
− F2B1

E + (f2 − b1)− iη

}

. (B27)

The above integral, defined on the real axis, is computed by extending the integration to a large semicircle in the
upper or lower complex half plane of E′ (this can be done since the integrand behaves as |E′|−2 for |E′| → ∞ and
this branch do not contribute to the integral) and then by using the residue theorem. Of the four terms, two have
poles in the same half plane and yield zero as the contour can be closed in the other half. Applying this formula to

⦿ Second-order self-energy
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Second-order self-energy



Plan of the lectures

1. Introduction and basic concepts

2. Dyson equation

○ Derivation from equation of motion

○ Derivation from diagrammatic expansion

○ Approximations for the self-energy

3. Spectral representation

○ Spectral content of the Green’s function

○ Connection with experiment

4. Solving Dyson equation in practise: Dyson eigenvalue problem

○ Feynman rules and calculation of self-energy diagrams

○ Energy-independent Dyson equation

○ Krylov projection

○ Examples of results in closed-shell nuclei



Energy-independent eigenvalue problem

10

which is nothing but the HFB eigenvalue problem in the
case where time-reversal invariance is not assumed. In
such a limit, Uk and Vk enter the unitary Bogoliubov
transformation [? ] according to

aa =
X

k

Uk
a �k + V̄k⇤

a �†
k , (66a)

a†a =
X

k

Uk⇤
a �†

k + V̄k
a �k . (66b)

Moreover, normalization condition (A11) reduces in this
case to the well-known HFB identity

X

a

�

�Yk
a

�

�

2

=
X

a

�

�Uk
a

�

�

2

+
X

a

�

�Vk
a

�

�

2

= 1 . (67)

Let us now stress that, despite the energy independence
of first-order self energies, some fragmentation of the
single-particle strength is already accounted for at the
HFB level such that one deals with quasi-particle de-
grees of freedom. In particular one can deduce from Eq.
(67) that (generalized) spectroscopic factors defined in
Eq. (49) are smaller than one. Such a fragmentation is
an established consequence of static pairing correlations
that are explicitly treated at the HFB level through par-
ticle number symmetry breaking.

Finally, let us underline again that when higher or-
ders are included in the calculation, first-order terms are
self-consistently modified (in particular through the fur-
ther fragmentation of the quasi-particle strength) such
that corresponding self-energy contributions do not cor-
respond anymore to standard Hartree-Fock and Bogoli-
ubov potentials, in spite of their energy independence.
They actually correspond to the energy-independent part
of the (dynamically) correlated self-energy.

D. Second-order self-energies

Let us now discuss second-order contributions to both
normal and anomalous (irreducible) self-energies.

FIG. 2. Second-order normal self-energies ⌃

11 (20)
(left) and

⌃

11 (200)
(right). See Fig. 1 for conventions.
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FIG. 3. Second-order anomalous self-energies ⌃
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21 (200)
(right). See Fig. 1 for conventions.

Nk1k2n3
↵ ⌘

X

���

v̄↵��� V
k1
� V k2

� Un3
�

In Figs. 2 and 3 the four types of normal and anoma-
lous self-energies are depicted. The evaluation of all
second-order diagrams is performed in App. B. Before
addressing their expressions, let us introduce useful quan-
tities

Mk1k2k3
a ⌘

X

ijk

V̄akij Uk1
i Uk2

j V̄k3
k , (68a)

Pk1k2k3
a ⌘

X

ijk

V̄a¯ki¯j Uk1
i Vk2

k Ūk3
j = �Mk1k3k2

a , (68b)

Rk1k2k3
a ⌘

X

ijk

V̄a¯k¯ij Vk1
k Uk2

j Ūk3
i = �Mk3k2k1

a , (68c)

and

N k1k2k3
a ⌘

X

ijk

V̄akij Vk1
i Vk2

j Ūk3
k , (69a)

Qk1k2k3
a ⌘

X

ijk

V̄a¯ki¯j Vk1
i Uk2

k V̄k3
j = �N k1k3k2

a , (69b)

Sk1k2k3
a ⌘

X

ijk

V̄a¯k¯ij Uk1
k Vk2

j V̄k3
i = �N k3k2k1

a , (69c)

in terms of which second-order self-energies are expressed
below. Using relations (41) one shows that

M̄k1k2k3
a = ⌘a Mk1k2k3

ã , (70a)

P̄k1k2k3
a = ⌘a Pk1k2k3

ã , (70b)

R̄k1k2k3
a = ⌘a Rk1k2k3

ã , (70c)

and

N̄ k1k2k3
a = �⌘a N k1k2k3

ã , (71a)

Q̄k1k2k3
a = �⌘a Qk1k2k3

ã , (71b)

S̄k1k2k3
a = �⌘a Sk1k2k3

ã . (71c)

Given that P and R can be obtained from M through
odd permutations of indices {k

1

, k
2

, k
3

} and taking into
account the symmetries of interaction matrix elements,
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j Ūk3
i = �Mk3k2k1

a , (68c)

and

N k1k2k3
a ⌘

X

ijk

V̄akij Vk1
i Vk2

j Ūk3
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one can prove that such quantities display the properties
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b
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b
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X
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b

⇤
,
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X
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b
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b
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b
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X
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b
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X
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a Mk1k2k3

b
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X
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a Pk1k2k3

b

⇤
.

Similarly, for N , Q and S one has
X

k1k2k3

N k1k2k3
a
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b = +

X

k1k2k3
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X
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Analogous properties can be derived for terms mixing
{M,P,R} and {N ,Q,S}.
Let us now consider ⌃11, whose second-order contribu-

tions, evaluated in Eqs. (B28) and (B30), can be written
as

⌃(2)

↵�(!) =
1

2

X

n1n2n3,k1k2k3

(

Mn1n2k3
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+
(Nk1k2n3
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Mk1k2k3
a Pk1k2k3
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, (75)

where the notation Ek1k2k3 ⌘ !k1 +!k2 +!k3 has been introduced. Summing the two terms and using properties (72)
and (73) one obtains
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. (77b)
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2p1h amplitude 2h1p amplitude

2h1p energy2p1h energy

⦿ In practise, energy denominators generate (numerical) difficulties

⦿ Eigenvalue problem can be rewritten in an energy-independent form
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The anomalous contributions to the self-energy at first
order are

Σ12 (1)
ab (ω) =

b̄

← ω′

a
c d̄

, (B21)

Σ21 (1)
ab (ω) = d

← ω′

c̄
ā b

, (B22)

and are written respectively as

Σ12 (1)
ab (ω) = − i

2

∫

C↑

dω′

2π

∑

cd

V̄ab̄cd̄G
12
cd(ω

′)

= − i

2

∫

C↑

dω′

2π

∑

cd,k

V̄ab̄cd̄
Uk
c Vk∗

d

ω′ − ωk + iη

− i

2

∫

C↑

dω′

2π

∑

cd,k

V̄ab̄cd̄
V̄k∗
c Ūk

d

ω′ + ωk − iη

=
1

2

∑

cd,k

V̄ab̄cd̄ V̄k∗
c Ūk

d , (B23)

and

Σ21 (1)
ab (ω) = − i

2

∫

C↑

dω′

2π

∑

cd

V̄c̄dāb G
21
cd(ω

′)

= − i

2

∫
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dω′

2π

∑
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V̄c̄dāb
Vk
c Uk∗

d
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− i

2
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cd,k

V̄c̄dāb
Ūk∗
c V̄k

d

ω′ + ωk − iη

=
1

2

∑

cd,k

V̄c̄dāb Ūk∗
c V̄k

d

=
1

2

∑

cd,k

V̄ ∗
bācd̄ Ū

k∗
d V̄k

c

= [Σ12 (1)
ba ]∗ , (B24)

where the same integration technique as in (B18) has
been used.

b. Second order

Let us now proceed to the computation of the second-
order contributions. The first term is the standard
second-order self-energy

Σ(2)
αβ(ω) = ↑ ω′ ↑ ω′′

δ µ

↓ ω′′′

γ φ

β

α

λ

ϵ

(B25)

reading

Σ11 (2′)
ab (ω) =

1

2

∫
dω′

2π

dω′′

2π

dω′′′

2π

∑

cdefgh
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11
cd(ω

′)G11
fg(ω

′′)G11
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′′′) δ(ω − ω′ − ω′′ + ω′′′)

=
1
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∫
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′′)G11
he(ω

′ + ω′′ − ω) . (B26)

Notice that the minus sign coming from rule 4 is cancelled by a minus sign coming from the presence of a closed loop
(rule 7). The integrations over the two energy variables are performed in this case using two successive applications
of the formula

I(E) =

∫ +∞

−∞

dE′

2πi

{
F1

E′ − f1 + iη
+

B1

E′ − b1 − iη

} {
F2

E′ − E − f2 + iη
+

B2

E′ − E − b2 − iη

}

=

{
F1B2

E − (f1 − b2) + iη
− F2B1

E + (f2 − b1)− iη

}

. (B27)

The above integral, defined on the real axis, is computed by extending the integration to a large semicircle in the
upper or lower complex half plane of E′ (this can be done since the integrand behaves as |E′|−2 for |E′| → ∞ and
this branch do not contribute to the integral) and then by using the residue theorem. Of the four terms, two have
poles in the same half plane and yield zero as the contour can be closed in the other half. Applying this formula to

⦿ Second-order self-energy
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Energy-independent eigenvalue problem



10

which is nothing but the HFB eigenvalue problem in the
case where time-reversal invariance is not assumed. In
such a limit, Uk and Vk enter the unitary Bogoliubov
transformation [? ] according to

aa =
X

k

Uk
a �k + V̄k⇤

a �†
k , (66a)

a†a =
X

k

Uk⇤
a �†

k + V̄k
a �k . (66b)

Moreover, normalization condition (A11) reduces in this
case to the well-known HFB identity

X

a

�

�Yk
a

�

�

2

=
X

a

�

�Uk
a

�

�

2

+
X

a

�

�Vk
a

�

�

2

= 1 . (67)

Let us now stress that, despite the energy independence
of first-order self energies, some fragmentation of the
single-particle strength is already accounted for at the
HFB level such that one deals with quasi-particle de-
grees of freedom. In particular one can deduce from Eq.
(67) that (generalized) spectroscopic factors defined in
Eq. (49) are smaller than one. Such a fragmentation is
an established consequence of static pairing correlations
that are explicitly treated at the HFB level through par-
ticle number symmetry breaking.

Finally, let us underline again that when higher or-
ders are included in the calculation, first-order terms are
self-consistently modified (in particular through the fur-
ther fragmentation of the quasi-particle strength) such
that corresponding self-energy contributions do not cor-
respond anymore to standard Hartree-Fock and Bogoli-
ubov potentials, in spite of their energy independence.
They actually correspond to the energy-independent part
of the (dynamically) correlated self-energy.

D. Second-order self-energies

Let us now discuss second-order contributions to both
normal and anomalous (irreducible) self-energies.

FIG. 2. Second-order normal self-energies ⌃

11 (20)
(left) and

⌃

11 (200)
(right). See Fig. 1 for conventions.

Mn1n2k3
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�

FIG. 3. Second-order anomalous self-energies ⌃

21 (20)
(left)

and ⌃

21 (200)
(right). See Fig. 1 for conventions.
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In Figs. 2 and 3 the four types of normal and anoma-
lous self-energies are depicted. The evaluation of all
second-order diagrams is performed in App. B. Before
addressing their expressions, let us introduce useful quan-
tities

Mk1k2k3
a ⌘

X

ijk

V̄akij Uk1
i Uk2

j V̄k3
k , (68a)

Pk1k2k3
a ⌘

X

ijk
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i Vk2

k Ūk3
j = �Mk1k3k2

a , (68b)
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i = �Mk3k2k1

a , (68c)

and
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a , (69b)

Sk1k2k3
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V̄a¯k¯ij Uk1
k Vk2

j V̄k3
i = �N k3k2k1

a , (69c)

in terms of which second-order self-energies are expressed
below. Using relations (41) one shows that

M̄k1k2k3
a = ⌘a Mk1k2k3

ã , (70a)

P̄k1k2k3
a = ⌘a Pk1k2k3

ã , (70b)

R̄k1k2k3
a = ⌘a Rk1k2k3

ã , (70c)

and

N̄ k1k2k3
a = �⌘a N k1k2k3

ã , (71a)

Q̄k1k2k3
a = �⌘a Qk1k2k3

ã , (71b)

S̄k1k2k3
a = �⌘a Sk1k2k3

ã . (71c)

Given that P and R can be obtained from M through
odd permutations of indices {k

1

, k
2

, k
3

} and taking into
account the symmetries of interaction matrix elements,
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one can prove that such quantities display the properties
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Similarly, for N , Q and S one has
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Analogous properties can be derived for terms mixing
{M,P,R} and {N ,Q,S}.
Let us now consider ⌃11, whose second-order contribu-

tions, evaluated in Eqs. (B28) and (B30), can be written
as
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, (75)

where the notation Ek1k2k3 ⌘ !k1 +!k2 +!k3 has been introduced. Summing the two terms and using properties (72)
and (73) one obtains
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one can prove that such quantities display the properties
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where the notation Ek1k2k3 ⌘ !k1 +!k2 +!k3 has been introduced. Summing the two terms and using properties (72)
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Compact form of second-order self-energy

⦿ In practise, energy denominators generate (numerical) difficulties

⦿ Eigenvalue problem can be rewritten in an energy-independent form

Energy-independent eigenvalue problem



Define new objects

Rewrite energy-dependent Dyson equation as

Energy-independent eigenvalue equation
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Energy-independent eigenvalue problem



ADC expansion

⦿ Algebraic Diagrammatic Construction (ADC) [Schirmer, Cederbaum & Walter 1983]
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ADC(2$) ,'ADC(4, 5)i
I
I I

Ip/Ih- 2p-1h 2h-1p I 3p- 2h 3h-2p

e.+Z(~) u Ull U U

(K+c)

(K+C)

(K+C)

FIG. 2. Second-order time-ordered (Goldstone) dia-
gram for the self-energy part M'(co ).

FIG. 1. Structure of the eigenvalue problem [Eq. (38)]
for the one-particle Green's function in the ABC ap-
proach. Note that there is no direct coupling between
(n + 1)p-nh excitations of the (N+ 1)-particle system and
(m + 1)h-mh excitations of the (N —1)-particle system for
m, n) 1.

configuration space, however, is defined by all 2h-lp
excitations

(j,k, l), with nznkni= 1 and k &I . (41b)

~e note that in the strict second-order scheme the
modified interaction matrix C vanishes. A straight-
forward extension can be obtained by employing the
first-order expressions for C which, strictly speak-
ing, are derived within the third-order scheme dis-
cussed below:

V V*.pj[kl] qj[kl]
Mpq njnknl .

jk&i ~+~j ~k
(39)

This expression fits trivially into the algebraic form
of Eq. (34) yielding

~(&)+jkl, j'k'1' jkl, j'k'I'

(&)
Cjkl, j'k'I' Cjkl, j'k'1

(428)

(42b)

(&)
Up jkl = Up jkl = Vpj[kl]

+jkljkl ~j +~k +~l
(40a)

(40b) +(k~l) . (42c)

(&)
Cjkl j k I = 5jj Vkl[k I ]—(5kk Vj l[jl ]+511Vj k[jk ])

Cjkl, j'k'I' (40c)

The configuration space is spanned by the 2p-lh ex-
citations

(j,k, l), with njnkn~ ——1 and k &1.
For case II the resulting expressions for K, Up, and
C are formally given also by Eqs. (4Qa)—(4Qc). The

I

The resulting approximation scheme for the self-
energy part M(co) is identical with the two-particle-
hole Tamm-Dancoff approximation (2p-h—TDA)
mentioned in Sec. I.
So that we may construct the third-order ADC

equations, we expand the algebraic form of Eq. (34)
to third order:

M~(co;3) =~U(3)[ni][—K—C(3)] '~U(3)

+ U' "t[co1 L] 'C' "[ni][—K] '—U"'+ 0(4)
I

(43)

This expansion starts with the second-order contri-
bution which has already been considered. Since Up
is at least of first order, the three third-order contri-
butions on the right-hand side of Eq. (43) involve
the second-order terms Up

' and the first-order term
C'". These quantities have to be determined by
comparison with the third-order contribution in the

diagrammatic perturbation expansion for M'(co) or
Mt (ni), respectively. In Fig. 3 the third-order dia-
grams contributing to Mr(co ) are shown. The corre-
sponding analytical expressions have been given else-
where. The diagrams C1,D1 are easily identified
with the last third-order teria of Eq. (43). This
determines C'". The diagrams C3,D3 and C2,D2

2

1
4

B33

1
2

B32 = B31

1
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B23 = B13 B11 = B22 = B12 = B21

FIG. 2. Gorkov ADC(3) diagrams of class B

C33 C32 C31

C23 C22 C21

C13 C12 C11

FIG. 3. Gorkov ADC(3) diagrams of class C
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We extend Gorkov-Green’s function formalism to the algebraic diagrammatic construction scheme
at third order [ADC(3)].

I. INTRODUCTION

There are 17 topologically distinct diagrams contribut-
ing to Gorkov ADC(3), all containing three interaction
lines. One interaction line is always connected to the in-
coming propagator, another one to the outgoing propaga-
tor. The diagrams can be then divided into three classes
depending on the nature of the intermediate interaction
line (not connected to any external line):

• Class A (intermediate “particle-particle1”)

• Class B (intermediate “hole-hole”)

• Class C (intermediate “particle-hole”)

We can further label a diagram according to the posi-
tion of the “hole” line (first from the left, second or third)
in the top and bottom interaction respectively, i.e. each
diagram will be denoted with Xij , where X ∈ {A,B,C}
and {i, j} ∈ {1, 2, 3}. In Figs. 1, 2 and 3 diagrams of
class A, B and C respectively are displayed.

1
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1
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1
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FIG. 1. Gorkov ADC(3) diagrams of class A
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Notice that the latter relationship can be also obtained from the
conjugate of Eq. (61) by using properties of Gorkov amplitudes
and self-energies. Equations (61) or (62) and their solutions are
independent of auxiliary potential U , which canceled out. This
leaves proper self-energy contributions only, which eventually
act as energy-dependent potentials. The self-energies depend,
in turn, on amplitudes U k and Vk such that Eqs. (61) or (62)
must be solved iteratively. At each iteration the chemical
potential µ must be fixed such that Eq. (18) is fulfilled, which
translates into the necessity for amplitude V to satisfy

N =
∑

a

ρaa =
∑

a,k

∣∣Vk
a

∣∣2
, (63)

where ρab is the (normal) one-body density matrix (54a).
As demonstrated in Appendix A, the spectroscopic am-

plitudes solution of Eq. (61) or (62) fulfill normalization
conditions

∑

a

∣∣Xk
a

∣∣2 = 1 +
∑

ab

Xk†
a

∂#ab(ω)
∂ω

∣∣∣∣
+ωk

Xk
b, (64a)

∑

a

∣∣Yk
a

∣∣2 = 1 +
∑

ab

Yk†
a

∂#ab(ω)
∂ω

∣∣∣∣
−ωk

Yk
b, (64b)

where only the proper self-energy appears because of the
energy independence of the auxiliary potential.

B. First-order self-energies

In Fig. 1, first-order diagrams contributing to normal and
anomalous self-energies are displayed. Diagrammatic rules
appropriate to the computation of Gorkov’s propagators and
for the evaluation of self-energy diagrams are discussed in
Appendix B, while the % derivability of the presently used
truncation scheme is addressed in Sec. VI.

The four first-order self-energies diagrams are computed in
Eqs. (B8), (B10), (B12), and (B13) and read

#
11 (1)
ab = +

∑

cd

V̄acbd ρdc ≡ +&ab = +&
†
ab, (65a)

#
22 (1)
ab = −

∑

cd

V̄b̄dāc ρ∗
cd = −&∗

āb̄
, (65b)

#
12 (1)
ab = 1

2

∑

cd

V̄ab̄cd̄ ρ̃cd ≡ +h̃ab, (65c)

#
21 (1)
ab = 1

2

∑

cd

V̄ ∗
bācd̄

ρ̃∗
cd = +h̃

†
ab, (65d)

where the normal (ρab) and anomalous (ρ̃ab) density matrices
have been defined in Eqs. (54).

FIG. 1. First-order normal #11 (1) (left) and anomalous #21 (1)

(right) self-energy diagrams. Double lines denote self-consistent
normal (two arrows in the same direction) and anomalous (two
arrows in opposite directions) propagators while dashed lines embody
antisymmetrized matrix elements of the NN interaction.

C. HFB limit

Neglecting higher-order contributions to the self-energy,
Eqs. (61) and (65) combine to give

∑

b

(
Tab + &ab − µ δab h̃ab

h̃
†
ab −T ∗

āb̄
− &∗

āb̄
+ µ δāb̄

) (
U k

b

Vk
b

)

= ωk

(
U k

a

Vk
a

)

, (66)

which is nothing but the HFB eigenvalue problem in the case
where time-reversal invariance is not assumed. In such a limit,
U k and Vk define the unitary Bogoliubov transformation [59]
according to

aa =
∑

k

U k
a βk + V̄k∗

a β
†
k , (67a)

a†
a =

∑

k

U k∗
a β

†
k + V̄k

a βk. (67b)

Moreover, normalization condition (64b) reduces in this case
to the well-known HFB identity

∑

a

∣∣Yk
a

∣∣2 =
∑

a

∣∣U k
a

∣∣2 +
∑

a

∣∣Vk
a

∣∣2 = 1. (68)

Let us now stress that, despite the energy independence of first-
order self-energies, some fragmentation of the single-particle
strength is already accounted for at the HFB level such that
one deals with quasiparticle degrees of freedom. In particular,
one can deduce from Eq. (68) that (generalized) spectroscopic
factors defined in Eq. (51) are already smaller than one. Such
a fragmentation is an established consequence of static pairing
correlations that are explicitly treated at the HFB level through
particle number symmetry breaking.

Finally, let us underline again that, whenever higher orders
are to be included in the calculation, first-order self-energies
(65) are self-consistently modified (in particular, through
the further fragmentation of the quasiparticle strength) such
that they no longer correspond to standard Hartree-Fock and
Bogoliubov potentials, in spite of their energy independence.
They actually correspond to the energy-independent part of
the (dynamically) correlated self-energy.

D. Second-order self-energies

Let us now discuss second-order contributions to normal
and anomalous (irreducible) self-energies.

In Figs. 2 and 3 the four types of normal and anomalous
self-energies are depicted. The evaluation of all second-order
diagrams is performed in Appendix B. Before addressing their

FIG. 2. Second-order normal self-energies #11 (2′) (left) and
#11 (2′′) (right). See Fig. 1 for conventions.
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in memory storage. Nevertheless, this eventually results in a
gain of more than one order of magnitude in computational
time with respect to solving Eq. (5) directly. As discussed at
length in the following, the large dimension of ! does not
preclude convergence in model spaces that are large enough
for modern ab initio nuclear structure calculations.

A. Self-consistency and dimensionality

Gorkov’s matrix depends on eigenvalues ωk and amplitudes
(U k ,Vk), which implies that the solution must be searched for
iteratively. To see how the energy-independent form, Eq. (19),
involves a drastic increase of the dimensionality of the problem
at each iteration, let us partition the matrix ! as follows:

! =

⎛

⎜⎜⎝

h h̃ C D̄∗

h̃† −h̄∗ D C̄∗

C† D† E 0
D̄T C̄T 0 −E

⎞

⎟⎟⎠ ≡
(

!(1) !(2)

!(2) † E

)
.

(20)

The number of states in the single-particle basis, Nb, defines
the dimension of the first-order block !(1) (see Fig. 1). Each of
the four sub-blocks in !(1) is Nb × Nb, for a total of 2Nb × 2Nb

matrix elements. The matrix E is diagonal for second-order
self-energies and its elements are all possible combinations of
three pole energies {ωk1,ωk2 ,ωk3}. A product state solution of
the HFB problem is typically chosen as the reference state so
that Nb positive quasiparticle energies are involved at the first
iteration. In this situation, the number of poles in Eqs. (13) is

Ns ≈
(

Nb

3

)
≈ N3

b

6
. (21)

Since Nb ≪ (Nb)3 it follows that dim(!) = Ntot ≈ N3
b /3. In a

general, e.g. m-scheme, implementation Nb of order of a few
hundreds are typically needed to achieve convergence. Thus,
the diagonalization of Gorkov’s matrix for large model spaces
may be infeasible with current computational resources, even
for the first iteration.

Diagonalizing ! the first time, about (Nb)3/6 new poles
(i.e. one-quasiparticle states) are generated, which repre-
sent the new fragments carrying each a fraction of the
spectral strength distribution. In the second iteration, the

number of possible three-quasiparticle energies Ek1k2k3 has
increased accordingly, resulting in Ns ≈ N9

b /216/6, which
leads to dim(!) ≈ N9

b /1000 × N9
b /1000. In the nth iteration

the matrix ! will have expanded to dimensions of order
N3n

b × N3n

b . This growth clearly prevents the exact treatment
of all poles in an actual (self-consistent) calculation and one
has to keep dim(!) below a threshold that makes the scheme
computationally tractable.

B. Krylov projection

We follow Ref. [25] and project the energy denominators
of #(dyn)(ω) to a smaller Krylov subspace. Doing so, the
dimensional growth of Gorkov’s matrix is contained and a
sustainable computational procedure can be developed.

We consider a set of pivot vectors pi with elements

pi
κ =

∑

a

C∗κ
a Ui

a +
∑

a

D̄κ
aV i

a , (22)

where (Ui , V i) are linearly independent vectors in the space
of HFB quasiparticle states, i.e., of the 2Nb eigensolutions of
!(1). In general, one needs as many pivots as there are single-
particle basis states in the model space to properly converge
all off-diagonal elements of Eqs. (13) [25]. Up to Np = 2Nb

starting pivots are thus used to generate a Krylov subspace K
associated with the submatrix E in Eq. (19). Our particular
implementation exploits a Lanczos-type algorithm that uses
one pivot at a time and iterates it Nℓ times, independently of
the others. Each time Lanczos iterations are started with a new
pivot, pi , this added pivot is first orthogonalized with respect
to the basis vectors already generated. This is equivalent to a
block Lanczos reduction based on a slightly modified set of
pivots {pi ′}. Eventually, the dimension of the Krylov space is
the number of total Lanczos iterations, NL = dim(K) = Nℓ ×
Np. Full details of the algorithm are given in Appendix A.

The block E in Eq. (20) reduces to a matrix of lower
dimensions,

E −→ E ′ =
(
L† E L

−L† E L

)
, (23)

where L is the collection of vectors generated by the Lanczos
procedure. The two off-diagonal blocks !(2) and !(2) † are
transformed accordingly:

!(2) −→ !′(2) = !(2)
(
L
L

)
, (24a)

!(2) † −→ !′(2) † =
(
L† L†) !(2) † . (24b)

These projected blocks are inserted in the original Gorkov
matrix

! −→ !′ =
(

!(1) !′(2)

!′(2) † E ′

)
, (25)

whose dimension is now dim(!′) = N ′
tot × N ′

tot = (2Nb +
2NL) × (2Nb + 2NL). Gorkov-Krylov’s matrix !′ is finally
(fully) diagonalized with standard diagonalization routines.
For a sufficiently large number of iterations dim(K) → dim(E)
and the exact result is recovered. In terms of Lehmann
representation, Eq. (13), the Krylov projected quantities results
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in memory storage. Nevertheless, this eventually results in a
gain of more than one order of magnitude in computational
time with respect to solving Eq. (5) directly. As discussed at
length in the following, the large dimension of ! does not
preclude convergence in model spaces that are large enough
for modern ab initio nuclear structure calculations.

A. Self-consistency and dimensionality

Gorkov’s matrix depends on eigenvalues ωk and amplitudes
(U k ,Vk), which implies that the solution must be searched for
iteratively. To see how the energy-independent form, Eq. (19),
involves a drastic increase of the dimensionality of the problem
at each iteration, let us partition the matrix ! as follows:

! =

⎛

⎜⎜⎝

h h̃ C D̄∗

h̃† −h̄∗ D C̄∗

C† D† E 0
D̄T C̄T 0 −E

⎞

⎟⎟⎠ ≡
(

!(1) !(2)

!(2) † E

)
.

(20)

The number of states in the single-particle basis, Nb, defines
the dimension of the first-order block !(1) (see Fig. 1). Each of
the four sub-blocks in !(1) is Nb × Nb, for a total of 2Nb × 2Nb

matrix elements. The matrix E is diagonal for second-order
self-energies and its elements are all possible combinations of
three pole energies {ωk1,ωk2 ,ωk3}. A product state solution of
the HFB problem is typically chosen as the reference state so
that Nb positive quasiparticle energies are involved at the first
iteration. In this situation, the number of poles in Eqs. (13) is

Ns ≈
(

Nb

3

)
≈ N3

b

6
. (21)

Since Nb ≪ (Nb)3 it follows that dim(!) = Ntot ≈ N3
b /3. In a

general, e.g. m-scheme, implementation Nb of order of a few
hundreds are typically needed to achieve convergence. Thus,
the diagonalization of Gorkov’s matrix for large model spaces
may be infeasible with current computational resources, even
for the first iteration.

Diagonalizing ! the first time, about (Nb)3/6 new poles
(i.e. one-quasiparticle states) are generated, which repre-
sent the new fragments carrying each a fraction of the
spectral strength distribution. In the second iteration, the

number of possible three-quasiparticle energies Ek1k2k3 has
increased accordingly, resulting in Ns ≈ N9

b /216/6, which
leads to dim(!) ≈ N9

b /1000 × N9
b /1000. In the nth iteration

the matrix ! will have expanded to dimensions of order
N3n

b × N3n

b . This growth clearly prevents the exact treatment
of all poles in an actual (self-consistent) calculation and one
has to keep dim(!) below a threshold that makes the scheme
computationally tractable.

B. Krylov projection

We follow Ref. [25] and project the energy denominators
of #(dyn)(ω) to a smaller Krylov subspace. Doing so, the
dimensional growth of Gorkov’s matrix is contained and a
sustainable computational procedure can be developed.

We consider a set of pivot vectors pi with elements

pi
κ =

∑

a

C∗κ
a Ui

a +
∑

a

D̄κ
aV i

a , (22)

where (Ui , V i) are linearly independent vectors in the space
of HFB quasiparticle states, i.e., of the 2Nb eigensolutions of
!(1). In general, one needs as many pivots as there are single-
particle basis states in the model space to properly converge
all off-diagonal elements of Eqs. (13) [25]. Up to Np = 2Nb

starting pivots are thus used to generate a Krylov subspace K
associated with the submatrix E in Eq. (19). Our particular
implementation exploits a Lanczos-type algorithm that uses
one pivot at a time and iterates it Nℓ times, independently of
the others. Each time Lanczos iterations are started with a new
pivot, pi , this added pivot is first orthogonalized with respect
to the basis vectors already generated. This is equivalent to a
block Lanczos reduction based on a slightly modified set of
pivots {pi ′}. Eventually, the dimension of the Krylov space is
the number of total Lanczos iterations, NL = dim(K) = Nℓ ×
Np. Full details of the algorithm are given in Appendix A.

The block E in Eq. (20) reduces to a matrix of lower
dimensions,

E −→ E ′ =
(
L† E L

−L† E L

)
, (23)

where L is the collection of vectors generated by the Lanczos
procedure. The two off-diagonal blocks !(2) and !(2) † are
transformed accordingly:

!(2) −→ !′(2) = !(2)
(
L
L

)
, (24a)

!(2) † −→ !′(2) † =
(
L† L†) !(2) † . (24b)

These projected blocks are inserted in the original Gorkov
matrix

! −→ !′ =
(

!(1) !′(2)

!′(2) † E ′

)
, (25)

whose dimension is now dim(!′) = N ′
tot × N ′

tot = (2Nb +
2NL) × (2Nb + 2NL). Gorkov-Krylov’s matrix !′ is finally
(fully) diagonalized with standard diagonalization routines.
For a sufficiently large number of iterations dim(K) → dim(E)
and the exact result is recovered. In terms of Lehmann
representation, Eq. (13), the Krylov projected quantities results
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in memory storage. Nevertheless, this eventually results in a
gain of more than one order of magnitude in computational
time with respect to solving Eq. (5) directly. As discussed at
length in the following, the large dimension of ! does not
preclude convergence in model spaces that are large enough
for modern ab initio nuclear structure calculations.

A. Self-consistency and dimensionality

Gorkov’s matrix depends on eigenvalues ωk and amplitudes
(U k ,Vk), which implies that the solution must be searched for
iteratively. To see how the energy-independent form, Eq. (19),
involves a drastic increase of the dimensionality of the problem
at each iteration, let us partition the matrix ! as follows:

! =

⎛

⎜⎜⎝

h h̃ C D̄∗

h̃† −h̄∗ D C̄∗

C† D† E 0
D̄T C̄T 0 −E

⎞

⎟⎟⎠ ≡
(

!(1) !(2)

!(2) † E

)
.

(20)

The number of states in the single-particle basis, Nb, defines
the dimension of the first-order block !(1) (see Fig. 1). Each of
the four sub-blocks in !(1) is Nb × Nb, for a total of 2Nb × 2Nb

matrix elements. The matrix E is diagonal for second-order
self-energies and its elements are all possible combinations of
three pole energies {ωk1,ωk2 ,ωk3}. A product state solution of
the HFB problem is typically chosen as the reference state so
that Nb positive quasiparticle energies are involved at the first
iteration. In this situation, the number of poles in Eqs. (13) is

Ns ≈
(

Nb

3

)
≈ N3

b

6
. (21)

Since Nb ≪ (Nb)3 it follows that dim(!) = Ntot ≈ N3
b /3. In a

general, e.g. m-scheme, implementation Nb of order of a few
hundreds are typically needed to achieve convergence. Thus,
the diagonalization of Gorkov’s matrix for large model spaces
may be infeasible with current computational resources, even
for the first iteration.

Diagonalizing ! the first time, about (Nb)3/6 new poles
(i.e. one-quasiparticle states) are generated, which repre-
sent the new fragments carrying each a fraction of the
spectral strength distribution. In the second iteration, the

number of possible three-quasiparticle energies Ek1k2k3 has
increased accordingly, resulting in Ns ≈ N9

b /216/6, which
leads to dim(!) ≈ N9

b /1000 × N9
b /1000. In the nth iteration

the matrix ! will have expanded to dimensions of order
N3n

b × N3n

b . This growth clearly prevents the exact treatment
of all poles in an actual (self-consistent) calculation and one
has to keep dim(!) below a threshold that makes the scheme
computationally tractable.

B. Krylov projection

We follow Ref. [25] and project the energy denominators
of #(dyn)(ω) to a smaller Krylov subspace. Doing so, the
dimensional growth of Gorkov’s matrix is contained and a
sustainable computational procedure can be developed.

We consider a set of pivot vectors pi with elements

pi
κ =

∑

a

C∗κ
a Ui

a +
∑

a

D̄κ
aV i

a , (22)

where (Ui , V i) are linearly independent vectors in the space
of HFB quasiparticle states, i.e., of the 2Nb eigensolutions of
!(1). In general, one needs as many pivots as there are single-
particle basis states in the model space to properly converge
all off-diagonal elements of Eqs. (13) [25]. Up to Np = 2Nb

starting pivots are thus used to generate a Krylov subspace K
associated with the submatrix E in Eq. (19). Our particular
implementation exploits a Lanczos-type algorithm that uses
one pivot at a time and iterates it Nℓ times, independently of
the others. Each time Lanczos iterations are started with a new
pivot, pi , this added pivot is first orthogonalized with respect
to the basis vectors already generated. This is equivalent to a
block Lanczos reduction based on a slightly modified set of
pivots {pi ′}. Eventually, the dimension of the Krylov space is
the number of total Lanczos iterations, NL = dim(K) = Nℓ ×
Np. Full details of the algorithm are given in Appendix A.

The block E in Eq. (20) reduces to a matrix of lower
dimensions,

E −→ E ′ =
(
L† E L

−L† E L

)
, (23)

where L is the collection of vectors generated by the Lanczos
procedure. The two off-diagonal blocks !(2) and !(2) † are
transformed accordingly:

!(2) −→ !′(2) = !(2)
(
L
L

)
, (24a)

!(2) † −→ !′(2) † =
(
L† L†) !(2) † . (24b)

These projected blocks are inserted in the original Gorkov
matrix

! −→ !′ =
(

!(1) !′(2)

!′(2) † E ′

)
, (25)

whose dimension is now dim(!′) = N ′
tot × N ′

tot = (2Nb +
2NL) × (2Nb + 2NL). Gorkov-Krylov’s matrix !′ is finally
(fully) diagonalized with standard diagonalization routines.
For a sufficiently large number of iterations dim(K) → dim(E)
and the exact result is recovered. In terms of Lehmann
representation, Eq. (13), the Krylov projected quantities results
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in memory storage. Nevertheless, this eventually results in a
gain of more than one order of magnitude in computational
time with respect to solving Eq. (5) directly. As discussed at
length in the following, the large dimension of ! does not
preclude convergence in model spaces that are large enough
for modern ab initio nuclear structure calculations.

A. Self-consistency and dimensionality

Gorkov’s matrix depends on eigenvalues ωk and amplitudes
(U k ,Vk), which implies that the solution must be searched for
iteratively. To see how the energy-independent form, Eq. (19),
involves a drastic increase of the dimensionality of the problem
at each iteration, let us partition the matrix ! as follows:

! =

⎛

⎜⎜⎝

h h̃ C D̄∗

h̃† −h̄∗ D C̄∗

C† D† E 0
D̄T C̄T 0 −E

⎞

⎟⎟⎠ ≡
(

!(1) !(2)

!(2) † E

)
.

(20)

The number of states in the single-particle basis, Nb, defines
the dimension of the first-order block !(1) (see Fig. 1). Each of
the four sub-blocks in !(1) is Nb × Nb, for a total of 2Nb × 2Nb

matrix elements. The matrix E is diagonal for second-order
self-energies and its elements are all possible combinations of
three pole energies {ωk1,ωk2 ,ωk3}. A product state solution of
the HFB problem is typically chosen as the reference state so
that Nb positive quasiparticle energies are involved at the first
iteration. In this situation, the number of poles in Eqs. (13) is

Ns ≈
(

Nb

3

)
≈ N3

b

6
. (21)

Since Nb ≪ (Nb)3 it follows that dim(!) = Ntot ≈ N3
b /3. In a

general, e.g. m-scheme, implementation Nb of order of a few
hundreds are typically needed to achieve convergence. Thus,
the diagonalization of Gorkov’s matrix for large model spaces
may be infeasible with current computational resources, even
for the first iteration.

Diagonalizing ! the first time, about (Nb)3/6 new poles
(i.e. one-quasiparticle states) are generated, which repre-
sent the new fragments carrying each a fraction of the
spectral strength distribution. In the second iteration, the

number of possible three-quasiparticle energies Ek1k2k3 has
increased accordingly, resulting in Ns ≈ N9

b /216/6, which
leads to dim(!) ≈ N9

b /1000 × N9
b /1000. In the nth iteration

the matrix ! will have expanded to dimensions of order
N3n

b × N3n

b . This growth clearly prevents the exact treatment
of all poles in an actual (self-consistent) calculation and one
has to keep dim(!) below a threshold that makes the scheme
computationally tractable.

B. Krylov projection

We follow Ref. [25] and project the energy denominators
of #(dyn)(ω) to a smaller Krylov subspace. Doing so, the
dimensional growth of Gorkov’s matrix is contained and a
sustainable computational procedure can be developed.

We consider a set of pivot vectors pi with elements

pi
κ =

∑

a

C∗κ
a Ui

a +
∑

a

D̄κ
aV i

a , (22)

where (Ui , V i) are linearly independent vectors in the space
of HFB quasiparticle states, i.e., of the 2Nb eigensolutions of
!(1). In general, one needs as many pivots as there are single-
particle basis states in the model space to properly converge
all off-diagonal elements of Eqs. (13) [25]. Up to Np = 2Nb

starting pivots are thus used to generate a Krylov subspace K
associated with the submatrix E in Eq. (19). Our particular
implementation exploits a Lanczos-type algorithm that uses
one pivot at a time and iterates it Nℓ times, independently of
the others. Each time Lanczos iterations are started with a new
pivot, pi , this added pivot is first orthogonalized with respect
to the basis vectors already generated. This is equivalent to a
block Lanczos reduction based on a slightly modified set of
pivots {pi ′}. Eventually, the dimension of the Krylov space is
the number of total Lanczos iterations, NL = dim(K) = Nℓ ×
Np. Full details of the algorithm are given in Appendix A.

The block E in Eq. (20) reduces to a matrix of lower
dimensions,

E −→ E ′ =
(
L† E L

−L† E L

)
, (23)

where L is the collection of vectors generated by the Lanczos
procedure. The two off-diagonal blocks !(2) and !(2) † are
transformed accordingly:

!(2) −→ !′(2) = !(2)
(
L
L

)
, (24a)

!(2) † −→ !′(2) † =
(
L† L†) !(2) † . (24b)

These projected blocks are inserted in the original Gorkov
matrix

! −→ !′ =
(

!(1) !′(2)

!′(2) † E ′

)
, (25)

whose dimension is now dim(!′) = N ′
tot × N ′

tot = (2Nb +
2NL) × (2Nb + 2NL). Gorkov-Krylov’s matrix !′ is finally
(fully) diagonalized with standard diagonalization routines.
For a sufficiently large number of iterations dim(K) → dim(E)
and the exact result is recovered. In terms of Lehmann
representation, Eq. (13), the Krylov projected quantities results
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Analogous properties can be derived for terms mixing
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in memory storage. Nevertheless, this eventually results in a
gain of more than one order of magnitude in computational
time with respect to solving Eq. (5) directly. As discussed at
length in the following, the large dimension of ! does not
preclude convergence in model spaces that are large enough
for modern ab initio nuclear structure calculations.

A. Self-consistency and dimensionality

Gorkov’s matrix depends on eigenvalues ωk and amplitudes
(U k ,Vk), which implies that the solution must be searched for
iteratively. To see how the energy-independent form, Eq. (19),
involves a drastic increase of the dimensionality of the problem
at each iteration, let us partition the matrix ! as follows:

! =

⎛

⎜⎜⎝

h h̃ C D̄∗

h̃† −h̄∗ D C̄∗

C† D† E 0
D̄T C̄T 0 −E

⎞

⎟⎟⎠ ≡
(

!(1) !(2)

!(2) † E

)
.

(20)

The number of states in the single-particle basis, Nb, defines
the dimension of the first-order block !(1) (see Fig. 1). Each of
the four sub-blocks in !(1) is Nb × Nb, for a total of 2Nb × 2Nb

matrix elements. The matrix E is diagonal for second-order
self-energies and its elements are all possible combinations of
three pole energies {ωk1,ωk2 ,ωk3}. A product state solution of
the HFB problem is typically chosen as the reference state so
that Nb positive quasiparticle energies are involved at the first
iteration. In this situation, the number of poles in Eqs. (13) is

Ns ≈
(

Nb

3

)
≈ N3

b

6
. (21)

Since Nb ≪ (Nb)3 it follows that dim(!) = Ntot ≈ N3
b /3. In a

general, e.g. m-scheme, implementation Nb of order of a few
hundreds are typically needed to achieve convergence. Thus,
the diagonalization of Gorkov’s matrix for large model spaces
may be infeasible with current computational resources, even
for the first iteration.

Diagonalizing ! the first time, about (Nb)3/6 new poles
(i.e. one-quasiparticle states) are generated, which repre-
sent the new fragments carrying each a fraction of the
spectral strength distribution. In the second iteration, the

number of possible three-quasiparticle energies Ek1k2k3 has
increased accordingly, resulting in Ns ≈ N9

b /216/6, which
leads to dim(!) ≈ N9

b /1000 × N9
b /1000. In the nth iteration

the matrix ! will have expanded to dimensions of order
N3n

b × N3n

b . This growth clearly prevents the exact treatment
of all poles in an actual (self-consistent) calculation and one
has to keep dim(!) below a threshold that makes the scheme
computationally tractable.

B. Krylov projection

We follow Ref. [25] and project the energy denominators
of #(dyn)(ω) to a smaller Krylov subspace. Doing so, the
dimensional growth of Gorkov’s matrix is contained and a
sustainable computational procedure can be developed.

We consider a set of pivot vectors pi with elements

pi
κ =

∑

a

C∗κ
a Ui

a +
∑

a

D̄κ
aV i

a , (22)

where (Ui , V i) are linearly independent vectors in the space
of HFB quasiparticle states, i.e., of the 2Nb eigensolutions of
!(1). In general, one needs as many pivots as there are single-
particle basis states in the model space to properly converge
all off-diagonal elements of Eqs. (13) [25]. Up to Np = 2Nb

starting pivots are thus used to generate a Krylov subspace K
associated with the submatrix E in Eq. (19). Our particular
implementation exploits a Lanczos-type algorithm that uses
one pivot at a time and iterates it Nℓ times, independently of
the others. Each time Lanczos iterations are started with a new
pivot, pi , this added pivot is first orthogonalized with respect
to the basis vectors already generated. This is equivalent to a
block Lanczos reduction based on a slightly modified set of
pivots {pi ′}. Eventually, the dimension of the Krylov space is
the number of total Lanczos iterations, NL = dim(K) = Nℓ ×
Np. Full details of the algorithm are given in Appendix A.

The block E in Eq. (20) reduces to a matrix of lower
dimensions,

E −→ E ′ =
(
L† E L

−L† E L

)
, (23)

where L is the collection of vectors generated by the Lanczos
procedure. The two off-diagonal blocks !(2) and !(2) † are
transformed accordingly:

!(2) −→ !′(2) = !(2)
(
L
L

)
, (24a)

!(2) † −→ !′(2) † =
(
L† L†) !(2) † . (24b)

These projected blocks are inserted in the original Gorkov
matrix

! −→ !′ =
(

!(1) !′(2)

!′(2) † E ′

)
, (25)

whose dimension is now dim(!′) = N ′
tot × N ′

tot = (2Nb +
2NL) × (2Nb + 2NL). Gorkov-Krylov’s matrix !′ is finally
(fully) diagonalized with standard diagonalization routines.
For a sufficiently large number of iterations dim(K) → dim(E)
and the exact result is recovered. In terms of Lehmann
representation, Eq. (13), the Krylov projected quantities results
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in memory storage. Nevertheless, this eventually results in a
gain of more than one order of magnitude in computational
time with respect to solving Eq. (5) directly. As discussed at
length in the following, the large dimension of ! does not
preclude convergence in model spaces that are large enough
for modern ab initio nuclear structure calculations.

A. Self-consistency and dimensionality

Gorkov’s matrix depends on eigenvalues ωk and amplitudes
(U k ,Vk), which implies that the solution must be searched for
iteratively. To see how the energy-independent form, Eq. (19),
involves a drastic increase of the dimensionality of the problem
at each iteration, let us partition the matrix ! as follows:

! =

⎛

⎜⎜⎝

h h̃ C D̄∗

h̃† −h̄∗ D C̄∗

C† D† E 0
D̄T C̄T 0 −E

⎞

⎟⎟⎠ ≡
(

!(1) !(2)

!(2) † E

)
.

(20)

The number of states in the single-particle basis, Nb, defines
the dimension of the first-order block !(1) (see Fig. 1). Each of
the four sub-blocks in !(1) is Nb × Nb, for a total of 2Nb × 2Nb

matrix elements. The matrix E is diagonal for second-order
self-energies and its elements are all possible combinations of
three pole energies {ωk1,ωk2 ,ωk3}. A product state solution of
the HFB problem is typically chosen as the reference state so
that Nb positive quasiparticle energies are involved at the first
iteration. In this situation, the number of poles in Eqs. (13) is

Ns ≈
(

Nb

3

)
≈ N3

b

6
. (21)

Since Nb ≪ (Nb)3 it follows that dim(!) = Ntot ≈ N3
b /3. In a

general, e.g. m-scheme, implementation Nb of order of a few
hundreds are typically needed to achieve convergence. Thus,
the diagonalization of Gorkov’s matrix for large model spaces
may be infeasible with current computational resources, even
for the first iteration.

Diagonalizing ! the first time, about (Nb)3/6 new poles
(i.e. one-quasiparticle states) are generated, which repre-
sent the new fragments carrying each a fraction of the
spectral strength distribution. In the second iteration, the

number of possible three-quasiparticle energies Ek1k2k3 has
increased accordingly, resulting in Ns ≈ N9

b /216/6, which
leads to dim(!) ≈ N9

b /1000 × N9
b /1000. In the nth iteration

the matrix ! will have expanded to dimensions of order
N3n

b × N3n

b . This growth clearly prevents the exact treatment
of all poles in an actual (self-consistent) calculation and one
has to keep dim(!) below a threshold that makes the scheme
computationally tractable.

B. Krylov projection

We follow Ref. [25] and project the energy denominators
of #(dyn)(ω) to a smaller Krylov subspace. Doing so, the
dimensional growth of Gorkov’s matrix is contained and a
sustainable computational procedure can be developed.

We consider a set of pivot vectors pi with elements

pi
κ =

∑

a

C∗κ
a Ui

a +
∑

a

D̄κ
aV i

a , (22)

where (Ui , V i) are linearly independent vectors in the space
of HFB quasiparticle states, i.e., of the 2Nb eigensolutions of
!(1). In general, one needs as many pivots as there are single-
particle basis states in the model space to properly converge
all off-diagonal elements of Eqs. (13) [25]. Up to Np = 2Nb

starting pivots are thus used to generate a Krylov subspace K
associated with the submatrix E in Eq. (19). Our particular
implementation exploits a Lanczos-type algorithm that uses
one pivot at a time and iterates it Nℓ times, independently of
the others. Each time Lanczos iterations are started with a new
pivot, pi , this added pivot is first orthogonalized with respect
to the basis vectors already generated. This is equivalent to a
block Lanczos reduction based on a slightly modified set of
pivots {pi ′}. Eventually, the dimension of the Krylov space is
the number of total Lanczos iterations, NL = dim(K) = Nℓ ×
Np. Full details of the algorithm are given in Appendix A.

The block E in Eq. (20) reduces to a matrix of lower
dimensions,

E −→ E ′ =
(
L† E L

−L† E L

)
, (23)

where L is the collection of vectors generated by the Lanczos
procedure. The two off-diagonal blocks !(2) and !(2) † are
transformed accordingly:

!(2) −→ !′(2) = !(2)
(
L
L

)
, (24a)

!(2) † −→ !′(2) † =
(
L† L†) !(2) † . (24b)

These projected blocks are inserted in the original Gorkov
matrix

! −→ !′ =
(

!(1) !′(2)

!′(2) † E ′

)
, (25)

whose dimension is now dim(!′) = N ′
tot × N ′

tot = (2Nb +
2NL) × (2Nb + 2NL). Gorkov-Krylov’s matrix !′ is finally
(fully) diagonalized with standard diagonalization routines.
For a sufficiently large number of iterations dim(K) → dim(E)
and the exact result is recovered. In terms of Lehmann
representation, Eq. (13), the Krylov projected quantities results
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in memory storage. Nevertheless, this eventually results in a
gain of more than one order of magnitude in computational
time with respect to solving Eq. (5) directly. As discussed at
length in the following, the large dimension of ! does not
preclude convergence in model spaces that are large enough
for modern ab initio nuclear structure calculations.

A. Self-consistency and dimensionality

Gorkov’s matrix depends on eigenvalues ωk and amplitudes
(U k ,Vk), which implies that the solution must be searched for
iteratively. To see how the energy-independent form, Eq. (19),
involves a drastic increase of the dimensionality of the problem
at each iteration, let us partition the matrix ! as follows:

! =

⎛

⎜⎜⎝

h h̃ C D̄∗

h̃† −h̄∗ D C̄∗

C† D† E 0
D̄T C̄T 0 −E

⎞

⎟⎟⎠ ≡
(

!(1) !(2)

!(2) † E

)
.

(20)

The number of states in the single-particle basis, Nb, defines
the dimension of the first-order block !(1) (see Fig. 1). Each of
the four sub-blocks in !(1) is Nb × Nb, for a total of 2Nb × 2Nb

matrix elements. The matrix E is diagonal for second-order
self-energies and its elements are all possible combinations of
three pole energies {ωk1,ωk2 ,ωk3}. A product state solution of
the HFB problem is typically chosen as the reference state so
that Nb positive quasiparticle energies are involved at the first
iteration. In this situation, the number of poles in Eqs. (13) is

Ns ≈
(

Nb

3

)
≈ N3

b

6
. (21)

Since Nb ≪ (Nb)3 it follows that dim(!) = Ntot ≈ N3
b /3. In a

general, e.g. m-scheme, implementation Nb of order of a few
hundreds are typically needed to achieve convergence. Thus,
the diagonalization of Gorkov’s matrix for large model spaces
may be infeasible with current computational resources, even
for the first iteration.

Diagonalizing ! the first time, about (Nb)3/6 new poles
(i.e. one-quasiparticle states) are generated, which repre-
sent the new fragments carrying each a fraction of the
spectral strength distribution. In the second iteration, the

number of possible three-quasiparticle energies Ek1k2k3 has
increased accordingly, resulting in Ns ≈ N9

b /216/6, which
leads to dim(!) ≈ N9

b /1000 × N9
b /1000. In the nth iteration

the matrix ! will have expanded to dimensions of order
N3n

b × N3n

b . This growth clearly prevents the exact treatment
of all poles in an actual (self-consistent) calculation and one
has to keep dim(!) below a threshold that makes the scheme
computationally tractable.

B. Krylov projection

We follow Ref. [25] and project the energy denominators
of #(dyn)(ω) to a smaller Krylov subspace. Doing so, the
dimensional growth of Gorkov’s matrix is contained and a
sustainable computational procedure can be developed.

We consider a set of pivot vectors pi with elements

pi
κ =

∑

a

C∗κ
a Ui

a +
∑

a

D̄κ
aV i

a , (22)

where (Ui , V i) are linearly independent vectors in the space
of HFB quasiparticle states, i.e., of the 2Nb eigensolutions of
!(1). In general, one needs as many pivots as there are single-
particle basis states in the model space to properly converge
all off-diagonal elements of Eqs. (13) [25]. Up to Np = 2Nb

starting pivots are thus used to generate a Krylov subspace K
associated with the submatrix E in Eq. (19). Our particular
implementation exploits a Lanczos-type algorithm that uses
one pivot at a time and iterates it Nℓ times, independently of
the others. Each time Lanczos iterations are started with a new
pivot, pi , this added pivot is first orthogonalized with respect
to the basis vectors already generated. This is equivalent to a
block Lanczos reduction based on a slightly modified set of
pivots {pi ′}. Eventually, the dimension of the Krylov space is
the number of total Lanczos iterations, NL = dim(K) = Nℓ ×
Np. Full details of the algorithm are given in Appendix A.

The block E in Eq. (20) reduces to a matrix of lower
dimensions,

E −→ E ′ =
(
L† E L

−L† E L

)
, (23)

where L is the collection of vectors generated by the Lanczos
procedure. The two off-diagonal blocks !(2) and !(2) † are
transformed accordingly:

!(2) −→ !′(2) = !(2)
(
L
L

)
, (24a)

!(2) † −→ !′(2) † =
(
L† L†) !(2) † . (24b)

These projected blocks are inserted in the original Gorkov
matrix

! −→ !′ =
(

!(1) !′(2)

!′(2) † E ′

)
, (25)

whose dimension is now dim(!′) = N ′
tot × N ′

tot = (2Nb +
2NL) × (2Nb + 2NL). Gorkov-Krylov’s matrix !′ is finally
(fully) diagonalized with standard diagonalization routines.
For a sufficiently large number of iterations dim(K) → dim(E)
and the exact result is recovered. In terms of Lehmann
representation, Eq. (13), the Krylov projected quantities results
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in memory storage. Nevertheless, this eventually results in a
gain of more than one order of magnitude in computational
time with respect to solving Eq. (5) directly. As discussed at
length in the following, the large dimension of ! does not
preclude convergence in model spaces that are large enough
for modern ab initio nuclear structure calculations.

A. Self-consistency and dimensionality

Gorkov’s matrix depends on eigenvalues ωk and amplitudes
(U k ,Vk), which implies that the solution must be searched for
iteratively. To see how the energy-independent form, Eq. (19),
involves a drastic increase of the dimensionality of the problem
at each iteration, let us partition the matrix ! as follows:

! =

⎛

⎜⎜⎝

h h̃ C D̄∗

h̃† −h̄∗ D C̄∗

C† D† E 0
D̄T C̄T 0 −E

⎞

⎟⎟⎠ ≡
(

!(1) !(2)

!(2) † E

)
.

(20)

The number of states in the single-particle basis, Nb, defines
the dimension of the first-order block !(1) (see Fig. 1). Each of
the four sub-blocks in !(1) is Nb × Nb, for a total of 2Nb × 2Nb

matrix elements. The matrix E is diagonal for second-order
self-energies and its elements are all possible combinations of
three pole energies {ωk1,ωk2 ,ωk3}. A product state solution of
the HFB problem is typically chosen as the reference state so
that Nb positive quasiparticle energies are involved at the first
iteration. In this situation, the number of poles in Eqs. (13) is

Ns ≈
(

Nb

3

)
≈ N3

b

6
. (21)

Since Nb ≪ (Nb)3 it follows that dim(!) = Ntot ≈ N3
b /3. In a

general, e.g. m-scheme, implementation Nb of order of a few
hundreds are typically needed to achieve convergence. Thus,
the diagonalization of Gorkov’s matrix for large model spaces
may be infeasible with current computational resources, even
for the first iteration.

Diagonalizing ! the first time, about (Nb)3/6 new poles
(i.e. one-quasiparticle states) are generated, which repre-
sent the new fragments carrying each a fraction of the
spectral strength distribution. In the second iteration, the

number of possible three-quasiparticle energies Ek1k2k3 has
increased accordingly, resulting in Ns ≈ N9

b /216/6, which
leads to dim(!) ≈ N9

b /1000 × N9
b /1000. In the nth iteration

the matrix ! will have expanded to dimensions of order
N3n

b × N3n

b . This growth clearly prevents the exact treatment
of all poles in an actual (self-consistent) calculation and one
has to keep dim(!) below a threshold that makes the scheme
computationally tractable.

B. Krylov projection

We follow Ref. [25] and project the energy denominators
of #(dyn)(ω) to a smaller Krylov subspace. Doing so, the
dimensional growth of Gorkov’s matrix is contained and a
sustainable computational procedure can be developed.

We consider a set of pivot vectors pi with elements

pi
κ =

∑

a

C∗κ
a Ui

a +
∑

a

D̄κ
aV i

a , (22)

where (Ui , V i) are linearly independent vectors in the space
of HFB quasiparticle states, i.e., of the 2Nb eigensolutions of
!(1). In general, one needs as many pivots as there are single-
particle basis states in the model space to properly converge
all off-diagonal elements of Eqs. (13) [25]. Up to Np = 2Nb

starting pivots are thus used to generate a Krylov subspace K
associated with the submatrix E in Eq. (19). Our particular
implementation exploits a Lanczos-type algorithm that uses
one pivot at a time and iterates it Nℓ times, independently of
the others. Each time Lanczos iterations are started with a new
pivot, pi , this added pivot is first orthogonalized with respect
to the basis vectors already generated. This is equivalent to a
block Lanczos reduction based on a slightly modified set of
pivots {pi ′}. Eventually, the dimension of the Krylov space is
the number of total Lanczos iterations, NL = dim(K) = Nℓ ×
Np. Full details of the algorithm are given in Appendix A.

The block E in Eq. (20) reduces to a matrix of lower
dimensions,

E −→ E ′ =
(
L† E L

−L† E L

)
, (23)

where L is the collection of vectors generated by the Lanczos
procedure. The two off-diagonal blocks !(2) and !(2) † are
transformed accordingly:

!(2) −→ !′(2) = !(2)
(
L
L

)
, (24a)

!(2) † −→ !′(2) † =
(
L† L†) !(2) † . (24b)

These projected blocks are inserted in the original Gorkov
matrix

! −→ !′ =
(

!(1) !′(2)

!′(2) † E ′

)
, (25)

whose dimension is now dim(!′) = N ′
tot × N ′

tot = (2Nb +
2NL) × (2Nb + 2NL). Gorkov-Krylov’s matrix !′ is finally
(fully) diagonalized with standard diagonalization routines.
For a sufficiently large number of iterations dim(K) → dim(E)
and the exact result is recovered. In terms of Lehmann
representation, Eq. (13), the Krylov projected quantities results
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in memory storage. Nevertheless, this eventually results in a
gain of more than one order of magnitude in computational
time with respect to solving Eq. (5) directly. As discussed at
length in the following, the large dimension of ! does not
preclude convergence in model spaces that are large enough
for modern ab initio nuclear structure calculations.

A. Self-consistency and dimensionality

Gorkov’s matrix depends on eigenvalues ωk and amplitudes
(U k ,Vk), which implies that the solution must be searched for
iteratively. To see how the energy-independent form, Eq. (19),
involves a drastic increase of the dimensionality of the problem
at each iteration, let us partition the matrix ! as follows:

! =

⎛

⎜⎜⎝

h h̃ C D̄∗

h̃† −h̄∗ D C̄∗

C† D† E 0
D̄T C̄T 0 −E

⎞

⎟⎟⎠ ≡
(

!(1) !(2)

!(2) † E

)
.

(20)

The number of states in the single-particle basis, Nb, defines
the dimension of the first-order block !(1) (see Fig. 1). Each of
the four sub-blocks in !(1) is Nb × Nb, for a total of 2Nb × 2Nb

matrix elements. The matrix E is diagonal for second-order
self-energies and its elements are all possible combinations of
three pole energies {ωk1,ωk2 ,ωk3}. A product state solution of
the HFB problem is typically chosen as the reference state so
that Nb positive quasiparticle energies are involved at the first
iteration. In this situation, the number of poles in Eqs. (13) is

Ns ≈
(

Nb

3

)
≈ N3

b

6
. (21)

Since Nb ≪ (Nb)3 it follows that dim(!) = Ntot ≈ N3
b /3. In a

general, e.g. m-scheme, implementation Nb of order of a few
hundreds are typically needed to achieve convergence. Thus,
the diagonalization of Gorkov’s matrix for large model spaces
may be infeasible with current computational resources, even
for the first iteration.

Diagonalizing ! the first time, about (Nb)3/6 new poles
(i.e. one-quasiparticle states) are generated, which repre-
sent the new fragments carrying each a fraction of the
spectral strength distribution. In the second iteration, the

number of possible three-quasiparticle energies Ek1k2k3 has
increased accordingly, resulting in Ns ≈ N9

b /216/6, which
leads to dim(!) ≈ N9

b /1000 × N9
b /1000. In the nth iteration

the matrix ! will have expanded to dimensions of order
N3n

b × N3n

b . This growth clearly prevents the exact treatment
of all poles in an actual (self-consistent) calculation and one
has to keep dim(!) below a threshold that makes the scheme
computationally tractable.

B. Krylov projection

We follow Ref. [25] and project the energy denominators
of #(dyn)(ω) to a smaller Krylov subspace. Doing so, the
dimensional growth of Gorkov’s matrix is contained and a
sustainable computational procedure can be developed.

We consider a set of pivot vectors pi with elements

pi
κ =

∑

a

C∗κ
a Ui

a +
∑

a

D̄κ
aV i

a , (22)

where (Ui , V i) are linearly independent vectors in the space
of HFB quasiparticle states, i.e., of the 2Nb eigensolutions of
!(1). In general, one needs as many pivots as there are single-
particle basis states in the model space to properly converge
all off-diagonal elements of Eqs. (13) [25]. Up to Np = 2Nb

starting pivots are thus used to generate a Krylov subspace K
associated with the submatrix E in Eq. (19). Our particular
implementation exploits a Lanczos-type algorithm that uses
one pivot at a time and iterates it Nℓ times, independently of
the others. Each time Lanczos iterations are started with a new
pivot, pi , this added pivot is first orthogonalized with respect
to the basis vectors already generated. This is equivalent to a
block Lanczos reduction based on a slightly modified set of
pivots {pi ′}. Eventually, the dimension of the Krylov space is
the number of total Lanczos iterations, NL = dim(K) = Nℓ ×
Np. Full details of the algorithm are given in Appendix A.

The block E in Eq. (20) reduces to a matrix of lower
dimensions,

E −→ E ′ =
(
L† E L

−L† E L

)
, (23)

where L is the collection of vectors generated by the Lanczos
procedure. The two off-diagonal blocks !(2) and !(2) † are
transformed accordingly:

!(2) −→ !′(2) = !(2)
(
L
L

)
, (24a)

!(2) † −→ !′(2) † =
(
L† L†) !(2) † . (24b)

These projected blocks are inserted in the original Gorkov
matrix

! −→ !′ =
(

!(1) !′(2)

!′(2) † E ′

)
, (25)

whose dimension is now dim(!′) = N ′
tot × N ′

tot = (2Nb +
2NL) × (2Nb + 2NL). Gorkov-Krylov’s matrix !′ is finally
(fully) diagonalized with standard diagonalization routines.
For a sufficiently large number of iterations dim(K) → dim(E)
and the exact result is recovered. In terms of Lehmann
representation, Eq. (13), the Krylov projected quantities results
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in memory storage. Nevertheless, this eventually results in a
gain of more than one order of magnitude in computational
time with respect to solving Eq. (5) directly. As discussed at
length in the following, the large dimension of ! does not
preclude convergence in model spaces that are large enough
for modern ab initio nuclear structure calculations.

A. Self-consistency and dimensionality

Gorkov’s matrix depends on eigenvalues ωk and amplitudes
(U k ,Vk), which implies that the solution must be searched for
iteratively. To see how the energy-independent form, Eq. (19),
involves a drastic increase of the dimensionality of the problem
at each iteration, let us partition the matrix ! as follows:

! =

⎛

⎜⎜⎝

h h̃ C D̄∗

h̃† −h̄∗ D C̄∗

C† D† E 0
D̄T C̄T 0 −E

⎞

⎟⎟⎠ ≡
(

!(1) !(2)

!(2) † E

)
.

(20)

The number of states in the single-particle basis, Nb, defines
the dimension of the first-order block !(1) (see Fig. 1). Each of
the four sub-blocks in !(1) is Nb × Nb, for a total of 2Nb × 2Nb

matrix elements. The matrix E is diagonal for second-order
self-energies and its elements are all possible combinations of
three pole energies {ωk1,ωk2 ,ωk3}. A product state solution of
the HFB problem is typically chosen as the reference state so
that Nb positive quasiparticle energies are involved at the first
iteration. In this situation, the number of poles in Eqs. (13) is

Ns ≈
(

Nb

3

)
≈ N3

b

6
. (21)

Since Nb ≪ (Nb)3 it follows that dim(!) = Ntot ≈ N3
b /3. In a

general, e.g. m-scheme, implementation Nb of order of a few
hundreds are typically needed to achieve convergence. Thus,
the diagonalization of Gorkov’s matrix for large model spaces
may be infeasible with current computational resources, even
for the first iteration.

Diagonalizing ! the first time, about (Nb)3/6 new poles
(i.e. one-quasiparticle states) are generated, which repre-
sent the new fragments carrying each a fraction of the
spectral strength distribution. In the second iteration, the

number of possible three-quasiparticle energies Ek1k2k3 has
increased accordingly, resulting in Ns ≈ N9

b /216/6, which
leads to dim(!) ≈ N9

b /1000 × N9
b /1000. In the nth iteration

the matrix ! will have expanded to dimensions of order
N3n

b × N3n

b . This growth clearly prevents the exact treatment
of all poles in an actual (self-consistent) calculation and one
has to keep dim(!) below a threshold that makes the scheme
computationally tractable.

B. Krylov projection

We follow Ref. [25] and project the energy denominators
of #(dyn)(ω) to a smaller Krylov subspace. Doing so, the
dimensional growth of Gorkov’s matrix is contained and a
sustainable computational procedure can be developed.

We consider a set of pivot vectors pi with elements

pi
κ =

∑

a

C∗κ
a Ui

a +
∑

a

D̄κ
aV i

a , (22)

where (Ui , V i) are linearly independent vectors in the space
of HFB quasiparticle states, i.e., of the 2Nb eigensolutions of
!(1). In general, one needs as many pivots as there are single-
particle basis states in the model space to properly converge
all off-diagonal elements of Eqs. (13) [25]. Up to Np = 2Nb

starting pivots are thus used to generate a Krylov subspace K
associated with the submatrix E in Eq. (19). Our particular
implementation exploits a Lanczos-type algorithm that uses
one pivot at a time and iterates it Nℓ times, independently of
the others. Each time Lanczos iterations are started with a new
pivot, pi , this added pivot is first orthogonalized with respect
to the basis vectors already generated. This is equivalent to a
block Lanczos reduction based on a slightly modified set of
pivots {pi ′}. Eventually, the dimension of the Krylov space is
the number of total Lanczos iterations, NL = dim(K) = Nℓ ×
Np. Full details of the algorithm are given in Appendix A.

The block E in Eq. (20) reduces to a matrix of lower
dimensions,

E −→ E ′ =
(
L† E L

−L† E L

)
, (23)

where L is the collection of vectors generated by the Lanczos
procedure. The two off-diagonal blocks !(2) and !(2) † are
transformed accordingly:

!(2) −→ !′(2) = !(2)
(
L
L

)
, (24a)

!(2) † −→ !′(2) † =
(
L† L†) !(2) † . (24b)

These projected blocks are inserted in the original Gorkov
matrix

! −→ !′ =
(

!(1) !′(2)

!′(2) † E ′

)
, (25)

whose dimension is now dim(!′) = N ′
tot × N ′

tot = (2Nb +
2NL) × (2Nb + 2NL). Gorkov-Krylov’s matrix !′ is finally
(fully) diagonalized with standard diagonalization routines.
For a sufficiently large number of iterations dim(K) → dim(E)
and the exact result is recovered. In terms of Lehmann
representation, Eq. (13), the Krylov projected quantities results
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in memory storage. Nevertheless, this eventually results in a
gain of more than one order of magnitude in computational
time with respect to solving Eq. (5) directly. As discussed at
length in the following, the large dimension of ! does not
preclude convergence in model spaces that are large enough
for modern ab initio nuclear structure calculations.

A. Self-consistency and dimensionality

Gorkov’s matrix depends on eigenvalues ωk and amplitudes
(U k ,Vk), which implies that the solution must be searched for
iteratively. To see how the energy-independent form, Eq. (19),
involves a drastic increase of the dimensionality of the problem
at each iteration, let us partition the matrix ! as follows:

! =

⎛

⎜⎜⎝

h h̃ C D̄∗

h̃† −h̄∗ D C̄∗

C† D† E 0
D̄T C̄T 0 −E

⎞

⎟⎟⎠ ≡
(

!(1) !(2)

!(2) † E

)
.

(20)

The number of states in the single-particle basis, Nb, defines
the dimension of the first-order block !(1) (see Fig. 1). Each of
the four sub-blocks in !(1) is Nb × Nb, for a total of 2Nb × 2Nb

matrix elements. The matrix E is diagonal for second-order
self-energies and its elements are all possible combinations of
three pole energies {ωk1,ωk2 ,ωk3}. A product state solution of
the HFB problem is typically chosen as the reference state so
that Nb positive quasiparticle energies are involved at the first
iteration. In this situation, the number of poles in Eqs. (13) is

Ns ≈
(

Nb

3

)
≈ N3

b

6
. (21)

Since Nb ≪ (Nb)3 it follows that dim(!) = Ntot ≈ N3
b /3. In a

general, e.g. m-scheme, implementation Nb of order of a few
hundreds are typically needed to achieve convergence. Thus,
the diagonalization of Gorkov’s matrix for large model spaces
may be infeasible with current computational resources, even
for the first iteration.

Diagonalizing ! the first time, about (Nb)3/6 new poles
(i.e. one-quasiparticle states) are generated, which repre-
sent the new fragments carrying each a fraction of the
spectral strength distribution. In the second iteration, the

number of possible three-quasiparticle energies Ek1k2k3 has
increased accordingly, resulting in Ns ≈ N9

b /216/6, which
leads to dim(!) ≈ N9

b /1000 × N9
b /1000. In the nth iteration

the matrix ! will have expanded to dimensions of order
N3n

b × N3n

b . This growth clearly prevents the exact treatment
of all poles in an actual (self-consistent) calculation and one
has to keep dim(!) below a threshold that makes the scheme
computationally tractable.

B. Krylov projection

We follow Ref. [25] and project the energy denominators
of #(dyn)(ω) to a smaller Krylov subspace. Doing so, the
dimensional growth of Gorkov’s matrix is contained and a
sustainable computational procedure can be developed.

We consider a set of pivot vectors pi with elements

pi
κ =

∑

a

C∗κ
a Ui

a +
∑

a

D̄κ
aV i

a , (22)

where (Ui , V i) are linearly independent vectors in the space
of HFB quasiparticle states, i.e., of the 2Nb eigensolutions of
!(1). In general, one needs as many pivots as there are single-
particle basis states in the model space to properly converge
all off-diagonal elements of Eqs. (13) [25]. Up to Np = 2Nb

starting pivots are thus used to generate a Krylov subspace K
associated with the submatrix E in Eq. (19). Our particular
implementation exploits a Lanczos-type algorithm that uses
one pivot at a time and iterates it Nℓ times, independently of
the others. Each time Lanczos iterations are started with a new
pivot, pi , this added pivot is first orthogonalized with respect
to the basis vectors already generated. This is equivalent to a
block Lanczos reduction based on a slightly modified set of
pivots {pi ′}. Eventually, the dimension of the Krylov space is
the number of total Lanczos iterations, NL = dim(K) = Nℓ ×
Np. Full details of the algorithm are given in Appendix A.

The block E in Eq. (20) reduces to a matrix of lower
dimensions,

E −→ E ′ =
(
L† E L

−L† E L

)
, (23)

where L is the collection of vectors generated by the Lanczos
procedure. The two off-diagonal blocks !(2) and !(2) † are
transformed accordingly:

!(2) −→ !′(2) = !(2)
(
L
L

)
, (24a)

!(2) † −→ !′(2) † =
(
L† L†) !(2) † . (24b)

These projected blocks are inserted in the original Gorkov
matrix

! −→ !′ =
(

!(1) !′(2)

!′(2) † E ′

)
, (25)

whose dimension is now dim(!′) = N ′
tot × N ′

tot = (2Nb +
2NL) × (2Nb + 2NL). Gorkov-Krylov’s matrix !′ is finally
(fully) diagonalized with standard diagonalization routines.
For a sufficiently large number of iterations dim(K) → dim(E)
and the exact result is recovered. In terms of Lehmann
representation, Eq. (13), the Krylov projected quantities results
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in memory storage. Nevertheless, this eventually results in a
gain of more than one order of magnitude in computational
time with respect to solving Eq. (5) directly. As discussed at
length in the following, the large dimension of ! does not
preclude convergence in model spaces that are large enough
for modern ab initio nuclear structure calculations.

A. Self-consistency and dimensionality

Gorkov’s matrix depends on eigenvalues ωk and amplitudes
(U k ,Vk), which implies that the solution must be searched for
iteratively. To see how the energy-independent form, Eq. (19),
involves a drastic increase of the dimensionality of the problem
at each iteration, let us partition the matrix ! as follows:

! =

⎛

⎜⎜⎝

h h̃ C D̄∗

h̃† −h̄∗ D C̄∗

C† D† E 0
D̄T C̄T 0 −E

⎞

⎟⎟⎠ ≡
(

!(1) !(2)

!(2) † E

)
.

(20)

The number of states in the single-particle basis, Nb, defines
the dimension of the first-order block !(1) (see Fig. 1). Each of
the four sub-blocks in !(1) is Nb × Nb, for a total of 2Nb × 2Nb

matrix elements. The matrix E is diagonal for second-order
self-energies and its elements are all possible combinations of
three pole energies {ωk1,ωk2 ,ωk3}. A product state solution of
the HFB problem is typically chosen as the reference state so
that Nb positive quasiparticle energies are involved at the first
iteration. In this situation, the number of poles in Eqs. (13) is

Ns ≈
(

Nb

3

)
≈ N3

b

6
. (21)

Since Nb ≪ (Nb)3 it follows that dim(!) = Ntot ≈ N3
b /3. In a

general, e.g. m-scheme, implementation Nb of order of a few
hundreds are typically needed to achieve convergence. Thus,
the diagonalization of Gorkov’s matrix for large model spaces
may be infeasible with current computational resources, even
for the first iteration.

Diagonalizing ! the first time, about (Nb)3/6 new poles
(i.e. one-quasiparticle states) are generated, which repre-
sent the new fragments carrying each a fraction of the
spectral strength distribution. In the second iteration, the

number of possible three-quasiparticle energies Ek1k2k3 has
increased accordingly, resulting in Ns ≈ N9

b /216/6, which
leads to dim(!) ≈ N9

b /1000 × N9
b /1000. In the nth iteration

the matrix ! will have expanded to dimensions of order
N3n

b × N3n

b . This growth clearly prevents the exact treatment
of all poles in an actual (self-consistent) calculation and one
has to keep dim(!) below a threshold that makes the scheme
computationally tractable.

B. Krylov projection

We follow Ref. [25] and project the energy denominators
of #(dyn)(ω) to a smaller Krylov subspace. Doing so, the
dimensional growth of Gorkov’s matrix is contained and a
sustainable computational procedure can be developed.

We consider a set of pivot vectors pi with elements

pi
κ =

∑

a

C∗κ
a Ui

a +
∑

a

D̄κ
aV i

a , (22)

where (Ui , V i) are linearly independent vectors in the space
of HFB quasiparticle states, i.e., of the 2Nb eigensolutions of
!(1). In general, one needs as many pivots as there are single-
particle basis states in the model space to properly converge
all off-diagonal elements of Eqs. (13) [25]. Up to Np = 2Nb

starting pivots are thus used to generate a Krylov subspace K
associated with the submatrix E in Eq. (19). Our particular
implementation exploits a Lanczos-type algorithm that uses
one pivot at a time and iterates it Nℓ times, independently of
the others. Each time Lanczos iterations are started with a new
pivot, pi , this added pivot is first orthogonalized with respect
to the basis vectors already generated. This is equivalent to a
block Lanczos reduction based on a slightly modified set of
pivots {pi ′}. Eventually, the dimension of the Krylov space is
the number of total Lanczos iterations, NL = dim(K) = Nℓ ×
Np. Full details of the algorithm are given in Appendix A.

The block E in Eq. (20) reduces to a matrix of lower
dimensions,

E −→ E ′ =
(
L† E L

−L† E L

)
, (23)

where L is the collection of vectors generated by the Lanczos
procedure. The two off-diagonal blocks !(2) and !(2) † are
transformed accordingly:

!(2) −→ !′(2) = !(2)
(
L
L

)
, (24a)

!(2) † −→ !′(2) † =
(
L† L†) !(2) † . (24b)

These projected blocks are inserted in the original Gorkov
matrix

! −→ !′ =
(

!(1) !′(2)

!′(2) † E ′

)
, (25)

whose dimension is now dim(!′) = N ′
tot × N ′

tot = (2Nb +
2NL) × (2Nb + 2NL). Gorkov-Krylov’s matrix !′ is finally
(fully) diagonalized with standard diagonalization routines.
For a sufficiently large number of iterations dim(K) → dim(E)
and the exact result is recovered. In terms of Lehmann
representation, Eq. (13), the Krylov projected quantities results
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in memory storage. Nevertheless, this eventually results in a
gain of more than one order of magnitude in computational
time with respect to solving Eq. (5) directly. As discussed at
length in the following, the large dimension of ! does not
preclude convergence in model spaces that are large enough
for modern ab initio nuclear structure calculations.

A. Self-consistency and dimensionality

Gorkov’s matrix depends on eigenvalues ωk and amplitudes
(U k ,Vk), which implies that the solution must be searched for
iteratively. To see how the energy-independent form, Eq. (19),
involves a drastic increase of the dimensionality of the problem
at each iteration, let us partition the matrix ! as follows:

! =

⎛

⎜⎜⎝

h h̃ C D̄∗

h̃† −h̄∗ D C̄∗

C† D† E 0
D̄T C̄T 0 −E

⎞

⎟⎟⎠ ≡
(

!(1) !(2)

!(2) † E

)
.

(20)

The number of states in the single-particle basis, Nb, defines
the dimension of the first-order block !(1) (see Fig. 1). Each of
the four sub-blocks in !(1) is Nb × Nb, for a total of 2Nb × 2Nb

matrix elements. The matrix E is diagonal for second-order
self-energies and its elements are all possible combinations of
three pole energies {ωk1,ωk2 ,ωk3}. A product state solution of
the HFB problem is typically chosen as the reference state so
that Nb positive quasiparticle energies are involved at the first
iteration. In this situation, the number of poles in Eqs. (13) is

Ns ≈
(

Nb

3

)
≈ N3

b

6
. (21)

Since Nb ≪ (Nb)3 it follows that dim(!) = Ntot ≈ N3
b /3. In a

general, e.g. m-scheme, implementation Nb of order of a few
hundreds are typically needed to achieve convergence. Thus,
the diagonalization of Gorkov’s matrix for large model spaces
may be infeasible with current computational resources, even
for the first iteration.

Diagonalizing ! the first time, about (Nb)3/6 new poles
(i.e. one-quasiparticle states) are generated, which repre-
sent the new fragments carrying each a fraction of the
spectral strength distribution. In the second iteration, the

number of possible three-quasiparticle energies Ek1k2k3 has
increased accordingly, resulting in Ns ≈ N9

b /216/6, which
leads to dim(!) ≈ N9

b /1000 × N9
b /1000. In the nth iteration

the matrix ! will have expanded to dimensions of order
N3n

b × N3n

b . This growth clearly prevents the exact treatment
of all poles in an actual (self-consistent) calculation and one
has to keep dim(!) below a threshold that makes the scheme
computationally tractable.

B. Krylov projection

We follow Ref. [25] and project the energy denominators
of #(dyn)(ω) to a smaller Krylov subspace. Doing so, the
dimensional growth of Gorkov’s matrix is contained and a
sustainable computational procedure can be developed.

We consider a set of pivot vectors pi with elements

pi
κ =

∑

a

C∗κ
a Ui

a +
∑

a

D̄κ
aV i

a , (22)

where (Ui , V i) are linearly independent vectors in the space
of HFB quasiparticle states, i.e., of the 2Nb eigensolutions of
!(1). In general, one needs as many pivots as there are single-
particle basis states in the model space to properly converge
all off-diagonal elements of Eqs. (13) [25]. Up to Np = 2Nb

starting pivots are thus used to generate a Krylov subspace K
associated with the submatrix E in Eq. (19). Our particular
implementation exploits a Lanczos-type algorithm that uses
one pivot at a time and iterates it Nℓ times, independently of
the others. Each time Lanczos iterations are started with a new
pivot, pi , this added pivot is first orthogonalized with respect
to the basis vectors already generated. This is equivalent to a
block Lanczos reduction based on a slightly modified set of
pivots {pi ′}. Eventually, the dimension of the Krylov space is
the number of total Lanczos iterations, NL = dim(K) = Nℓ ×
Np. Full details of the algorithm are given in Appendix A.

The block E in Eq. (20) reduces to a matrix of lower
dimensions,

E −→ E ′ =
(
L† E L

−L† E L

)
, (23)

where L is the collection of vectors generated by the Lanczos
procedure. The two off-diagonal blocks !(2) and !(2) † are
transformed accordingly:

!(2) −→ !′(2) = !(2)
(
L
L

)
, (24a)

!(2) † −→ !′(2) † =
(
L† L†) !(2) † . (24b)

These projected blocks are inserted in the original Gorkov
matrix

! −→ !′ =
(

!(1) !′(2)

!′(2) † E ′

)
, (25)

whose dimension is now dim(!′) = N ′
tot × N ′

tot = (2Nb +
2NL) × (2Nb + 2NL). Gorkov-Krylov’s matrix !′ is finally
(fully) diagonalized with standard diagonalization routines.
For a sufficiently large number of iterations dim(K) → dim(E)
and the exact result is recovered. In terms of Lehmann
representation, Eq. (13), the Krylov projected quantities results

024323-5

⦿ Use Lanczos algorithm (Krylov-space technique) to reduce dimensions of

⦿ Build set of Lanczos vectors (see next slide)  

Ab INITIO SELF-CONSISTENT GORKOV-GREEN’S . . . PHYSICAL REVIEW C 89, 024323 (2014)

2Ns

Ns

2Nb

Nb h h̃ C D̄∗

Ntot

h̃† −h D C̄∗

C† D† E 0

D̄T C̄T 0 −E

FIG. 1. Dimension scheme for the Gorkov matrix !.

in memory storage. Nevertheless, this eventually results in a
gain of more than one order of magnitude in computational
time with respect to solving Eq. (5) directly. As discussed at
length in the following, the large dimension of ! does not
preclude convergence in model spaces that are large enough
for modern ab initio nuclear structure calculations.

A. Self-consistency and dimensionality

Gorkov’s matrix depends on eigenvalues ωk and amplitudes
(U k ,Vk), which implies that the solution must be searched for
iteratively. To see how the energy-independent form, Eq. (19),
involves a drastic increase of the dimensionality of the problem
at each iteration, let us partition the matrix ! as follows:

! =

⎛

⎜⎜⎝

h h̃ C D̄∗

h̃† −h̄∗ D C̄∗

C† D† E 0
D̄T C̄T 0 −E

⎞

⎟⎟⎠ ≡
(

!(1) !(2)

!(2) † E

)
.

(20)

The number of states in the single-particle basis, Nb, defines
the dimension of the first-order block !(1) (see Fig. 1). Each of
the four sub-blocks in !(1) is Nb × Nb, for a total of 2Nb × 2Nb

matrix elements. The matrix E is diagonal for second-order
self-energies and its elements are all possible combinations of
three pole energies {ωk1,ωk2 ,ωk3}. A product state solution of
the HFB problem is typically chosen as the reference state so
that Nb positive quasiparticle energies are involved at the first
iteration. In this situation, the number of poles in Eqs. (13) is

Ns ≈
(

Nb

3

)
≈ N3

b

6
. (21)

Since Nb ≪ (Nb)3 it follows that dim(!) = Ntot ≈ N3
b /3. In a

general, e.g. m-scheme, implementation Nb of order of a few
hundreds are typically needed to achieve convergence. Thus,
the diagonalization of Gorkov’s matrix for large model spaces
may be infeasible with current computational resources, even
for the first iteration.

Diagonalizing ! the first time, about (Nb)3/6 new poles
(i.e. one-quasiparticle states) are generated, which repre-
sent the new fragments carrying each a fraction of the
spectral strength distribution. In the second iteration, the

number of possible three-quasiparticle energies Ek1k2k3 has
increased accordingly, resulting in Ns ≈ N9

b /216/6, which
leads to dim(!) ≈ N9

b /1000 × N9
b /1000. In the nth iteration

the matrix ! will have expanded to dimensions of order
N3n

b × N3n

b . This growth clearly prevents the exact treatment
of all poles in an actual (self-consistent) calculation and one
has to keep dim(!) below a threshold that makes the scheme
computationally tractable.

B. Krylov projection

We follow Ref. [25] and project the energy denominators
of #(dyn)(ω) to a smaller Krylov subspace. Doing so, the
dimensional growth of Gorkov’s matrix is contained and a
sustainable computational procedure can be developed.

We consider a set of pivot vectors pi with elements

pi
κ =

∑

a

C∗κ
a Ui

a +
∑

a

D̄κ
aV i

a , (22)

where (Ui , V i) are linearly independent vectors in the space
of HFB quasiparticle states, i.e., of the 2Nb eigensolutions of
!(1). In general, one needs as many pivots as there are single-
particle basis states in the model space to properly converge
all off-diagonal elements of Eqs. (13) [25]. Up to Np = 2Nb

starting pivots are thus used to generate a Krylov subspace K
associated with the submatrix E in Eq. (19). Our particular
implementation exploits a Lanczos-type algorithm that uses
one pivot at a time and iterates it Nℓ times, independently of
the others. Each time Lanczos iterations are started with a new
pivot, pi , this added pivot is first orthogonalized with respect
to the basis vectors already generated. This is equivalent to a
block Lanczos reduction based on a slightly modified set of
pivots {pi ′}. Eventually, the dimension of the Krylov space is
the number of total Lanczos iterations, NL = dim(K) = Nℓ ×
Np. Full details of the algorithm are given in Appendix A.

The block E in Eq. (20) reduces to a matrix of lower
dimensions,

E −→ E ′ =
(
L† E L

−L† E L

)
, (23)

where L is the collection of vectors generated by the Lanczos
procedure. The two off-diagonal blocks !(2) and !(2) † are
transformed accordingly:

!(2) −→ !′(2) = !(2)
(
L
L

)
, (24a)

!(2) † −→ !′(2) † =
(
L† L†) !(2) † . (24b)

These projected blocks are inserted in the original Gorkov
matrix

! −→ !′ =
(

!(1) !′(2)

!′(2) † E ′

)
, (25)

whose dimension is now dim(!′) = N ′
tot × N ′

tot = (2Nb +
2NL) × (2Nb + 2NL). Gorkov-Krylov’s matrix !′ is finally
(fully) diagonalized with standard diagonalization routines.
For a sufficiently large number of iterations dim(K) → dim(E)
and the exact result is recovered. In terms of Lehmann
representation, Eq. (13), the Krylov projected quantities results
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where the factor
√

1 + δαβ δnanb
ensures the correct normalization of the antisymmetrized state

|1: (na α); 2: (na α); JM⟩, which is non zero for integer values of J . Antisymmetrized potential matrix elements in
J-scheme are thus related to those in m-scheme by means of
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Since nuclear potentials are rotationally invariant, they do not depend on M or M ′ and are non-zero only for J = J ′,
such that one can define
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5. Block-diagonal structure of self-energies

a. First order

dim(L† E L)≪ dim(E)

The goal of this subsection is to discuss how the block-diagonal form of the propagators and interaction matrix
elements reflects in the various self-energy contributions, starting with the first-order normal self-energy Σ11 (1).
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Lanczos algorithm

⦿ Krylov space defined as

⦿ Lanczos algorithm: iterative method to build a Krylov space for Hermitian matrices
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3QP configurations space into a tractable Krylov sub-
space. Here, we present the details of the particular
Lanczos-based algorithm presently employed in Gorkov-
and Dyson-Green’s functions calculations [? ? ? ? ].

When solving Eq. (20), one needs to handle a matrix
E of large dimensions N

s

⇥ N
s

. Let H
LG

be the space
spanned by the eigenstates of E, with dim(H

LG

) = N
s

,
and p a vector of dimension N

s

(usually referred to as
the pivot). The Krylov subspace of order r is the linear
subspace of H

LG

spanned by the images of p under the
first r powers of E, i.e.

K(r) ⌘ span
�

p, E p, E2 p, E3 p, . . . , Er�1 p
 

. (A1)

Provided that E does not separates in sub-blocks of sep-
arate symmetry, one has that

K(Ns) = H
LG

. (A2)

The Lanczos algorithm is a procedure that gener-
ates an orthonormal basis {v

j

; j = 1, 2, . . . r} of K(r)

in the case where E is Hermitian. Basis vectors v
j

are obtained through a recursive procedure that involves
vector-matrix multiplications, as follows

v1 ⌘ p (A3a)

E v1 ⌘ e11 v1 + e21 v2 (A3b)

E v2 ⌘ e12 v1 + e22 v2 + e32 v3 (A3c)

. . .

E v
r�1 ⌘ e1(r�1) v1 + · · ·+ e

r(r�1) vr

(A3d)

where at each step the newly generated vector v
j

is fur-
ther normalized to 1. Following the above construction
one has

e
ij

= (e
ji

)⇤ = v†
i

E v
j

for all i, j (A4a)

and

e
ij

= 0 for |i� j| � 2 , (A4b)

such that the projection E0 of the matrix E on K(r) is
hermitian and tridiagonal.

A similar procedure is applied here to reduce response
operators such as Eq. (26), where E is defined in a
large configuration space H

LG

and the matrix product
CC† is defined in a smaller space H

SM

. In this situa-
tion, it becomes necessary to exploit more than a single
pivot vector to quickly converge all degrees of freedom
in H

SM

. In our Gorkov calculations, H
SM

is the HFB
one-body Hilbert space, which has twice the dimension
of the single-particle basis employed. Thus, we generate
N

p

= 2N
b

di↵erent vectors according to Eq. (22).
Let {p(i); i = 1, . . . N

p

} be a set of linearly independent
vectors. The new Krylov space is generated by extend-
ing the definition of Eq. (A1) and the Lanczos proce-
dure (A3) to the case of multiple pivots. Each vector
p(i) is thus iterated a number of times r

i

, so that the
total dimension of the basis generated is

N
L

=

Np
X

i=1

r
i

. (A5)

In our algorithm, Lanczos iterations (A3) are performed
in sequence for each starting vector p(i). It is therefore
important that, at the starting of each new set of iter-
ations, the pivots are orthonormalized to the previously
generated basis vectors.

The first pivot p(1) is simply iterated r1 times as follow

v(1)
1 ⌘ p(1) (A6a)

E v(1)
1 ⌘ e11 v

(1)
1 + e21 v

(1)
2 (A6b)

. . .

E v(1)
r

1

⌘ e(r
1

�1)r
1

v(1)
r

1

�1 + e
r

1

r

1

v(1)
r

1

+ u(1) . (A6c)

Up to this point the projected matrix E0 still maintains a
tridiagonal structure and the vector u(1) is orthogonal to

the first r1 basis vectors {v(1)
1 , . . .v(1)

r

1

}. As already men-
tioned, p(2) has first to be orthogonalized with respect
to the latters. Hence, one writes
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+ d(1) v(2)
1 , (A7)

imposing ||v(2)
1 || = 1, and takes v(2)

1 as the new pivot.

Since v(2)
1 is orthogonal to all previous vectors, using the

hermiticity of H and the tridiagonal form of Eqs. (A6)
one can prove that
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In general, each vector p(i), with i � 2, will be orthonor-
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which is iterated r
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times. If n
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When solving Eq. (20), one needs to handle a matrix
E of large dimensions N

s

⇥ N
s

. Let H
LG

be the space
spanned by the eigenstates of E, with dim(H

LG

) = N
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,
and p a vector of dimension N

s

(usually referred to as
the pivot). The Krylov subspace of order r is the linear
subspace of H
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spanned by the images of p under the
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arate symmetry, one has that

K(Ns) = H
LG
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The Lanczos algorithm is a procedure that gener-
ates an orthonormal basis {v

j

; j = 1, 2, . . . r} of K(r)

in the case where E is Hermitian. Basis vectors v
j

are obtained through a recursive procedure that involves
vector-matrix multiplications, as follows
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such that the projection E0 of the matrix E on K(r) is
hermitian and tridiagonal.

A similar procedure is applied here to reduce response
operators such as Eq. (26), where E is defined in a
large configuration space H

LG

and the matrix product
CC† is defined in a smaller space H
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. In this situa-
tion, it becomes necessary to exploit more than a single
pivot vector to quickly converge all degrees of freedom
in H
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is the HFB
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ing the definition of Eq. (A1) and the Lanczos proce-
dure (A3) to the case of multiple pivots. Each vector
p(i) is thus iterated a number of times r

i

, so that the
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In our algorithm, Lanczos iterations (A3) are performed
in sequence for each starting vector p(i). It is therefore
important that, at the starting of each new set of iter-
ations, the pivots are orthonormalized to the previously
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FIG. 13. (Color online) Fishbone-like structure of the Lanczos
reduced matrix E′.

E v(i)
2 ≡

i−1∑

j=1

e(nj +rj )(ni+2) v(j )
rj

+ e(ni+1)(ni+2) v(i)
1

+ e(ni+2)(ni+2) v(i)
2 + e(ni+3)(ni+2) v(i)

3 , (A11b)

...

E v(i)
ri

≡
i−1∑

j=1

e(nj +rj )(ni+ri ) v(j )
rj

+ e(ni+ri−1)(ni+ri ) v(i)
ri−1

+ e(ni+ri )(ni+ri ) v(i)
ri

+ u(i), (A11c)

where u(i) is orthogonal to all previous vectors.
Relations analogous to Eqs. (A8) hold every time one moves

to a new pivot, which connects the v(i)
ri

vectors (at the end of
each block of iterations) to the remaining basis vectors. It
follows that the tridiagonal form of the projected matrix E′ is
maintained except for the rows and columns corresponding to
the last iteration of each pivot, which are nonzero and give rise
to the fishbone-like sparse matrix shown in Fig. 13.

Notice also that the resulting space is not directly generated
by the p(i) vectors of Eq. (22) since these are othogonalized
before they are iterated. Hence, the actual Krylov space is the
one associated with the pivots {v(i)

1 ; i = 1, . . . ,Np} and it is
defined as

K(r) ≡ span
{
v(1)

1 , E v(1)
1 , E2 v(1)

1 , . . . ,Er1−1 v(1)
1 ,

v(2)
1 , E v(2)

1 , E2 v(2)
1 , . . . ,Er2−1 v(2)

1 ,

...

v(Np)
1 , E v(Np)

1 , . . . ,ErNp −1 v(Np)
1

}
. (A12)

In the present work we choose a fixed number of itera-
tions, i.e., ri = Nℓ, ∀ i = 1, . . . Np, except for cases where
a truncation of the Lanczos procedure required a lower
number of iterations for the last pivot (bottom part of
Table I).

APPENDIX B: ADJUSTMENT OF CHEMICAL
POTENTIALS

Searching for the solution of Gorkov’s equation, proton and
neutron chemical potentials must be adjusted at each iteration
in order to have the desired number of particles on average (see
point 6 of the algorithm in Sec. III C). After self-energies have
been computed and Gorkov’s matrix has been diagonalized,
the average numbers of neutrons and protons are evaluated
through

Nav =
neutrons∑

a

ρaa =
neutrons∑

a,k

∣∣Vk
a

∣∣2
, (B1a)

Zav =
protons∑

a

ρaa =
protons∑

a,k

∣∣Vk
a

∣∣2
. (B1b)

The resulting numbers are compared to the expected
N and Z. Chemical potentials µN and µZ are then
increased (decreased) if the computed number of parti-
cle is smaller (larger) than the required values according
to

µnew
N,Z = µold

N,Z + #
µ
N,Z, (B2)

where

#
µ
N ≡ C

µ
N

N − Nav

N
, (B3a)

#
µ
Z ≡ C

µ
Z

Z − Zav

Z
. (B3b)

Parameters C
µ
N,Z control the speed and pattern of conver-

gence, and are typically of order of unity. As long as the
convergence is reached, the choice of C

µ
N,Z does not impact

the final result.
Notice that subsequent adjustments of the chemical po-

tentials may be necessary before the required precision of
Nav,Zav is achieved, implying that the above procedure is
repeated several times at each self-consistent iteration. How-
ever, one is not interested (at least in the first few iterations)
in having extremely precise neutron and proton numbers as
the self-consistency process will make the optimal chemical
potentials vary until a sufficient degree of self-consistency is
reached.
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+ d(1) v(2)
1 , (A7)

imposing ||v(2)
1 || = 1, and takes v(2)

1 as the new pivot.

Since v(2)
1 is orthogonal to all previous vectors, using the

hermiticity of H and the tridiagonal form of Eqs. (A6)
one can prove that

v(1) †
i

E v(2)
1 = 0 8 i = 1, . . . , r1 � 1 , (A8a)
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E v(2)
1 = u(1)†v(2)
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1

(r
1

+1) . (A8b)

In general, each vector p(i), with i � 2, will be orthonor-
malised to the previously generated portion of the basis
according to

p(i) ⌘
i�1
X

j=1

rj
X

k=1

c
(j)
k

v(j)
k

+ d(i) v(i)
1 , (A9)

and the vector ||v(i)
1 || = 1 is taken as the new pivot,

which is iterated r
i

times. If n
i

is then number of basis
vectors generated from all iterations before the ith pivot,

n
i

=
i�1
X

j=1

r
j

, (A10)
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3QP configurations space into a tractable Krylov sub-
space. Here, we present the details of the particular
Lanczos-based algorithm presently employed in Gorkov-
and Dyson-Green’s functions calculations [? ? ? ? ].

When solving Eq. (20), one needs to handle a matrix
E of large dimensions N

s

⇥ N
s

. Let H
LG

be the space
spanned by the eigenstates of E, with dim(H

LG

) = N
s

,
and p a vector of dimension N

s

(usually referred to as
the pivot). The Krylov subspace of order r is the linear
subspace of H

LG

spanned by the images of p under the
first r powers of E, i.e.

K(r) ⌘ span
�

p, E p, E2 p, E3 p, . . . , Er�1 p
 

. (A1)

Provided that E does not separates in sub-blocks of sep-
arate symmetry, one has that

K(Ns) = H
LG

. (A2)

The Lanczos algorithm is a procedure that gener-
ates an orthonormal basis {v

j

; j = 1, 2, . . . r} of K(r)

in the case where E is Hermitian. Basis vectors v
j

are obtained through a recursive procedure that involves
vector-matrix multiplications, as follows

v1 ⌘ p (A3a)

E v1 ⌘ e11 v1 + e21 v2 (A3b)

E v2 ⌘ e12 v1 + e22 v2 + e32 v3 (A3c)

. . .

E v
r�1 ⌘ e1(r�1) v1 + · · ·+ e

r(r�1) vr

(A3d)

where at each step the newly generated vector v
j

is fur-
ther normalized to 1. Following the above construction
one has

e
ij

= (e
ji

)⇤ = v†
i

E v
j

for all i, j (A4a)

and

e
ij

= 0 for |i� j| � 2 , (A4b)

such that the projection E0 of the matrix E on K(r) is
hermitian and tridiagonal.

A similar procedure is applied here to reduce response
operators such as Eq. (26), where E is defined in a
large configuration space H

LG

and the matrix product
CC† is defined in a smaller space H

SM

. In this situa-
tion, it becomes necessary to exploit more than a single
pivot vector to quickly converge all degrees of freedom
in H

SM

. In our Gorkov calculations, H
SM

is the HFB
one-body Hilbert space, which has twice the dimension
of the single-particle basis employed. Thus, we generate
N

p

= 2N
b

di↵erent vectors according to Eq. (22).
Let {p(i); i = 1, . . . N

p

} be a set of linearly independent
vectors. The new Krylov space is generated by extend-
ing the definition of Eq. (A1) and the Lanczos proce-
dure (A3) to the case of multiple pivots. Each vector
p(i) is thus iterated a number of times r

i

, so that the
total dimension of the basis generated is

N
L

=

Np
X

i=1

r
i

. (A5)

In our algorithm, Lanczos iterations (A3) are performed
in sequence for each starting vector p(i). It is therefore
important that, at the starting of each new set of iter-
ations, the pivots are orthonormalized to the previously
generated basis vectors.

The first pivot p(1) is simply iterated r1 times as follow

v(1)
1 ⌘ p(1) (A6a)

E v(1)
1 ⌘ e11 v

(1)
1 + e21 v

(1)
2 (A6b)
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+ u(1) . (A6c)

Up to this point the projected matrix E0 still maintains a
tridiagonal structure and the vector u(1) is orthogonal to

the first r1 basis vectors {v(1)
1 , . . .v(1)
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tioned, p(2) has first to be orthogonalized with respect
to the latters. Hence, one writes
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imposing ||v(2)
1 || = 1, and takes v(2)

1 as the new pivot.

Since v(2)
1 is orthogonal to all previous vectors, using the

hermiticity of H and the tridiagonal form of Eqs. (A6)
one can prove that
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In general, each vector p(i), with i � 2, will be orthonor-
malised to the previously generated portion of the basis
according to
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and the vector ||v(i)
1 || = 1 is taken as the new pivot,

which is iterated r
i

times. If n
i

is then number of basis
vectors generated from all iterations before the ith pivot,
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=
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⦿ Possible strategy: use a multi-pivot Lanczos algorithm

pivot

➟ Consider Np pivot vectors (typically Np = Nb)

➟ Each vector is iterated ri times

➟ Dimension of projected matrix

Fishbone structure from orthogonalisation of new pivots



Properties of Krylov projection

⦿ Current implementation different from usual application of Lanczos/Arnoldi

➟ In shell model, CC, … Lanczos algorithm used to extract low-energy eigenvalues

➟ Here we are interested in key/global features of the spectral function
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Ns

2Nb

Nb h h̃ C D̄∗

Ntot

h̃† −h D C̄∗

C† D† E 0

D̄T C̄T 0 −E

FIG. 1. Dimension scheme for the Gorkov matrix !.

in memory storage. Nevertheless, this eventually results in a
gain of more than one order of magnitude in computational
time with respect to solving Eq. (5) directly. As discussed at
length in the following, the large dimension of ! does not
preclude convergence in model spaces that are large enough
for modern ab initio nuclear structure calculations.

A. Self-consistency and dimensionality

Gorkov’s matrix depends on eigenvalues ωk and amplitudes
(U k ,Vk), which implies that the solution must be searched for
iteratively. To see how the energy-independent form, Eq. (19),
involves a drastic increase of the dimensionality of the problem
at each iteration, let us partition the matrix ! as follows:

! =

⎛

⎜⎜⎝

h h̃ C D̄∗

h̃† −h̄∗ D C̄∗

C† D† E 0
D̄T C̄T 0 −E

⎞

⎟⎟⎠ ≡
(

!(1) !(2)

!(2) † E

)
.

(20)

The number of states in the single-particle basis, Nb, defines
the dimension of the first-order block !(1) (see Fig. 1). Each of
the four sub-blocks in !(1) is Nb × Nb, for a total of 2Nb × 2Nb

matrix elements. The matrix E is diagonal for second-order
self-energies and its elements are all possible combinations of
three pole energies {ωk1,ωk2 ,ωk3}. A product state solution of
the HFB problem is typically chosen as the reference state so
that Nb positive quasiparticle energies are involved at the first
iteration. In this situation, the number of poles in Eqs. (13) is

Ns ≈
(

Nb

3

)
≈ N3

b

6
. (21)

Since Nb ≪ (Nb)3 it follows that dim(!) = Ntot ≈ N3
b /3. In a

general, e.g. m-scheme, implementation Nb of order of a few
hundreds are typically needed to achieve convergence. Thus,
the diagonalization of Gorkov’s matrix for large model spaces
may be infeasible with current computational resources, even
for the first iteration.

Diagonalizing ! the first time, about (Nb)3/6 new poles
(i.e. one-quasiparticle states) are generated, which repre-
sent the new fragments carrying each a fraction of the
spectral strength distribution. In the second iteration, the

number of possible three-quasiparticle energies Ek1k2k3 has
increased accordingly, resulting in Ns ≈ N9

b /216/6, which
leads to dim(!) ≈ N9

b /1000 × N9
b /1000. In the nth iteration

the matrix ! will have expanded to dimensions of order
N3n

b × N3n

b . This growth clearly prevents the exact treatment
of all poles in an actual (self-consistent) calculation and one
has to keep dim(!) below a threshold that makes the scheme
computationally tractable.

B. Krylov projection

We follow Ref. [25] and project the energy denominators
of #(dyn)(ω) to a smaller Krylov subspace. Doing so, the
dimensional growth of Gorkov’s matrix is contained and a
sustainable computational procedure can be developed.

We consider a set of pivot vectors pi with elements

pi
κ =

∑

a

C∗κ
a Ui

a +
∑

a

D̄κ
aV i

a , (22)

where (Ui , V i) are linearly independent vectors in the space
of HFB quasiparticle states, i.e., of the 2Nb eigensolutions of
!(1). In general, one needs as many pivots as there are single-
particle basis states in the model space to properly converge
all off-diagonal elements of Eqs. (13) [25]. Up to Np = 2Nb

starting pivots are thus used to generate a Krylov subspace K
associated with the submatrix E in Eq. (19). Our particular
implementation exploits a Lanczos-type algorithm that uses
one pivot at a time and iterates it Nℓ times, independently of
the others. Each time Lanczos iterations are started with a new
pivot, pi , this added pivot is first orthogonalized with respect
to the basis vectors already generated. This is equivalent to a
block Lanczos reduction based on a slightly modified set of
pivots {pi ′}. Eventually, the dimension of the Krylov space is
the number of total Lanczos iterations, NL = dim(K) = Nℓ ×
Np. Full details of the algorithm are given in Appendix A.

The block E in Eq. (20) reduces to a matrix of lower
dimensions,

E −→ E ′ =
(
L† E L

−L† E L

)
, (23)

where L is the collection of vectors generated by the Lanczos
procedure. The two off-diagonal blocks !(2) and !(2) † are
transformed accordingly:

!(2) −→ !′(2) = !(2)
(
L
L

)
, (24a)

!(2) † −→ !′(2) † =
(
L† L†) !(2) † . (24b)

These projected blocks are inserted in the original Gorkov
matrix

! −→ !′ =
(

!(1) !′(2)

!′(2) † E ′

)
, (25)

whose dimension is now dim(!′) = N ′
tot × N ′

tot = (2Nb +
2NL) × (2Nb + 2NL). Gorkov-Krylov’s matrix !′ is finally
(fully) diagonalized with standard diagonalization routines.
For a sufficiently large number of iterations dim(K) → dim(E)
and the exact result is recovered. In terms of Lehmann
representation, Eq. (13), the Krylov projected quantities results
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⦿ Krylov projection conserves first moments of the pivots

➟ Choosing components of the spectral function as pivots ensures that its first 
few moments are approximately conserved

⦿ Lanczos algorithm yields fast convergence at the extremes of the spectrum

➟ Performing separate Lanczos for E+ and E- guarantees accuracy around Fermi surface
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for different numbers of iterations and pivots used. In this
case N

νs1/2
s = 1188, N

νs1/2

b = 2 and the total dimension of the
HFB space is 4. Thus, only up to N

νs1/2
p = 4 Lanczos pivots

can be generated from linearly independent vectors in the
HFB space [Eq. (22)]. As long as the number of iterations
per pivot, Nℓ, is small enough to allow for all the 2N

νs1/2

b

pivots to be used, the Krylov-projected energy converges to
the exact value in the limit of Eq. (27). Table I shows that
NL = 600, which corresponds to half of the original 3QP
configurations, is enough to recover the exact diagonalization
to thirteen significant digits. Even for Nℓ = 50, results are
converged to better than 10 eV. However, when Nℓ increases
a smaller number of pivots is exploited before the full space
is saturated. The accuracy gradually worsens as the number
of pivots used decreases, although results close to the exact
one are found down to two pivots. In principle, one single
pivot should be sufficient to recover the exact diagonalization
in the limit (27). In practice, however, no more than a few
% accuracy is achieved before the loss of orthogonality kicks
in. Conversely, adding just a few extra iterations of a second
pivot brings the calculated energy close to the exact result.
The dependence of the result on the number of pivots used
is shown in Table II for a fixed dimension of the Krylov
space. This demonstrates that the best possible accuracy is
obtained when all linearly independent pivots are iterated. We
further found that including all pivots is important to quickly
converge off diagonal matrix elements of the self-energies,
Eqs. (13), in accordance with the finding of Ref. [25]. This
dependence on the number of pivots relates to having enough
degrees of freedom to span the original HFB space, which is
particularly important when resolvent operators are involved
in the projection, as is the case in Green’s function theory.

In general, any set of linearly independent vectors in the
HFB space can be used to generate the pivots through Eq. (22).
In our calculations, the optimal choice consists of using the
HFB eigenstates themselves, which were indeed employed in
the above tests. Vectors in the harmonic oscillator basis as well
as random basis vectors lead to a worse convergence in all cases
considered. Calculations of different partial waves, nuclei,
interactions, or model spaces validate the above findings.
Given this, the 2Nb HFB eigenstates are used as pivots
throughout the following.

2. Nℓ dependence

When going to the large model spaces necessary to con-
verge calculations with realistic nuclear interactions, currently
available computational resources set severe limits on the
dimension of matrix #. A crucial issue concerns how large
should the Krylov subspace be in order to achieve a satisfactory
accuracy in the solution of Gorkov’s equation. We now
examine the dependence of the results on the number of
Lanczos iterations per pivot, Nℓ. We first do so on the basis of a
single partial wave, as already done in connection with Table I.
Then, we investigate the convergence for a single Gorkov
iteration but involving all partial waves at once. Finally, we
terminate with complete self-consistent sc0 calculations.

For a given model space, the dimensions of both the
3QP space, Nα

s , and the single-particle basis, Nα
b , depends
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FIG. 4. (Color online) Relative error for the contribution of a
given partial wave α to the Koltun sum rule in 12C as a function of
Kα (see text). Results refer to a single diagonalization and different
model-space sizes. The Coulomb interaction has been neglected in
this figure.

on the partial wave α = (q,j,π ). For a fixed number of
Lanczos iterations Nℓ, the fraction of the initial space spanned
by the Krylov-projected matrix depends on α as well. In
general Nα

L ∝ Nα
b so that partial waves with low angular

momentum will be better reproduced on average, since for a
given Nmax truncation the number of harmonic oscillator orbits
Nα

b decreases with increasing jα . This is actually desirable
because low angular-momentum waves correspond to the most
occupied orbits and give the largest contributions to the binding
energy. To quantify the fraction of the initial 3QP configuration
space spanned by the Krylov projection for a given partial wave
α, we introduce

Kα ≡ 100
dim(Kα)
dim(Eα)

=
100NℓN

α
p

dim(Eα)
, (28)

where Nα
p = 2Nα

b is the number of pivots.
Figure 4 displays in 12C the convergence of the contribution

of two different partial waves to the Koltun sum rule, Eq. (6), as
a function of Kα . Results are representative of how the error
associated with a given partial-wave decreases by orders of
magnitude when increasing Nℓ. Interestingly, relatively small
values of Kα are sufficient to achieve precisions of the order
of the keV in both cases. After this initial transient, the error
follows an exponentially decreasing trend. The νs1/2 wave
reaches the exact results up to machine precision when half of
the 3QP space is projected to the Krylov subspace, as already
seen in Table I. The convergence to the exact result is slower
for the largest of the two model spaces used but the transient
of the first few iterations remains.

To analyze the combined contributions from all partial
waves, we now define the overall fraction of the 3QP space
retained through

K ′ ≡ 100
∑

α dim(Kα)∑
α dim(Eα)

=
100Nℓ

∑
α Nα

p∑
α dim(Eα)

, (29)
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TABLE III. Values obtained from Eq. (29) for various model
spaces. The sum over α is limited to neutrons only (including protons
would require a factor 2 in columns 2, 3, and 4 that would cancel out
in K ′). As an example, K ′ values for Nℓ = 100 are displayed in the
last column.

Nmax αtot
∑

α dim(Eα)
∑

α 2Nα
b K ′(Nℓ = 100)[%]

3 7 12 226 20 16.358
4 9 57 029 30 5.260
5 11 411 968 42 1.019
7 15 3 265 512 72 0.220
9 19 16 808 456 110 0.065

11 23 65 305 228 156 0.023
13 27 208 096 960 210 0.010

where α runs over all partial waves. Values obtained from
Eq. (29) are displayed in Table III for different Nmax. For a
fixed Nℓ, the fraction K ′ becomes progressively small when
increasing the size of the model space. However, the total
number of configurations still grows rapidly with Nmax.

Figure 5 demonstrates the accuracy obtained on the total
binding energy as a function of K ′, when all partial waves are
accounted for in the calculation of 44Ca. Relative errors are
given with respect to the result of one exact diagonalization in
the original 3QP space. Errors for both Nmax = 3 and Nmax = 4
models spaces are comparable for K ′ > 1% and eventually
decrease in a similar fashion as in Fig. 4. On the other hand,
convergence to few keV is reached for smaller values of K ′ in
the larger model space.

Realistic calculations will differ from the above cases
because diagonalizations have to be repeated iteratively to
reach the self-consistent solution and because large model
spaces must be employed. In Fig. 6, converged sc0 energies are
displayed as a function of Nℓ for different model-space sizes.
One notices that all cases show a similar dependence on Nℓ:
a dip, a steep rise after Nℓ = 2 and a smooth decay towards
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FIG. 5. (Color online) Relative error in the total binding energy
of 44Ca after one second-order iteration as a function of K ′ (see text)
for two different model-space sizes. The Coulomb interaction has
been neglected in this figure.
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FIG. 6. (Color online) Convergence of the (sc0) binding energy
of 44Ca as a function of Nℓ, for different model spaces. The Coulomb
interaction has been neglected in this figure.

an asymptotic value. This behavior is rather independent of
Nmax and indicates that Nℓ is in fact a more appropriate
parameter than K ′ to gauge the convergence of the Krylov
projection. Small fluctuations may still occur for Nℓ > 10,
especially for the larger models spaces, which suggests that
somewhat larger values of Nℓ might be needed to reach the
desired accuracy as Nmax increases. In general, this behavior
seen in Fig. 6 is in accordance with the above observation
that, when increasing Nmax, a smaller value of K ′ is needed
to reach a few keV accuracy. Arguably, binding energies are
well reproduced once one includes the number of degrees
of freedom sufficient to resolve the system’s wave function
(or propagator). The Krylov projection characterized by Nℓ

is a very efficient way to select those degrees of freedom as
it preserves the corresponding moments of the 3QP matrix
E. The trend observed in Figs. 4 and 5 suggest that K ′

might instead control the exponential convergence to the exact
diagonalization. From Fig. 6 one sees that the energy reaches a
plateau for Nℓ > 30, rather independently of the model-space
size. Eventually, we estimate that the Lanczos procedure per-
formed with Nℓ ≈ 50 induces inaccuracies of about 100 keV
for the largest model space considered (Nmax = 13).

It is also instructive to look at the convergence of spec-
troscopic quantities. For this purpose, the doubly open-shell
nucleus 40Ti is considered in a model space of 14 major shells.
Figure 7 displays the density of J# = 1/2+ states5 in 41Ti as
a function of their energy relative to the Fermi surface of 40Ti,
for increasing Nℓ. The exact density of states would display a
bell shape due to the rise of the number of (physical) degrees
of freedom which is eventually stopped by the truncation of
the model space. As seen from Table III, only a very small
fraction of those configurations is effectively retained here. As
the dimension of Gorkov-Krylov’s matrix increases, only the
density of states at the edges of the eigenvalue spectrum start
to converge, which is a typical feature of Krylov methods.

5The density of states (DOS) in question is obtained from the SSD
[Eq. (8)] by setting SF +

k = 1 and SF −
k = 0 for all k.
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FIG. 7. (Color online) Density of J ! = 1/2+ states in 41Ti as a
function of their excitation energy with respect to the Fermi level
µn of 40Ti, for increasing Nℓ. The distribution, discretized in the
calculation, is convoluted with Lorentzian curves of 5 MeV width for
display purposes.

Despite the reduced DOS at the center of the spectrum, the
spectral strength distribution [Eq. (8)] is shown to converge
rather rapidly at all energies when increasing Nℓ [44]. This is
seen in Fig. 8 where the neutron SSD in 40Ti, limited to J! =
1/2+ final states of 39,41Ti, is displayed. The curves obtained
for Nℓ = 50 and Nℓ = 100 are essentially indistinguishable for
most energies, with the SSD already converging to a resolution
better than 10 MeV (5 MeV) for Nℓ = 50 (Nℓ = 100). Even
for projections onto relatively small Krylov spaces, the result
conserves the overall features of the SSD, which guarantees the
quick convergence of observables and spectroscopic quantities
in general.

Figure 9 compares effective single-particle energies in 40Ti
for different values of Nℓ. Results are given as the deviation
to ESPEs computed for Nℓ = 100, which is the most accurate
truncation used. Difference between Nℓ = 10 and Nℓ = 100
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FIG. 8. (Color online) One-neutron addition and removal spec-
tral strength distribution in 40Ti limited to J ! = 1/2+ final states in
39,41Ti. The distribution, discretized in the calculation, is convoluted
with Lorentzian curves of 5 MeV width for display purposes.
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FIG. 9. (Color online) Selected neutron and proton effective
single-particle energies in 40Ti as a function of the number of Lanczos
iterations per pivot Nℓ. Results are displayed relative to the values
obtained for Nℓ = 100. Calculations are performed in an Nmax = 13
model space.

are of the order of a few tens to a few hundreds keV, and
decrease to 10 keV for Nℓ = 50–100 for all ESPEs. This is
also representative of the accuracy reached for one-nucleon
separation energies associated with the dominant quasiparticle
states, which carry the main part of the strength. Similar results
are obtained for other nuclei and different model spaces.

Summarizing, the Krylov projection is shown to be reliable
in all considered cases. The loss of orthogonality is well
understood for small model spaces and never occurs in practice
for large model spaces, where one is limited to a small number
of Lanczos iterations. Both binding energies and one-nucleon
separation energy spectra are well converged for relatively
small values of Nℓ, nearly independently of the original
dimension of Gorkov’s matrix. This indicates that the Krylov
projection is a reliable and computationally affordable tool that
can be extended to large model spaces. For a typical large-scale
calculation, a projection with Nℓ = 50 is expected to yield
a sufficient degree of accuracy for applications to mid-mass
nuclei. In this case, a conservative estimate of the systematic
error induced by the projection is of the order of 300 keV on the
converged total energy and 50 keV on one-nucleon separation
energies associated with states carrying the dominant part of
the strength, as well as on ESPEs. This can of course be
improved by increasing Nℓ.

B. Self-consistency schemes

Section III C outlines two different self-consistent calcula-
tion schemes. The sc implementation corresponds to a fully
self-consistent solution of Gorkov’s equation. Instead, the sc0
scheme iterates self-consistently only the static part of the self
energy #(∞). A priori, there is no guarantee that one of these
two many-body truncations will give results systematically
closer to the exact binding energy than the other. However, the
sc approach is conceptually superior both because it includes
more diagrams (to very high orders) and because it guarantees
that solutions satisfy fundamental conservation laws [45].
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Despite the reduced DOS at the center of the spectrum, the
spectral strength distribution [Eq. (8)] is shown to converge
rather rapidly at all energies when increasing Nℓ [44]. This is
seen in Fig. 8 where the neutron SSD in 40Ti, limited to J! =
1/2+ final states of 39,41Ti, is displayed. The curves obtained
for Nℓ = 50 and Nℓ = 100 are essentially indistinguishable for
most energies, with the SSD already converging to a resolution
better than 10 MeV (5 MeV) for Nℓ = 50 (Nℓ = 100). Even
for projections onto relatively small Krylov spaces, the result
conserves the overall features of the SSD, which guarantees the
quick convergence of observables and spectroscopic quantities
in general.

Figure 9 compares effective single-particle energies in 40Ti
for different values of Nℓ. Results are given as the deviation
to ESPEs computed for Nℓ = 100, which is the most accurate
truncation used. Difference between Nℓ = 10 and Nℓ = 100
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are of the order of a few tens to a few hundreds keV, and
decrease to 10 keV for Nℓ = 50–100 for all ESPEs. This is
also representative of the accuracy reached for one-nucleon
separation energies associated with the dominant quasiparticle
states, which carry the main part of the strength. Similar results
are obtained for other nuclei and different model spaces.

Summarizing, the Krylov projection is shown to be reliable
in all considered cases. The loss of orthogonality is well
understood for small model spaces and never occurs in practice
for large model spaces, where one is limited to a small number
of Lanczos iterations. Both binding energies and one-nucleon
separation energy spectra are well converged for relatively
small values of Nℓ, nearly independently of the original
dimension of Gorkov’s matrix. This indicates that the Krylov
projection is a reliable and computationally affordable tool that
can be extended to large model spaces. For a typical large-scale
calculation, a projection with Nℓ = 50 is expected to yield
a sufficient degree of accuracy for applications to mid-mass
nuclei. In this case, a conservative estimate of the systematic
error induced by the projection is of the order of 300 keV on the
converged total energy and 50 keV on one-nucleon separation
energies associated with states carrying the dominant part of
the strength, as well as on ESPEs. This can of course be
improved by increasing Nℓ.

B. Self-consistency schemes

Section III C outlines two different self-consistent calcula-
tion schemes. The sc implementation corresponds to a fully
self-consistent solution of Gorkov’s equation. Instead, the sc0
scheme iterates self-consistently only the static part of the self
energy #(∞). A priori, there is no guarantee that one of these
two many-body truncations will give results systematically
closer to the exact binding energy than the other. However, the
sc approach is conceptually superior both because it includes
more diagrams (to very high orders) and because it guarantees
that solutions satisfy fundamental conservation laws [45].
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⦿ Krylov-projected energy can be compared with exact result in small model spaces

⦿ Projected density of states and spectral strength distribution
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Results: oxygen ground-state energies
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(Fig. 1) is over bound at !130:8ð1Þ MeV but in close
agreement with the !130:5ð1Þ MeV obtained from
IM-SRG [11], giving further confirmation of the accuracy
achieved by different many-body methods. Note that the
energies of 15O and 23O can be obtained in two different
ways, from either neutron addition or removal on neigh-
boring subshell closures. Results in Fig. 2 differ by at most
400 keV, again within the estimated uncertainty of our
many-body truncation scheme. The c.m. correction in
Eq. (10) is crucial to obtain this agreement. For @! ¼
24 MeV and !SRG ¼ 2:0 fm!1, the discrepancy in 15O
(23O) is 1.65 MeV (1.03 MeV) when neglecting the
changes in kinetic energy of the c.m. but it reduces to
only 190 keV (20 keV) when this is accounted for. This
gives us confidence that a proper separation of the center of
mass motion is being reached.

Figure 2 also gives a first remarkable demonstration of
the predictive power of chiral 2N þ 3N interactions:
accounting for the precision of our many-body approach
and dependence on !SRG found in Ref. [28], we expect an
accuracy of at least 5% on binding energies. All calculated
values agree with the experiment within this limit. Note
that the interactions employed were only constrained by
2N and 3H and 4He data.

Figures 3 and 4 collect our results for the oxygen, nitro-
gen and fluorine isotopes calculated with @! ¼ 24 MeV
and !SRG ¼ 2:0 fm!1. The top panel of Fig. 3 shows the
predicted evolution of neutron single particle spectrum
(addition and separation energies) of oxygen isotopes in
the sd shell. Induced 3NFs reproduce the overall trend but
predict a bound d3=2 when the shell is filled. Adding pre-
existing 3NFs—the full Hamiltonian—raises this orbit
above the continuum also for the highest masses. This
gives a first principle confirmation of the repulsive effects
of the two-pion exchange Fujita-Miyazawa interaction
discussed in Ref. [3]. The consequences of this trend are
demonstrated by the calculated ground state energies
shown in the bottom panel and in Fig. 4: the induced
Hamiltonian systematically under binds the whole isotopic
chain and erroneously places the drip line at 28O due to the
lack of repulsion in the d3=2 orbit. The contribution from
full 3NFs increase with the mass number up to 24O, when
the unbound d3=2 orbit starts being filled. Other bound
quasihole states are lowered resulting in additional overall
binding. As a result, the inclusion of NNLO 3NFs consis-
tently brings calculations close to the experiment and
reproduces the observed dripline at 24O [41–43]. Our cal-
culations predict 25O to be particle unbound by 1.54 MeV,
larger than the experimental value of 770 keV [44] but
within the estimated errors. The ground state resonance for
28O is suggested to be unbound by 5.2 MeV with respect to
24O. However, this estimate is likely to be affected by the
presence of the continuum which is important for this
nucleus but neglected in the present work.
The same mechanism affects neighboring isotopic

chains. This is demonstrated in Fig. 4 for the semimagic
odd-even isotopes of nitrogen and fluorine. Induced 3NF
forces consistently under bind these isotopes and even
predict a 27N close in energy to 23N. This is fully cor-
rected by full 3NFs that strongly bind 23N with respect to
27N, in accordance with the experimentally observed drip
line. The repulsive effects of filling the d3=2 is also
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Koltun SR and the poles of propagator (1), compared to experi-
ment (bars) [44,46,47]. All points are corrected for the kinetic
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larger than the experimental value of 770 keV [44] but
within the estimated errors. The ground state resonance for
28O is suggested to be unbound by 5.2 MeV with respect to
24O. However, this estimate is likely to be affected by the
presence of the continuum which is important for this
nucleus but neglected in the present work.
The same mechanism affects neighboring isotopic
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[H
ebeler et al. 2015]

⦿ Oxygen chain: importance of three-body forces and benchmark case for ab initio calculations

○Hamiltonian: chiral N3LO 2N (500 MeV) + N2LO 3N (400 MeV),  SRG-evolved to 2.0 fm-1

[Entem & Machleidt 2003; Navrátil 2007; Roth et al. 2012]

Different methods yield consistent results

GF access neighbouring F & N chains
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FIG. 9. (Color online) Diagonal part of the complete proton
spectral function [Eq. (A1)] for closed-subshell isotopes 14,16,22,24,28O.
The discretized energy peaks that appear as energy δ functions
in Eq. (3) have been smeared with Lorentzians of suitable with.
Energies below the Fermi surface, EF , correspond to the hole part of
the spectral distribution, while those above are for particle addition.
Energies ω > 0 MeV (plotted in red) correspond to proton-nucleus
scattering states.
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FIG. 10. (Color online) Same as Fig. 9, but for neutrons.
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FIG. 9. (Color online) Diagonal part of the complete proton
spectral function [Eq. (A1)] for closed-subshell isotopes 14,16,22,24,28O.
The discretized energy peaks that appear as energy δ functions
in Eq. (3) have been smeared with Lorentzians of suitable with.
Energies below the Fermi surface, EF , correspond to the hole part of
the spectral distribution, while those above are for particle addition.
Energies ω > 0 MeV (plotted in red) correspond to proton-nucleus
scattering states.
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FIG. 1. (Color online) Single-particle spectral distributions for
the addition and removal of a proton to/from closed-subshell oxygen
isotopes. States above the Fermi surface (EF ) are indicated by the
shaded areas and yield the spectra of the resulting odd-even fluorine
isotopes. The spectra below EF are for odd-even nitrogen isotopes in
the final state (this appears inverted in the plot, with higher excitation
energies pointing downward). Fragments with different angular
momentum and parity are shown with different colors, as indicated,
and the bar lengths provide the calculated spectroscopic factors. These
results are obtained from ADC(3) and the full NN + 3NF interaction
with λSRG = 2.0 fm−1.
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FIG. 2. (Color online) Same as Fig. 1 but for the addition and
removal of a neutron. Both particle (shaded areas) and hole spectra
correspond to odd-even oxygen isotopes.

(A − 1)-nucleon wave functions in the continuum and the
bound |"A

0 ⟩ ground state.
The fragments of the spectral distribution provide the

excitation spectrum for the neighboring odd-even isotopes.
For example, the two dominant quasihole peaks in 24O in
Fig. 2 correspond to the 1/2+ ground state and the 5/2+

excitation of 23O. Our calculated excitation energy for the
5/2+ state is 2.74 MeV, close to the experimental value of
2.79(13) MeV [64]. The 3/2+ state of 23O can be calculated
from the quasiparticle spectra of 22O. For this we obtain
5.0 MeV excitation energy, which is larger than the experi-
mental value of 4.0 MeV [62]. In both cases, the theoretical
result agrees with the ab initio configuration interaction (CI)
calculations of Refs. [32,33], which use the same NN + 3NF
full Hamiltonian. As mentioned above, satellite peaks (that
is, nondominant ones) are not necessarily well described in
nucleon-attached and nucleon-removal methods at the ADC(3)
level. This because they require leading-order configurations
of 2p1h/2h1p type or higher. The first 1/2+ excited state of 21O,
seen as a hole on 22O, is of this type and has a spectroscopic
factor ≈9% of the independent particle model. In spite of this,
the ADC(3) excitation energy is 1.78 MeV, which is again in
great agreement with CI calculations based on the same Hamil-
tonian (and slightly off the experimental value of 1.22 MeV
[65]). Instead, the calculated spectroscopic factor the the 3/2+

excited state is only <1% and this is unlikely to be converged
with respect to the many-body truncation in the ADC(3). For
this state, we obtain an excitation energy of 940 keV that
disagrees with both the experiment and the ab initio CI results,
as expected. These results give a further confirmation of the
performance of the present chiral Hamiltonian with the single
sd shell. Furthermore, we note that the comparison with Refs.
[32,33] provides a successful benchmark of the accuracy of
ADC(3) for calculating dominant quasiparticle states. We then
use the latter to discuss the single-particle structure across both
p and sd shells.

Figure 3 shows the details of the evolution of the
dominant proton quasiparticle and quasihole peaks in the
sd and p shells for increasing neutron number. These
are corrected for the effects of the c.m. motion accord-
ing to Eqs. (12). The dashed lines are obtained from the
NN + 3N -induced interaction and represent the spectrum
predicted by the initial N3LO NN force. In general, the
addition of original 3NFs (solid lines) has the effect of
consistently increasing the spin-orbit splittings between the
1/2−–3/2− and the 3/2+–5/2+ dominant peaks. The s1/2 orbit
remain largely unaffected. The overall changes introduced
by leading-order 3NFs are reported in Tables I and II
for both protons and neutrons. The evolution of quasiparticle
energies for the addition and the removal of a neutron is
displayed in Fig. 4. In this case, the 1/2− and 3/2− strength (in
the p shell) is strongly fragmented for masses above A = 20
and no clear dominant peak is predicted. The original 3NFs still
have the effect of increasing the splitting between spin-orbit
partner states. However, this is in addition to the stronger
repulsion on the d3/2 orbit that is at the origin of the anomalous
dripline at 24O [16].

Worth mentioning are the splittings between the 1/2− and
the 3/2− quasiholes in 16O. For protons, this is predicted to be
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predicted by the initial N3LO NN force. In general, the
addition of original 3NFs (solid lines) has the effect of
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FIG. 3. 1PI, skeleton and interaction-irreducible self-energy di-
agrams appearing at second order in the perturbative expansion of
Eq. (7), using the effective Hamiltonian of Eq. (9).

it corresponds to further interaction-reducible diagrams. By
expanding the effective 2B interaction according to Eq. (11),
the contribution of Fig. 3(a) splits into the four diagrams of
Fig. 4 (see also a similar example in Fig. 16).

The second interaction-irreducible diagram arises from
explicit 3BFs and it is given in Fig. 3(b). One may expect
this contribution to play a minor role due to phase space
arguments, as it involves 3p2h and 3h2p excitations at
higher excitation energies. Moreover, 3BFs are generally
weaker than the corresponding 2BFs (typically, ⟨Ŵ ⟩ ≈ 1

10 ⟨V̂ ⟩
for nuclear interactions [22,46]). Summarizing, at second
order in standard self-consistent perturbation theory, one
would find a total of five skeleton diagrams. Of these, only
two are interaction irreducible and need to be calculated when
effective interactions are considered.

Figure 5 shows all the 17 interaction-irreducible diagrams
appearing at third order. Again, note that, expanding the
effective interaction Ṽ , would generate a much larger number
of diagrams (53 in total). Diagrams Figs. 5(a) and 5(b) are
the only third-order terms that would appear in the 2BF
case. Numerically, these two diagrams only require evaluating
Eq. (11) beforehand, but can otherwise be dealt with using
existing 2BF codes. They have already been exploited to
include 3BFs in nuclear structure studies [21,25,27,35,37].

The remaining 15 diagrams, from Figs. 5(c)–5(q), appear
when 3BFs are introduced. These third-order diagrams are
ordered in Fig. 5 in terms of increasing numbers of 3B
interactions and, within these, in terms of increasing number of
particle-hole excitations. Qualitatively, one would expect that
this should correspond to a decreasing importance of their
contributions. Diagrams Figs. 5(a)–5(c), for instance, only
involve 2p1h and 2h1p intermediate configurations, normally

(a) (b)

(c) (d)

FIG. 4. These four diagrams are contained in diagram Fig. 3(a).
They correspond to one 2B interaction-irreducible diagram (a), and
three interaction-reducible diagrams (b)–(d).

needed to describe particle addition and removal energies to
dominant quasiparticle peaks as well as total ground-state
energies.

Diagram Fig. 5(c) includes one 3B irreducible interaction
term and still needs to be investigated within the SCGF method.
Normal-ordered Hamiltonian studies [31,33] clearly suggest
that this brings in a small correction to the total energy with
respect to diagrams Figs. 5(a) and 5(b). This is in line with
the qualitative analysis of the number of Ṽ and Ŵ interactions
entering these diagrams. Diagrams Figs. 5(a)–5(c) all represent
the first-order term in an all-order summation needed to
account for configuration mixing between 2p1h or 2h1p
excitations. Nowadays, resummations of these configurations
are performed routinely for the first two diagrams in third-order
algebraic diagrammatic construction, ADC(3), and FRPA
calculations [10,11,16].

The remaining diagrams of Fig. 5 all include 3p2h and
3h2p configurations. These become necessary to reproduce
the fragmentation patterns of shakeup configurations in
particle removal and addition experiments, i.e., Dyson orbits
beyond the main quasiparticle peaks. These contributions are
computationally more demanding. Diagrams Figs. 5(d)–5(k)
all describe interaction between 2p1h (2h1p) and 3p2h
(3h2p) configurations. These are split into four contributions
arising from two effective 2BFs and four that contain two
irreducible 3B interactions. Similarly, diagrams Figs. 5(l)–5(q)
are the first contributions to the configuration mixing among
3p2h or 3h2p states.

Appendix A provides the Feynman diagram rules to
compute the contribution associated with these diagrams.
Specific expressions for some diagrams in Fig. 5 are given.
We note that the Feynman rules remain unaltered whether
one uses the original, Û and V̂ , or the effective, Ũ or Ṽ ,
interactions. Hence, symmetry factors from equivalent lines
remain unchanged.

III. EQUATION-OF-MOTION METHOD

The perturbation theory expansion outlined in the previous
section is useful to identify new contributions arising from the
inclusion of 3B interactions. However, diagrams up to third
order alone do not necessarily incorporate all the necessary
information to describe strongly correlated quantum many-
body systems. For example, the strong repulsive character
of the nuclear force at short distances requires explicit all-
order summations of ladder series. All-order summations
of 2p1h and 2h1p are also required in finite systems to
achieve accuracy for the predicted ground-state and separation
energies, as well as to preserve the correct analytic properties
of the self-energy beyond second order.

To investigate approximation schemes for all-order sum-
mations including 3BFs, we now develop the EOM method.
This will provide special insight into possible self-consistent
expansions of the irreducible self-energy, !⋆. For 2B forces
only, the EOM technique defines a hierarchy of equations that
link each n-body GF to the (n − 1)- and the (n + 1)-body GFs.
When extended to include 3BFs, the hierarchy also involves
the (n + 2)-body GFs. A truncation of this Martin-Schwinger
hierarchy is necessary to solve the system of equations [5] and
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interactions. Hence, symmetry factors from equivalent lines
remain unchanged.

III. EQUATION-OF-MOTION METHOD

The perturbation theory expansion outlined in the previous
section is useful to identify new contributions arising from the
inclusion of 3B interactions. However, diagrams up to third
order alone do not necessarily incorporate all the necessary
information to describe strongly correlated quantum many-
body systems. For example, the strong repulsive character
of the nuclear force at short distances requires explicit all-
order summations of ladder series. All-order summations
of 2p1h and 2h1p are also required in finite systems to
achieve accuracy for the predicted ground-state and separation
energies, as well as to preserve the correct analytic properties
of the self-energy beyond second order.

To investigate approximation schemes for all-order sum-
mations including 3BFs, we now develop the EOM method.
This will provide special insight into possible self-consistent
expansions of the irreducible self-energy, !⋆. For 2B forces
only, the EOM technique defines a hierarchy of equations that
link each n-body GF to the (n − 1)- and the (n + 1)-body GFs.
When extended to include 3BFs, the hierarchy also involves
the (n + 2)-body GFs. A truncation of this Martin-Schwinger
hierarchy is necessary to solve the system of equations [5] and

054326-6

9

· · ·

· · · T

T

T

T

9

· · ·

· · · T

T

T

T

9

· · ·

· · · T

T

T

T

9

· · ·

· · · T

T

T

T

⦿ Hamiltonians describing A-nucleon systems contain in principle up to A-body operators

⦿ At least three-body forces need to be included in realistic ab initio calculations

⦿ In Green’s function theory, one has to re-work out the perturbative expansion of G

⦿ I.e. in the diagrammatic expansion of the self-energy additional terms appear

CARBONE, CIPOLLONE, BARBIERI, RIOS, AND POLLS PHYSICAL REVIEW C 88, 054326 (2013)

(a) (b)

FIG. 3. 1PI, skeleton and interaction-irreducible self-energy di-
agrams appearing at second order in the perturbative expansion of
Eq. (7), using the effective Hamiltonian of Eq. (9).

it corresponds to further interaction-reducible diagrams. By
expanding the effective 2B interaction according to Eq. (11),
the contribution of Fig. 3(a) splits into the four diagrams of
Fig. 4 (see also a similar example in Fig. 16).

The second interaction-irreducible diagram arises from
explicit 3BFs and it is given in Fig. 3(b). One may expect
this contribution to play a minor role due to phase space
arguments, as it involves 3p2h and 3h2p excitations at
higher excitation energies. Moreover, 3BFs are generally
weaker than the corresponding 2BFs (typically, ⟨Ŵ ⟩ ≈ 1
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arising from two effective 2BFs and four that contain two
irreducible 3B interactions. Similarly, diagrams Figs. 5(l)–5(q)
are the first contributions to the configuration mixing among
3p2h or 3h2p states.

Appendix A provides the Feynman diagram rules to
compute the contribution associated with these diagrams.
Specific expressions for some diagrams in Fig. 5 are given.
We note that the Feynman rules remain unaltered whether
one uses the original, Û and V̂ , or the effective, Ũ or Ṽ ,
interactions. Hence, symmetry factors from equivalent lines
remain unchanged.

III. EQUATION-OF-MOTION METHOD

The perturbation theory expansion outlined in the previous
section is useful to identify new contributions arising from the
inclusion of 3B interactions. However, diagrams up to third
order alone do not necessarily incorporate all the necessary
information to describe strongly correlated quantum many-
body systems. For example, the strong repulsive character
of the nuclear force at short distances requires explicit all-
order summations of ladder series. All-order summations
of 2p1h and 2h1p are also required in finite systems to
achieve accuracy for the predicted ground-state and separation
energies, as well as to preserve the correct analytic properties
of the self-energy beyond second order.

To investigate approximation schemes for all-order sum-
mations including 3BFs, we now develop the EOM method.
This will provide special insight into possible self-consistent
expansions of the irreducible self-energy, !⋆. For 2B forces
only, the EOM technique defines a hierarchy of equations that
link each n-body GF to the (n − 1)- and the (n + 1)-body GFs.
When extended to include 3BFs, the hierarchy also involves
the (n + 2)-body GFs. A truncation of this Martin-Schwinger
hierarchy is necessary to solve the system of equations [5] and
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FIG. 1. Diagrammatic representation of the effective 1B inter-
action of Eq. (10). This is given by the sum of the original 1B
potential (dotted line), the 2B interaction (dashed line) contracted
with a dressed SP propagator G (double line with arrow), and
the 3B interaction (long-dashed line) contracted with a dressed 2B
propagator GII . The correct symmetry factor of 1/4 in the last term
is also shown explicitly.

A. Interaction-irreducible diagrams

It is possible to further restrict the set of relevant diagrams
by exploiting the concept of effective interactions. Let us
consider an articulation vertex in a generic Feynman diagram.
A 2B, 3B or higher interaction vertex is an articulation vertex
if, when cut, it gives rise to two disconnected diagrams.2

Formally, a diagram is said to be interaction-irreducible if
it contains no articulation vertices. Equivalently, a diagram is
interaction reducible if there exists a group of fermion lines
(either interacting or not) that leaves one interaction vertex and
eventually all return to it.

When an articulation vertex is cut, one is left with a cycle of
fermion lines that all connect to the same interaction. If there
were p lines connected to this interaction vertex, this set of
closed lines would necessarily be part of a 2p-point GF.3 If this
GF is computed explicitly in the calculation, one can use it to
evaluate all these contributions straight away. This eliminates
the need for computing all the diagrams looping in and out
of the articulation vertex, at the expense of having to find the
many-body propagator. An n-body interaction vertex with p
fermion lines looping over it is an n − p effective interaction
operator. Infinite sets of interaction-reducible diagrams can be
subsummed by means of effective interactions.

The two cases of interest when 2B and 3B forces are present
in the Hamiltonian are shown in Figs. 1 and 2 that give,
respectively, the diagrammatic definition of the 1B and 2B
effective interactions. The 1B effective interaction is obtained
by adding up three contributions: the original 1B interaction;
a 1B average over the 2B interaction; and a 2B average
over the 3B force. The 1B and 2B averages are performed
using fully dressed propagators. Similarly, an effective 2B
force is obtained from the original 2B interaction plus a 1B
average over the 3B force. Note that these go beyond usual
normal-ordering “averages” in that they are performed over
fully correlated, many-body propagators. Similar definitions
would hold for higher-order forces and effective interactions
beyond the 3B level.

Hence, for a system with up to 3BFs, we define an effective
Hamiltonian,

H̃1 = Ũ + Ṽ + Ŵ , (9)

21B vertices cannot be split and therefore cannot be articulations.
3More specifically, these fermion lines contain an instantaneous

contribution of the many-body GF that enters and exits the same
interaction vertex, corresponding to a p-body reduced density matrix.

= +

FIG. 2. Diagrammatic representation of the effective 2B interac-
tion of Eq. (11). This is given by the sum of the original 2B interaction
(dashed line) and the 3B interaction (long-dashed line) contracted
with a dressed SP propagator G.

where Ũ and Ṽ represent effective interaction operators.
The diagrammatic expansion arising from Eq. (7) with the
effective Hamiltonian H̃1 is formed only of (1PI, skeleton)
interaction-irreducible diagrams to avoid any possible double
counting. Note that the 3B interaction Ŵ remains the same as
in Eq. (1) but enters only the interaction-irreducible diagrams
with respect to 3B interactions. The explicit expressions for
the 1B and 2B effective interaction operators are

Ũ =
∑

αβ

[
− Uαβ − ih̄

∑

γ δ

Vαγ ,βδ Gδγ (t − t+)

+ ih̄

4

∑

γ ϵ
δη

Wαγ ϵ,βδη GII
δη,γ ϵ(t − t+)

]
a†

αaβ , (10)

Ṽ = 1
4

∑

αγ
βδ

[
Vαγ ,βδ − ih̄

∑

ϵη

Wαγ ϵ,βδη Gηϵ(t − t+)
]
a†

αa†
γ aδaβ .

(11)

We have introduced a specific component of the four-point
GFs,

GII
δη,γ ϵ(t − t ′) = G

4−pt
δη,γ ϵ(t+, t ; t ′, t ′+), (12)

which involves two-particle and two-hole propagation. This
is the so-called two-particle and two-time Green’s function.
Let us also note that the contracted propagators in Eqs. (10)
and (11) correspond to the full 1B and 2B reduced density
matrices of the many-body system:

ρ1B
δγ =

〈
(N

0

∣∣a†
γ aδ

∣∣(N
0

〉
= −ih̄ Gδγ (t − t+), (13)

ρ2B
δη,γ ϵ =

〈
(N

0

∣∣a†
γ a†

ϵaηaδ

∣∣(N
0

〉
= ih̄ GII

δη,γ ϵ(t − t+). (14)

In a self-consistent calculation, effective interactions should
be computed iteratively at each step, using correlated 1B and
2B propagators as input.

The effective Hamiltonian of Eq. (9) not only regroups
Feynman diagrams in a more efficient way, but also defines
the effective 1B and 2B terms from higher order interactions.
Averaging the 3BF over one and two spectator particles in the
medium is expected to yield the most important contributions
to the many-body dynamics in nuclei [31,33]. We note that
Eqs. (10) and (11) are exact and can be derived rigorously
from the perturbative expansion. Details of the proof are
discussed in Appendix B. As long as interaction-irreducible
diagrams are used together with the effective Hamiltonian
H̃1, this approach provides a systematic way to incorporate
many-body forces in the calculations and to generate effective
in-medium interactions. More importantly, the formalism is
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FIG. 1. Diagrammatic representation of the effective 1B inter-
action of Eq. (10). This is given by the sum of the original 1B
potential (dotted line), the 2B interaction (dashed line) contracted
with a dressed SP propagator G (double line with arrow), and
the 3B interaction (long-dashed line) contracted with a dressed 2B
propagator GII . The correct symmetry factor of 1/4 in the last term
is also shown explicitly.

A. Interaction-irreducible diagrams

It is possible to further restrict the set of relevant diagrams
by exploiting the concept of effective interactions. Let us
consider an articulation vertex in a generic Feynman diagram.
A 2B, 3B or higher interaction vertex is an articulation vertex
if, when cut, it gives rise to two disconnected diagrams.2

Formally, a diagram is said to be interaction-irreducible if
it contains no articulation vertices. Equivalently, a diagram is
interaction reducible if there exists a group of fermion lines
(either interacting or not) that leaves one interaction vertex and
eventually all return to it.

When an articulation vertex is cut, one is left with a cycle of
fermion lines that all connect to the same interaction. If there
were p lines connected to this interaction vertex, this set of
closed lines would necessarily be part of a 2p-point GF.3 If this
GF is computed explicitly in the calculation, one can use it to
evaluate all these contributions straight away. This eliminates
the need for computing all the diagrams looping in and out
of the articulation vertex, at the expense of having to find the
many-body propagator. An n-body interaction vertex with p
fermion lines looping over it is an n − p effective interaction
operator. Infinite sets of interaction-reducible diagrams can be
subsummed by means of effective interactions.

The two cases of interest when 2B and 3B forces are present
in the Hamiltonian are shown in Figs. 1 and 2 that give,
respectively, the diagrammatic definition of the 1B and 2B
effective interactions. The 1B effective interaction is obtained
by adding up three contributions: the original 1B interaction;
a 1B average over the 2B interaction; and a 2B average
over the 3B force. The 1B and 2B averages are performed
using fully dressed propagators. Similarly, an effective 2B
force is obtained from the original 2B interaction plus a 1B
average over the 3B force. Note that these go beyond usual
normal-ordering “averages” in that they are performed over
fully correlated, many-body propagators. Similar definitions
would hold for higher-order forces and effective interactions
beyond the 3B level.

Hence, for a system with up to 3BFs, we define an effective
Hamiltonian,

H̃1 = Ũ + Ṽ + Ŵ , (9)

21B vertices cannot be split and therefore cannot be articulations.
3More specifically, these fermion lines contain an instantaneous

contribution of the many-body GF that enters and exits the same
interaction vertex, corresponding to a p-body reduced density matrix.
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FIG. 2. Diagrammatic representation of the effective 2B interac-
tion of Eq. (11). This is given by the sum of the original 2B interaction
(dashed line) and the 3B interaction (long-dashed line) contracted
with a dressed SP propagator G.

where Ũ and Ṽ represent effective interaction operators.
The diagrammatic expansion arising from Eq. (7) with the
effective Hamiltonian H̃1 is formed only of (1PI, skeleton)
interaction-irreducible diagrams to avoid any possible double
counting. Note that the 3B interaction Ŵ remains the same as
in Eq. (1) but enters only the interaction-irreducible diagrams
with respect to 3B interactions. The explicit expressions for
the 1B and 2B effective interaction operators are

Ũ =
∑

αβ

[
− Uαβ − ih̄

∑

γ δ

Vαγ ,βδ Gδγ (t − t+)

+ ih̄

4

∑

γ ϵ
δη

Wαγ ϵ,βδη GII
δη,γ ϵ(t − t+)

]
a†

αaβ , (10)

Ṽ = 1
4

∑

αγ
βδ

[
Vαγ ,βδ − ih̄

∑

ϵη

Wαγ ϵ,βδη Gηϵ(t − t+)
]
a†

αa†
γ aδaβ .

(11)

We have introduced a specific component of the four-point
GFs,

GII
δη,γ ϵ(t − t ′) = G

4−pt
δη,γ ϵ(t+, t ; t ′, t ′+), (12)

which involves two-particle and two-hole propagation. This
is the so-called two-particle and two-time Green’s function.
Let us also note that the contracted propagators in Eqs. (10)
and (11) correspond to the full 1B and 2B reduced density
matrices of the many-body system:

ρ1B
δγ =

〈
(N

0

∣∣a†
γ aδ

∣∣(N
0

〉
= −ih̄ Gδγ (t − t+), (13)

ρ2B
δη,γ ϵ =

〈
(N

0

∣∣a†
γ a†

ϵaηaδ

∣∣(N
0

〉
= ih̄ GII

δη,γ ϵ(t − t+). (14)

In a self-consistent calculation, effective interactions should
be computed iteratively at each step, using correlated 1B and
2B propagators as input.

The effective Hamiltonian of Eq. (9) not only regroups
Feynman diagrams in a more efficient way, but also defines
the effective 1B and 2B terms from higher order interactions.
Averaging the 3BF over one and two spectator particles in the
medium is expected to yield the most important contributions
to the many-body dynamics in nuclei [31,33]. We note that
Eqs. (10) and (11) are exact and can be derived rigorously
from the perturbative expansion. Details of the proof are
discussed in Appendix B. As long as interaction-irreducible
diagrams are used together with the effective Hamiltonian
H̃1, this approach provides a systematic way to incorporate
many-body forces in the calculations and to generate effective
in-medium interactions. More importantly, the formalism is
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(a) (b)

FIG. 3. 1PI, skeleton and interaction-irreducible self-energy di-
agrams appearing at second order in the perturbative expansion of
Eq. (7), using the effective Hamiltonian of Eq. (9).

it corresponds to further interaction-reducible diagrams. By
expanding the effective 2B interaction according to Eq. (11),
the contribution of Fig. 3(a) splits into the four diagrams of
Fig. 4 (see also a similar example in Fig. 16).

The second interaction-irreducible diagram arises from
explicit 3BFs and it is given in Fig. 3(b). One may expect
this contribution to play a minor role due to phase space
arguments, as it involves 3p2h and 3h2p excitations at
higher excitation energies. Moreover, 3BFs are generally
weaker than the corresponding 2BFs (typically, ⟨Ŵ ⟩ ≈ 1

10 ⟨V̂ ⟩
for nuclear interactions [22,46]). Summarizing, at second
order in standard self-consistent perturbation theory, one
would find a total of five skeleton diagrams. Of these, only
two are interaction irreducible and need to be calculated when
effective interactions are considered.

Figure 5 shows all the 17 interaction-irreducible diagrams
appearing at third order. Again, note that, expanding the
effective interaction Ṽ , would generate a much larger number
of diagrams (53 in total). Diagrams Figs. 5(a) and 5(b) are
the only third-order terms that would appear in the 2BF
case. Numerically, these two diagrams only require evaluating
Eq. (11) beforehand, but can otherwise be dealt with using
existing 2BF codes. They have already been exploited to
include 3BFs in nuclear structure studies [21,25,27,35,37].

The remaining 15 diagrams, from Figs. 5(c)–5(q), appear
when 3BFs are introduced. These third-order diagrams are
ordered in Fig. 5 in terms of increasing numbers of 3B
interactions and, within these, in terms of increasing number of
particle-hole excitations. Qualitatively, one would expect that
this should correspond to a decreasing importance of their
contributions. Diagrams Figs. 5(a)–5(c), for instance, only
involve 2p1h and 2h1p intermediate configurations, normally

(a) (b)

(c) (d)

FIG. 4. These four diagrams are contained in diagram Fig. 3(a).
They correspond to one 2B interaction-irreducible diagram (a), and
three interaction-reducible diagrams (b)–(d).

needed to describe particle addition and removal energies to
dominant quasiparticle peaks as well as total ground-state
energies.

Diagram Fig. 5(c) includes one 3B irreducible interaction
term and still needs to be investigated within the SCGF method.
Normal-ordered Hamiltonian studies [31,33] clearly suggest
that this brings in a small correction to the total energy with
respect to diagrams Figs. 5(a) and 5(b). This is in line with
the qualitative analysis of the number of Ṽ and Ŵ interactions
entering these diagrams. Diagrams Figs. 5(a)–5(c) all represent
the first-order term in an all-order summation needed to
account for configuration mixing between 2p1h or 2h1p
excitations. Nowadays, resummations of these configurations
are performed routinely for the first two diagrams in third-order
algebraic diagrammatic construction, ADC(3), and FRPA
calculations [10,11,16].

The remaining diagrams of Fig. 5 all include 3p2h and
3h2p configurations. These become necessary to reproduce
the fragmentation patterns of shakeup configurations in
particle removal and addition experiments, i.e., Dyson orbits
beyond the main quasiparticle peaks. These contributions are
computationally more demanding. Diagrams Figs. 5(d)–5(k)
all describe interaction between 2p1h (2h1p) and 3p2h
(3h2p) configurations. These are split into four contributions
arising from two effective 2BFs and four that contain two
irreducible 3B interactions. Similarly, diagrams Figs. 5(l)–5(q)
are the first contributions to the configuration mixing among
3p2h or 3h2p states.

Appendix A provides the Feynman diagram rules to
compute the contribution associated with these diagrams.
Specific expressions for some diagrams in Fig. 5 are given.
We note that the Feynman rules remain unaltered whether
one uses the original, Û and V̂ , or the effective, Ũ or Ṽ ,
interactions. Hence, symmetry factors from equivalent lines
remain unchanged.

III. EQUATION-OF-MOTION METHOD

The perturbation theory expansion outlined in the previous
section is useful to identify new contributions arising from the
inclusion of 3B interactions. However, diagrams up to third
order alone do not necessarily incorporate all the necessary
information to describe strongly correlated quantum many-
body systems. For example, the strong repulsive character
of the nuclear force at short distances requires explicit all-
order summations of ladder series. All-order summations
of 2p1h and 2h1p are also required in finite systems to
achieve accuracy for the predicted ground-state and separation
energies, as well as to preserve the correct analytic properties
of the self-energy beyond second order.

To investigate approximation schemes for all-order sum-
mations including 3BFs, we now develop the EOM method.
This will provide special insight into possible self-consistent
expansions of the irreducible self-energy, !⋆. For 2B forces
only, the EOM technique defines a hierarchy of equations that
link each n-body GF to the (n − 1)- and the (n + 1)-body GFs.
When extended to include 3BFs, the hierarchy also involves
the (n + 2)-body GFs. A truncation of this Martin-Schwinger
hierarchy is necessary to solve the system of equations [5] and
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FIG. 3. 1PI, skeleton and interaction-irreducible self-energy di-
agrams appearing at second order in the perturbative expansion of
Eq. (7), using the effective Hamiltonian of Eq. (9).

it corresponds to further interaction-reducible diagrams. By
expanding the effective 2B interaction according to Eq. (11),
the contribution of Fig. 3(a) splits into the four diagrams of
Fig. 4 (see also a similar example in Fig. 16).

The second interaction-irreducible diagram arises from
explicit 3BFs and it is given in Fig. 3(b). One may expect
this contribution to play a minor role due to phase space
arguments, as it involves 3p2h and 3h2p excitations at
higher excitation energies. Moreover, 3BFs are generally
weaker than the corresponding 2BFs (typically, ⟨Ŵ ⟩ ≈ 1

10 ⟨V̂ ⟩
for nuclear interactions [22,46]). Summarizing, at second
order in standard self-consistent perturbation theory, one
would find a total of five skeleton diagrams. Of these, only
two are interaction irreducible and need to be calculated when
effective interactions are considered.

Figure 5 shows all the 17 interaction-irreducible diagrams
appearing at third order. Again, note that, expanding the
effective interaction Ṽ , would generate a much larger number
of diagrams (53 in total). Diagrams Figs. 5(a) and 5(b) are
the only third-order terms that would appear in the 2BF
case. Numerically, these two diagrams only require evaluating
Eq. (11) beforehand, but can otherwise be dealt with using
existing 2BF codes. They have already been exploited to
include 3BFs in nuclear structure studies [21,25,27,35,37].

The remaining 15 diagrams, from Figs. 5(c)–5(q), appear
when 3BFs are introduced. These third-order diagrams are
ordered in Fig. 5 in terms of increasing numbers of 3B
interactions and, within these, in terms of increasing number of
particle-hole excitations. Qualitatively, one would expect that
this should correspond to a decreasing importance of their
contributions. Diagrams Figs. 5(a)–5(c), for instance, only
involve 2p1h and 2h1p intermediate configurations, normally
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FIG. 4. These four diagrams are contained in diagram Fig. 3(a).
They correspond to one 2B interaction-irreducible diagram (a), and
three interaction-reducible diagrams (b)–(d).

needed to describe particle addition and removal energies to
dominant quasiparticle peaks as well as total ground-state
energies.

Diagram Fig. 5(c) includes one 3B irreducible interaction
term and still needs to be investigated within the SCGF method.
Normal-ordered Hamiltonian studies [31,33] clearly suggest
that this brings in a small correction to the total energy with
respect to diagrams Figs. 5(a) and 5(b). This is in line with
the qualitative analysis of the number of Ṽ and Ŵ interactions
entering these diagrams. Diagrams Figs. 5(a)–5(c) all represent
the first-order term in an all-order summation needed to
account for configuration mixing between 2p1h or 2h1p
excitations. Nowadays, resummations of these configurations
are performed routinely for the first two diagrams in third-order
algebraic diagrammatic construction, ADC(3), and FRPA
calculations [10,11,16].

The remaining diagrams of Fig. 5 all include 3p2h and
3h2p configurations. These become necessary to reproduce
the fragmentation patterns of shakeup configurations in
particle removal and addition experiments, i.e., Dyson orbits
beyond the main quasiparticle peaks. These contributions are
computationally more demanding. Diagrams Figs. 5(d)–5(k)
all describe interaction between 2p1h (2h1p) and 3p2h
(3h2p) configurations. These are split into four contributions
arising from two effective 2BFs and four that contain two
irreducible 3B interactions. Similarly, diagrams Figs. 5(l)–5(q)
are the first contributions to the configuration mixing among
3p2h or 3h2p states.

Appendix A provides the Feynman diagram rules to
compute the contribution associated with these diagrams.
Specific expressions for some diagrams in Fig. 5 are given.
We note that the Feynman rules remain unaltered whether
one uses the original, Û and V̂ , or the effective, Ũ or Ṽ ,
interactions. Hence, symmetry factors from equivalent lines
remain unchanged.

III. EQUATION-OF-MOTION METHOD

The perturbation theory expansion outlined in the previous
section is useful to identify new contributions arising from the
inclusion of 3B interactions. However, diagrams up to third
order alone do not necessarily incorporate all the necessary
information to describe strongly correlated quantum many-
body systems. For example, the strong repulsive character
of the nuclear force at short distances requires explicit all-
order summations of ladder series. All-order summations
of 2p1h and 2h1p are also required in finite systems to
achieve accuracy for the predicted ground-state and separation
energies, as well as to preserve the correct analytic properties
of the self-energy beyond second order.

To investigate approximation schemes for all-order sum-
mations including 3BFs, we now develop the EOM method.
This will provide special insight into possible self-consistent
expansions of the irreducible self-energy, !⋆. For 2B forces
only, the EOM technique defines a hierarchy of equations that
link each n-body GF to the (n − 1)- and the (n + 1)-body GFs.
When extended to include 3BFs, the hierarchy also involves
the (n + 2)-body GFs. A truncation of this Martin-Schwinger
hierarchy is necessary to solve the system of equations [5] and
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agrams appearing at second order in the perturbative expansion of
Eq. (7), using the effective Hamiltonian of Eq. (9).

it corresponds to further interaction-reducible diagrams. By
expanding the effective 2B interaction according to Eq. (11),
the contribution of Fig. 3(a) splits into the four diagrams of
Fig. 4 (see also a similar example in Fig. 16).

The second interaction-irreducible diagram arises from
explicit 3BFs and it is given in Fig. 3(b). One may expect
this contribution to play a minor role due to phase space
arguments, as it involves 3p2h and 3h2p excitations at
higher excitation energies. Moreover, 3BFs are generally
weaker than the corresponding 2BFs (typically, ⟨Ŵ ⟩ ≈ 1

10 ⟨V̂ ⟩
for nuclear interactions [22,46]). Summarizing, at second
order in standard self-consistent perturbation theory, one
would find a total of five skeleton diagrams. Of these, only
two are interaction irreducible and need to be calculated when
effective interactions are considered.

Figure 5 shows all the 17 interaction-irreducible diagrams
appearing at third order. Again, note that, expanding the
effective interaction Ṽ , would generate a much larger number
of diagrams (53 in total). Diagrams Figs. 5(a) and 5(b) are
the only third-order terms that would appear in the 2BF
case. Numerically, these two diagrams only require evaluating
Eq. (11) beforehand, but can otherwise be dealt with using
existing 2BF codes. They have already been exploited to
include 3BFs in nuclear structure studies [21,25,27,35,37].

The remaining 15 diagrams, from Figs. 5(c)–5(q), appear
when 3BFs are introduced. These third-order diagrams are
ordered in Fig. 5 in terms of increasing numbers of 3B
interactions and, within these, in terms of increasing number of
particle-hole excitations. Qualitatively, one would expect that
this should correspond to a decreasing importance of their
contributions. Diagrams Figs. 5(a)–5(c), for instance, only
involve 2p1h and 2h1p intermediate configurations, normally
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needed to describe particle addition and removal energies to
dominant quasiparticle peaks as well as total ground-state
energies.

Diagram Fig. 5(c) includes one 3B irreducible interaction
term and still needs to be investigated within the SCGF method.
Normal-ordered Hamiltonian studies [31,33] clearly suggest
that this brings in a small correction to the total energy with
respect to diagrams Figs. 5(a) and 5(b). This is in line with
the qualitative analysis of the number of Ṽ and Ŵ interactions
entering these diagrams. Diagrams Figs. 5(a)–5(c) all represent
the first-order term in an all-order summation needed to
account for configuration mixing between 2p1h or 2h1p
excitations. Nowadays, resummations of these configurations
are performed routinely for the first two diagrams in third-order
algebraic diagrammatic construction, ADC(3), and FRPA
calculations [10,11,16].

The remaining diagrams of Fig. 5 all include 3p2h and
3h2p configurations. These become necessary to reproduce
the fragmentation patterns of shakeup configurations in
particle removal and addition experiments, i.e., Dyson orbits
beyond the main quasiparticle peaks. These contributions are
computationally more demanding. Diagrams Figs. 5(d)–5(k)
all describe interaction between 2p1h (2h1p) and 3p2h
(3h2p) configurations. These are split into four contributions
arising from two effective 2BFs and four that contain two
irreducible 3B interactions. Similarly, diagrams Figs. 5(l)–5(q)
are the first contributions to the configuration mixing among
3p2h or 3h2p states.

Appendix A provides the Feynman diagram rules to
compute the contribution associated with these diagrams.
Specific expressions for some diagrams in Fig. 5 are given.
We note that the Feynman rules remain unaltered whether
one uses the original, Û and V̂ , or the effective, Ũ or Ṽ ,
interactions. Hence, symmetry factors from equivalent lines
remain unchanged.

III. EQUATION-OF-MOTION METHOD

The perturbation theory expansion outlined in the previous
section is useful to identify new contributions arising from the
inclusion of 3B interactions. However, diagrams up to third
order alone do not necessarily incorporate all the necessary
information to describe strongly correlated quantum many-
body systems. For example, the strong repulsive character
of the nuclear force at short distances requires explicit all-
order summations of ladder series. All-order summations
of 2p1h and 2h1p are also required in finite systems to
achieve accuracy for the predicted ground-state and separation
energies, as well as to preserve the correct analytic properties
of the self-energy beyond second order.

To investigate approximation schemes for all-order sum-
mations including 3BFs, we now develop the EOM method.
This will provide special insight into possible self-consistent
expansions of the irreducible self-energy, !⋆. For 2B forces
only, the EOM technique defines a hierarchy of equations that
link each n-body GF to the (n − 1)- and the (n + 1)-body GFs.
When extended to include 3BFs, the hierarchy also involves
the (n + 2)-body GFs. A truncation of this Martin-Schwinger
hierarchy is necessary to solve the system of equations [5] and
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(a) (b)

FIG. 3. 1PI, skeleton and interaction-irreducible self-energy di-
agrams appearing at second order in the perturbative expansion of
Eq. (7), using the effective Hamiltonian of Eq. (9).

it corresponds to further interaction-reducible diagrams. By
expanding the effective 2B interaction according to Eq. (11),
the contribution of Fig. 3(a) splits into the four diagrams of
Fig. 4 (see also a similar example in Fig. 16).

The second interaction-irreducible diagram arises from
explicit 3BFs and it is given in Fig. 3(b). One may expect
this contribution to play a minor role due to phase space
arguments, as it involves 3p2h and 3h2p excitations at
higher excitation energies. Moreover, 3BFs are generally
weaker than the corresponding 2BFs (typically, ⟨Ŵ ⟩ ≈ 1

10 ⟨V̂ ⟩
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(a) (b)

(c) (d)

FIG. 4. These four diagrams are contained in diagram Fig. 3(a).
They correspond to one 2B interaction-irreducible diagram (a), and
three interaction-reducible diagrams (b)–(d).

needed to describe particle addition and removal energies to
dominant quasiparticle peaks as well as total ground-state
energies.

Diagram Fig. 5(c) includes one 3B irreducible interaction
term and still needs to be investigated within the SCGF method.
Normal-ordered Hamiltonian studies [31,33] clearly suggest
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account for configuration mixing between 2p1h or 2h1p
excitations. Nowadays, resummations of these configurations
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calculations [10,11,16].
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computationally more demanding. Diagrams Figs. 5(d)–5(k)
all describe interaction between 2p1h (2h1p) and 3p2h
(3h2p) configurations. These are split into four contributions
arising from two effective 2BFs and four that contain two
irreducible 3B interactions. Similarly, diagrams Figs. 5(l)–5(q)
are the first contributions to the configuration mixing among
3p2h or 3h2p states.

Appendix A provides the Feynman diagram rules to
compute the contribution associated with these diagrams.
Specific expressions for some diagrams in Fig. 5 are given.
We note that the Feynman rules remain unaltered whether
one uses the original, Û and V̂ , or the effective, Ũ or Ṽ ,
interactions. Hence, symmetry factors from equivalent lines
remain unchanged.

III. EQUATION-OF-MOTION METHOD

The perturbation theory expansion outlined in the previous
section is useful to identify new contributions arising from the
inclusion of 3B interactions. However, diagrams up to third
order alone do not necessarily incorporate all the necessary
information to describe strongly correlated quantum many-
body systems. For example, the strong repulsive character
of the nuclear force at short distances requires explicit all-
order summations of ladder series. All-order summations
of 2p1h and 2h1p are also required in finite systems to
achieve accuracy for the predicted ground-state and separation
energies, as well as to preserve the correct analytic properties
of the self-energy beyond second order.

To investigate approximation schemes for all-order sum-
mations including 3BFs, we now develop the EOM method.
This will provide special insight into possible self-consistent
expansions of the irreducible self-energy, !⋆. For 2B forces
only, the EOM technique defines a hierarchy of equations that
link each n-body GF to the (n − 1)- and the (n + 1)-body GFs.
When extended to include 3BFs, the hierarchy also involves
the (n + 2)-body GFs. A truncation of this Martin-Schwinger
hierarchy is necessary to solve the system of equations [5] and
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= + +

Γ6−pt

Σ∗

Γ4−pt

FIG. 9. Diagrammatic representation of the irreducible self-
energy !⋆ by means of effective 1B and 2B potentials and 1PI
vertex functions, as given in Eq. (25). The first term is the energy-
independent part of !⋆ and contains all diagrams depicted in Fig. 1.
The second and third terms are dynamical terms consisting of excited
configurations generated through 2B and 3BFs. This is an exact
equation for Hamiltonians including 3BFs and it is not derived from
perturbation theory.

frequency integrals of the n-point GFs. The diagrammatic
representation of this equation is given in Fig. 10.

To proceed further, we follow the steps of the previous
section and of Ref. [60] and split the eight-point GF into
free dressed propagators and 1PI vertex functions. This
decomposition is shown in Fig. 11. In addition to the already-
defined vertex functions, one needs 1PI objects with four
incoming and outgoing indices. To this end, we introduce
the eight-point vertex #8−pt in the last term. Note that due
care has to be taken of all antisymmetrization possibilities
when groups of fermion lines that are not connected by #8−pt

are considered. The first term, for instance, involves four
noninteracting but dressed fermion lines, and there are 4! = 24
possible combinations. There are ( 4

2 )( 4
2 ) 1

2 = 72 equivalent

terms involving two noninteracting lines and a single #4−pt, as
in the second term of Fig. 11. The double #4−pt contribution
(third term) can be obtained in 6 × 3 = 18 equivalent ways.

G4−pt = − +

G4−pt

+ +

G6−pt G8−pt

FIG. 10. Diagrammatic representation of the EOM for the four-
point propagator, G4−pt, given in Eq. (26). The last term, involving
an eight-point GF, arises due to the presence of 3B interactions.

G8−pt = +

24

Γ4

6

+ +Γ4

3

+Γ6

4

Γ8Γ4

12

6 4

FIG. 11. Exact separation of the eight-point Green’s function,
G8−pt, in terms of noninteracting lines and vertex functions. The
first four terms gather noninteracting dressed lines and subgroups of
interacting particles that are fully connected to each other. Round
brackets with numbers above (below) these diagrams indicate the
numbers of permutations of outgoing (incoming) legs needed to
generate all possible diagrams. The last term defines the eight-point
1PI vertex function #8−pt.

With this decomposition at hand, one can now proceed
and find an equation for the four-point vertex function, #4−pt.
Inserting the exact decompositions of the four-, six- and eight-
point GFs, given, respectively, by Figs. 7, 8, and 11, into the
EOM [Eq. (26)], one obtains an equation with #4−pt on both
sides. The diagrammatic representation of this self-consistent
equation is shown in Fig. 12.

A few comments are in order at this point. The left-hand side
of Eq. (26) in principle contains two dressed and noninteracting
propagators, as shown in the first two terms of Fig. 7. In
the right-hand side, however, one of the 1B propagators is
not dressed. When expanding the GFs in Eq. (26) in terms
of the #2n−pt vertex functions, the remaining contributions
to the Dyson equation arise automatically (Fig. 6). The
free unperturbed line, therefore, becomes dressed. As a
consequence, the pair of dressed noninteracting propagators
cancel out exactly on both sides of Eq. (26). This dressing
procedure of the G(0) propagator happens only partially in
the last three terms of the equation and was disregarded in
our derivation. In this sense, Fig. 12 should be taken as an
approximation to the exact EOM for G4−pt.

Equation (26) links 1B, 2B, 3B, and 4B propagators. Cor-
respondingly, Fig. 12 involves higher-order vertex functions,

054326-11

⦿ In general, the irreducible skeleton self-energy is given by

where 4- and 6-point vertices are generated by self-consistent equationsCARBONE, CIPOLLONE, BARBIERI, RIOS, AND POLLS PHYSICAL REVIEW C 88, 054326 (2013)

=Γ4−pt + +

Γ4−pt Γ4−pt

α γ

β δ

γ

β δ

α γ

β δ

α

γβ

δ

α

(a)

(b)

(c)

+++

Γ4−pt

++Γ4−pt

Γ6−pt Γ6−pt Γ6−pt

α γ

β

δ

α

γ

β δ

α

γ

β δ

α γ

β δ

α

γβ

δ

γ(d)

(e)
(f)

(g)

(h)

+
Γ4−pt Γ4−pt

α

γ

β δ

(i)
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Γ8−pt
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(k)

ex.

ex. ex.
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FIG. 12. Self-consistent expression for the !4−pt vertex function derived from the EOM for G4−pt. The round brackets underneath some
of the diagrams indicate that the term obtained by exchanging the {βωβ} and {δωδ} arguments must also be included. Diagrams (a), (b), (c),
and (f) are the only ones present for 2B Hamiltonians, although (f) also contains some intrinsic 3BF contributions such as the {αωα} ↔ {γωγ }
exchange of (e). All other diagrams arise from the inclusion of 3B interactions. Diagram (b) is responsible for generating the ladder summation,
the direct part of (c) generates the series of antisymmetrized rings, and the three sets together [(b), (c), and the exchange of (c)] would give rise
to a Parquet-type resummation.

such as !6−pt and !8−pt, which are in principle coupled,
through their own EOMs, to more complex GFs. The hierarchy
of these equations has to be necessarily truncated. In Ref. [60],
truncation schemes were explored by neglecting the !6−pt

vertex function at the level of Fig. 12 (!8−pt did not appear
in the 2BF-only case). This level of truncation is already
sufficient to retain physically relevant subsets of diagrams,
such as ladders and rings. Let us note, in particular, that the
summation of these infinite series leads to nonperturbative
many-body schemes. For completeness, we show in Fig. 12
all contributions coming also from the !6−pt and !8−pt vertices,
many of them arising from 3BFs.

We have ordered the diagrams in Fig. 12 in terms of
increasing contributions from 3BFs and in the order of
perturbation theory at which they start contributing to !4−pt.
Intuitively, we expect that this should order them in decreasing
importance. Diagrams Figs. 12(a)–12(c) and 12(f) are those
that are also present in the 2BF-only case. Diagram Fig. 12(f),
however, is of a mixed nature: It can contribute only at

third order with effective 2BFs, but does contain interaction-
irreducible 3BF contributions at second order that are similar
to diagrams Figs. 12(d) and 12(e). Diagrams Figs. 12(d)–12(h)
all contribute to !4−pt at second order, although the first three
require a combination of a Ṽ and a W term. The remaining
diagrams in this group, Figs. 12(g) and 12(h), require two 3B
interactions at second order and are expected to be subleading.
Note that Fig. 12(d) is antisymmetric in α and γ , but it must
also be antisymmetrized with respect to β and δ. Its conjugate
contribution, Fig. 12(e), should not be further antisymmetrized
in α and γ , because such exchange term is already included
in Fig. 12(f). All the remaining terms, Figs. 12(i)–12(k), only
contribute from the third order on.

The simplest truncation schemes to !4−pt come from
considering the first three terms of Fig. 12, which involve
effective 2BFs only. In the pure 2B case, these have already
been discussed in the literature [60]. Retaining diagrams
Figs. 12(a) and 12(b) leads to the ladder resummation used
in recent studies of infinite nucleonic matter [21,27]:

!4ladd
αγ ,βδ(ωα,ωγ ; ωβ ,ωα + ωγ − ωβ)

= Ṽαγ ,βδ + ih̄

2

∫
dω1

2π

∑

ϵµθλ

Ṽαγ ,ϵµGϵθ (ω1)Gµλ(ωα + ωγ − ω1)!4ladd
θλ,βδ(ω1,ωα + ωγ − ω1; ωβ ,ωα + ωγ − ωβ), (27)
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Note that, in general, T represents the 1B part of the
Hamiltonian which, in addition to the kinetic energy, might
also contain the 1B potential. Summing over all the external
SP states, α, one finds

∑

α

Iα =
〈
"N

0

∣∣T̂ + 2V̂ + 3Ŵ
∣∣"N

0

〉
. (36)

In other words, the sum over SP states of the first moment
of the spectral function yields a particular linear combination
of the contributions of the 1B, 2B, and 3B potentials to the
ground-state energy,

EN
0 =

〈
"N

0

∣∣Ĥ
∣∣"N

0

〉
=

〈
"N

0

∣∣T̂ + V̂ + Ŵ
∣∣"N

0

〉
. (37)

Because T̂ is a 1B operator, one can actually compute its
expectation value from the SP propagator itself:

〈
"N

0

∣∣T̂
∣∣"N

0

〉
= 1

π

∫ ϵ−
F

−∞
dω

∑

αβ

TαβIm Gβα(ω). (38)

The energy integral on the right-hand side yields the 1B density
matrix element, Eq. (13):

ρ1B
βα = 1

π

∫ ϵ−
F

−∞
dω Im Gβα(ω), (39)

which can be used to simplify the previous expression. For the
2B case, this is enough to provide an independent constraint
and hence allows for the calculation of the total energy.
The ground-state energy can then be computed from the 1B
propagator alone.

When 3BFs are present, however, one needs a third indepen-
dent linear combination of ⟨T̂ ⟩, ⟨V̂ ⟩, and ⟨Ŵ ⟩. Knowledge of
the 1B propagator is therefore not enough to compute the total
energy, because either the 2B or the 3B propagators are needed
to compute ⟨V̂ ⟩ or ⟨Ŵ ⟩ exactly. Depending on which of the
two operators is chosen, one is left with different expressions
for the energy of the ground state. This freedom in choice
could in principle be exploited to test the validity of different
approximations. In practical applications, however, one should
choose the combination that provides minimum uncertainty.

Let us start by considering the case where the 3B operator is
eliminated. Adding 2⟨T̂ ⟩ and ⟨V̂ ⟩ to the sum rule, Eq. (36), one
finds the following exact expression for the total ground-state
energy:

EN
0 = 1

3π

∫ ϵ−
F

−∞
dω

∑

αβ

(2Tαβ + ωδαβ)Im Gβα(ω)

+ 1
3

〈
"N

0

∣∣V̂
∣∣"N

0

〉
. (40)

The calculation of this expression requires the hole part of
the 1B propagator and the two-hole part of the 2B propagator,
which would appear in the second term. We note that this
expression is somewhat equivalent to the original GMK, in
that the ground-state energy is computed from 1B and 2B
operators, even though the Hamiltonian itself is a 3B operator.
This might prove advantageous in calculations where the 2B
propagator is computed explicitly.

Alternatively, one can eliminate the 2B contribution from
the GMK sum rule by adding ⟨T̂ ⟩ and subtracting ⟨Ŵ ⟩ to the
sum rule, Eq. (36). This leads to the following expression:

EN
0 = 1

2π

∫ ϵ−
F

−∞
dω

∑

αβ

(Tαβ + ωδαβ)Im Gβα(ω)

− 1
2

〈
"N

0

∣∣Ŵ
∣∣"N

0

〉
. (41)

The first term in this expression is formally the same as
that obtained in the case where only 2BFs are present in the
Hamiltonian. In that sense, the second term can be thought of as
a correction to the total energy associated with the 3BF. Note,
however, that the 3BF does influence the 1B propagator on the
first term and hence the correction should only be applied at
the very end of the self-consistent procedure.

Equations (40) and (41) are both exact. Which of the two is
employed in actual calculations will mostly depend on the
accuracy associated with the evaluation of the expectation
values, ⟨V̂ ⟩ and ⟨Ŵ ⟩. If the 2B interaction is dominant with
respect to the 3BF, for instance, the former will be a large
contribution. Small errors in the calculation of the 2B propa-
gator could eventually yield artificially large corrections in the
ground-state energy. In nuclear physics, the 3BF expectation
value is expected to provide a smaller contribution than
the 2BF [22,46]. Consequently, approximations in Eq. (41)
should lead to smaller absolute errors. This was the approach
that we recently followed in both finite nuclei and infinite
nuclear matter [27,35]. In finite nuclei, evaluating ⟨Ŵ ⟩ at first
order in terms of dressed propagators leads to satisfactory
results. However, accuracy is lost if free propagators, G(0)

are used instead. Equation (40) may eventually be useful in
calculations of infinite matter, in which the )4−pt is calculated
nonperturbatively.

This first-order approximation with undressed propagators
is traditionally used in nuclear structure. In this context,
three-body forces have been often discussed in the Hartree-
Fock approximation with Skyrme or Gogny functionals [1,66].
Zero-range forces have also been employed in ab initio–type
calculations [67]. It is perhaps instructive to point out at this
stage that the previous formulas apply to this case as well. In
particular, the Hartree-Fock approximation with 3BF can be
alternatively derived from the variational principle, under the
assumption that the many-body state is described by a Slater
determinant, |*N

0 ⟩. Diagonalizing an effective 1B hamiltonian
leads to a series of Hartree-Fock orbitals with single-particle
energies εα . The total energy under a 2B Hamiltonian is not the
sum of these energies, but rather requires a correction to avoid
double counting [1]. Similarly, in the 3B case, the energy is
computed as follows:

EHF
0 =

∑

α

εα − ⟨V̂ ⟩HF − 2⟨Ŵ ⟩HF. (42)

This result is straightforwardly derived by noticing that, in the
Hartree-Fock approximation, the sum rule, Eq. (36), reduces
to the first term. Within this approximation, the expectation
values can be directly computed from the uncorrelated 1B
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Note that, in general, T represents the 1B part of the
Hamiltonian which, in addition to the kinetic energy, might
also contain the 1B potential. Summing over all the external
SP states, α, one finds
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In other words, the sum over SP states of the first moment
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of the contributions of the 1B, 2B, and 3B potentials to the
ground-state energy,
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matrix element, Eq. (13):
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π
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which can be used to simplify the previous expression. For the
2B case, this is enough to provide an independent constraint
and hence allows for the calculation of the total energy.
The ground-state energy can then be computed from the 1B
propagator alone.

When 3BFs are present, however, one needs a third indepen-
dent linear combination of ⟨T̂ ⟩, ⟨V̂ ⟩, and ⟨Ŵ ⟩. Knowledge of
the 1B propagator is therefore not enough to compute the total
energy, because either the 2B or the 3B propagators are needed
to compute ⟨V̂ ⟩ or ⟨Ŵ ⟩ exactly. Depending on which of the
two operators is chosen, one is left with different expressions
for the energy of the ground state. This freedom in choice
could in principle be exploited to test the validity of different
approximations. In practical applications, however, one should
choose the combination that provides minimum uncertainty.

Let us start by considering the case where the 3B operator is
eliminated. Adding 2⟨T̂ ⟩ and ⟨V̂ ⟩ to the sum rule, Eq. (36), one
finds the following exact expression for the total ground-state
energy:
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The calculation of this expression requires the hole part of
the 1B propagator and the two-hole part of the 2B propagator,
which would appear in the second term. We note that this
expression is somewhat equivalent to the original GMK, in
that the ground-state energy is computed from 1B and 2B
operators, even though the Hamiltonian itself is a 3B operator.
This might prove advantageous in calculations where the 2B
propagator is computed explicitly.

Alternatively, one can eliminate the 2B contribution from
the GMK sum rule by adding ⟨T̂ ⟩ and subtracting ⟨Ŵ ⟩ to the
sum rule, Eq. (36). This leads to the following expression:
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The first term in this expression is formally the same as
that obtained in the case where only 2BFs are present in the
Hamiltonian. In that sense, the second term can be thought of as
a correction to the total energy associated with the 3BF. Note,
however, that the 3BF does influence the 1B propagator on the
first term and hence the correction should only be applied at
the very end of the self-consistent procedure.

Equations (40) and (41) are both exact. Which of the two is
employed in actual calculations will mostly depend on the
accuracy associated with the evaluation of the expectation
values, ⟨V̂ ⟩ and ⟨Ŵ ⟩. If the 2B interaction is dominant with
respect to the 3BF, for instance, the former will be a large
contribution. Small errors in the calculation of the 2B propa-
gator could eventually yield artificially large corrections in the
ground-state energy. In nuclear physics, the 3BF expectation
value is expected to provide a smaller contribution than
the 2BF [22,46]. Consequently, approximations in Eq. (41)
should lead to smaller absolute errors. This was the approach
that we recently followed in both finite nuclei and infinite
nuclear matter [27,35]. In finite nuclei, evaluating ⟨Ŵ ⟩ at first
order in terms of dressed propagators leads to satisfactory
results. However, accuracy is lost if free propagators, G(0)

are used instead. Equation (40) may eventually be useful in
calculations of infinite matter, in which the )4−pt is calculated
nonperturbatively.

This first-order approximation with undressed propagators
is traditionally used in nuclear structure. In this context,
three-body forces have been often discussed in the Hartree-
Fock approximation with Skyrme or Gogny functionals [1,66].
Zero-range forces have also been employed in ab initio–type
calculations [67]. It is perhaps instructive to point out at this
stage that the previous formulas apply to this case as well. In
particular, the Hartree-Fock approximation with 3BF can be
alternatively derived from the variational principle, under the
assumption that the many-body state is described by a Slater
determinant, |*N

0 ⟩. Diagonalizing an effective 1B hamiltonian
leads to a series of Hartree-Fock orbitals with single-particle
energies εα . The total energy under a 2B Hamiltonian is not the
sum of these energies, but rather requires a correction to avoid
double counting [1]. Similarly, in the 3B case, the energy is
computed as follows:

EHF
0 =

∑

α

εα − ⟨V̂ ⟩HF − 2⟨Ŵ ⟩HF. (42)

This result is straightforwardly derived by noticing that, in the
Hartree-Fock approximation, the sum rule, Eq. (36), reduces
to the first term. Within this approximation, the expectation
values can be directly computed from the uncorrelated 1B
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[Barbieri unpublished]

⦿ Extra correlation provided by the use of dressed propagators can be tested in realistic calculations

Genuine three-body term neglected

⦿ Galitskii-Migdal-Koltun sum rule needs to be modified to account for 3N term W



Plan of the lectures

5. Three-body forces

6. Green’s functions for open-shell nuclei

○ Degenerate systems and symmetry breaking

○ Gorkov theory

7. Public Green’s function code

○ Examples of results in open-shell nuclei

8. Extras



(Near-)degenerate systems

⦿ “Exact” methods grasp all (types of) correlations

⦿ Approximate/truncated methods grasp some correlations

○Hard scaling with A (exponential)

○ Softer scaling with A (polynomial)

○ Typical way of capturing correlations is via an expansion in ph excitations

⦿ Open-shell nuclei are (near-)degenerate with respect to ph excitations

○ E.g. consider MBPT(2)

Interpreting the correlation energy and the wave operator

If we limit the attention to a Hartree-Fock basis, then we have that È�0|ĤI |2p ≠
2hÍ is the only contribution and the contribution to the energy reduces to

�E(2) = 1
4

ÿ

abij

Èij|v̂|abÍ Èab|v̂|ijÍ
‘i + ‘j ≠ ‘a ≠ ‘b

.

Interpreting the correlation energy and the wave operator

If we compare this to the correlation energy obtained from full configuration
interaction theory with a Hartree-Fock basis, we found that

E ≠ E0 = �E =
ÿ

abij

Èij|v̂|abÍCab
ij ,

where the energy E0 is the reference energy and �E defines the so-called
correlation energy.

We see that if we set

Cab
ij = 1

4
Èab|v̂|ijÍ

‘i + ‘j ≠ ‘a ≠ ‘b
,

we have a perfect agreement between FCI and MBPT. However, FCI includes
such 2p ≠ 2h correlations to infinite order. In order to make a meaningful
comparison we would at least need to sum such correlations to infinite order in
perturbation theory.

Interpreting the correlation energy and the wave operator

Summing up, we can see that
• MBPT introduces order-by-order specific correlations and we make com-

parisons with exact calculations like FCI

• At every order, we can calculate all contributions since they are well-known
and either tabulated or calculated on the fly.

• MBPT is a non-variational theory and there is no guarantee that higher
orders will improve the convergence.

• However, since FCI calculations are limited by the size of the Hamiltonian
matrices to diagonalize (today’s most e�cient codes can attach dimension-
alities of ten billion basis states, MBPT can function as an approximative
method which gives a straightforward (but tedious) calculation recipe.

• MBPT has been widely used to compute e�ective interactions for the
nuclear shell-model.

• But there are better methods which sum to infinite order important corre-
lations. Coupled cluster theory is one of these methods.
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⌫ ih A�1

⌫ | aa| A
0

i
! � E�

⌫ � i⌘
(77)

Gab(!) =
X

µ

Uµ
a (U

µ
b )

⇤

! � E+

µ + i⌘
+
X

⌫

(V ⌫
a )⇤V ⌫

b

! � E�
⌫ � i⌘

(78)

G 0

ab(!) = (! � T )�1

ab (79)
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⌃(2)

↵�(!) =
1

2

Z

d!0

2⇡

d!00

2⇡

d!000

2⇡

X

��✏�µ�
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000) �(! � !0 � !00 + !000)
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✏i + ✏j = ✏a + ✏b (86)

(87)

when                               the expansion breaks down  



Symmetry breaking

⦿ Standard expansion schemes fail when superfluid correlations are essential

⦿ Two possibilities to tackle (near-)degenerate systems:

○ Go to a multi-reference scheme

○ Formulate the expansion around a symmetry-breaking reference state 

➟ Symmetry-breaking solution allows to lift the degeneracy

⦿ Case of open-shell nuclei

○Doubly-open shells (both protons and neutrons) 

○ Singly-open shells (either protons or neutrons) 

⦿ Symmetries must be eventually restored (see later)

➟ Breaking of U(1) associated with particle number conservation

➟ Breaking of SU(2) associated with angular momentum conservation 

➟ I.e. work with a Bogoliubov reference state

➟ I.e. work with a deformed Slater determinant
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Gorkov theory

⦿ Idea: expand around an auxiliary many-body state

➟ Introduce a “grand-canonical” potential

Breaks particle- !
number symmetry

➟ Observables of the A-body system

5

FIG. 2: (Color online) Same as Fig. 1 for a correlated system.

from zero for any combination4 of µ, p and q (⌫, p and
q) indices. The SDD is thus fragmented as schemat-
ically displayed in Figure 2, i.e. a larger number of
many-body states are reached through the direct addition
and removal of a nucleon compared to the uncorrelated
case5. Consequently, the number of peaks with non-zero
strength in the SDD is greater than the dimension of H1,
which forbids the establishment of a bijection between
this set of peaks and any basis of H1. Accordingly, and
because the SDD still integrates to the dimension of H1

by construction (see Eq. (10)), spectroscopic factors are
smaller than one. The impossibility to realize such a bi-
jection constitutes the most direct and intuitive way to
understand why observable one-nucleon separation ener-
gies cannot be rigorously associated with single-particle
energies when correlations are present in the system, i.e.
as soon as many-body eigenstates of H di↵er from Slater
determinants.

D. E↵ective single-particle energies

The discussion provided above underlines the fact that
a rigorous definition of ESPEs is yet to be provided in
the realistic context of correlated many-nucleon systems.
A key question is: how can one extract a set of single-
particle energy levels that (i) are in one-to-one correspon-

dence with a basis of H1, (ii) are independent of the par-
ticular single-particle basis one is working with, (iii) are
computable only using quantities coming out of the corre-
lated A-body Schrodinger equation and that (iv) reduce
to HF single-particle energies in the HF approximation
to the A-body problem.
Let us make the hypothesis that ideal one-nucleon pick-

up and stripping reactions have been performed such that
separation energies (E+

µ , E�
⌫ ) and spectroscopic ampli-

tudes (overlap functions) (Uµ(~r�⌧), V⌫(~r�⌧)) have been
extracted consistently, i.e. in a way that is consistent
with the chosen nuclear Hamiltonian H(⇤) defined at a
resolution scale ⇤. In such a context, a meaningful defi-
nition of ESPEs does exist and goes back to French [11]
and Baranger [12]. It involves the computation of the
so-called centroid matrix which, in an arbitrary spherical
basis of H1 {a†p}, reads

hcent
pq ⌘

X

µ2HA+1

S+pq
µ E+

µ +
X

⌫2HA�1

S�pq
⌫ E�

⌫ , (13a)

and is nothing but the first moment M(1) of the spectral
function matrix (see Eq. 9). E↵ective single-particle en-
ergies and associated states are extracted, respectively,
as eigenvalues and eigenvectors of hcent, i.e. by solving

hcent  cent
p = ecentp  cent

p , (14)

where the resulting spherical basis is denoted as {c†p}.
Written in that basis, centroid energies invoke diagonal
spectroscopic probabilities6

ecentp ⌘
X

µ2HA+1

S+pp
µ E+

µ +
X

⌫2HA�1

S�pp
⌫ E�

⌫ , (15)

and acquire the meaning of an average of one-nucleon sep-
aration energies weighted by the probability to reach the
corresponding A+1 (A-1) eigenstates by adding (remov-
ing) a nucleon to (from) the single-particle state  cent

p .
Centroid energies are by construction in one-to-one cor-
respondence with states of a single-particle basis of H1

which, as already pointed out before, is not the case of
correlated one-nucleon separation energies with non-zero
spectroscopic strength.

S�
a (!) ⌘

X

k

��h A�1
k |aa| A

0 i
��2 �(! � (EA

0 � EA�1
k )) =

1

⇡
ImGaa(!) (16)

Gab(!) =
X

k

h A
0 |aa| A+1

k ih A+1
k |a†a| A

0 i
! � (EA+1

k � EA
0 ) + i⌘

+
X

k

h A
0 |a†a| A�1

k ih A�1
k |aa| A

0 i
! � (EA

0 � EA�1
k )� i⌘

(17)

| 0i ⌘
evenX

A

cA | A
0 i (18)
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⌦ = H � µA (19)

Equation (14) ensures that  cent
p (~r�⌧) and ecentp are

consistent in the sense that the asymptotic behaviour of
the former is driven by the latter, e.g. for ecentp < 0 the
radial part of the wave function behaves asymptotically
as

 cent
p (r�⌧) �!

r!+1 Cp
e�⇠p r

⇠p r
, (20)

where ⇠p ⌘ (�2mecentp /~2)1/2. Such a result under-
lines that single-particle wave-functions associated with
ESPEs are intrinsically di↵erent from overlap functions
Uµ(r�⌧) (V⌫(r�⌧)) which are probed in transfer experi-
ments.

Experimentally, the extraction of ESPEs requires to
collect the full spectroscopic strength up to high enough
missing energies, i.e. the complete set of separation en-
ergies and cross sections from both one-nucleon stripping
and pickup reactions. This unfortunately limits the pos-
sibility to perform sound comparisons on a systematic
basis. Indeed, there are at best only a few nuclei along a
given isotopic or isotonic chain that are characterized by
complete enough spectroscopic data.

E. Sum rule

It is tedious but straightforward to prove that the nth

moment of S(!) fulfils the identity

M(n)
pq = h A

0 |{
n commutatorsz }| {

[. . . [[ap, H], H], . . .], a†q}| A
0 i . (21)

Using the second quantized form of T , V 2N, and V 3N, to-
gether with identities provided in Appendix A and sym-
metries of interaction matrix elements, Eq. (20) applied
to n = 1 leads to [12, 13, 21]

hcent
pq = Tpq +

X

rs

V̄ 2N
prqs ⇢

[1]
sr +

1

4

X

rstv

V̄ 3N
prtqsv ⇢

[2]
svrt

⌘ h1 , (22)

where V̄ 2N
prqs and V̄ 3N

prtqsv are anti-symmetrized matrix el-
ements and where

⇢[1]pq ⌘ h A
0 |a†qap| A

0 i =
X

µ

V p
µ
⇤ V q

µ , (23a)

⇢[2]pqrs ⌘ h A
0 |a†ra†saqap| A

0 i , (23b)

denote one- and two-body density matrices of the corre-

lated A-body ground-state, respectively. The static field
h1, already introduced in Sec. II A, contains both the

kinetic energy and the energy-independent part of the
one-nucleon self-energy in the A-body ground state [21].

Equation (21) demonstrates that the centroid matrix
is a one-body field possessing a simple structure and an
intuitive meaning. In particular, the centroid field re-
duces to the Hartree-Fock (HF) mean field in the HF
approximation. As a result, ESPEs are nothing but HF
single-particle energies in such a case and are equal to
one-nucleon separation energies according to Koopmans’
theorem [22]. Consistently, overlap, centroid, and HF
single-particle wave-functions coincide in that limit. Of
course, centroid energies also reduce to eigenvalues of
the one-body Hamiltonian in the limit of an uncorrelated
system. When correlations beyond HF are switched on,
ESPEs are modified through the presence of correlated
density matrices in Eq. (21); i.e. the B-nucleon interac-
tion is folded with the correlated (B-1)-body density ma-
trix ⇢[B-1]. Through that transition, ESPEs continuously
evolve as centroid energies rather than as observable sep-
aration energies such that Koopmans’ theorem does not
hold any more. Centroid energies are schematically com-
pared to observable binding and separation energies in
Figure 3.

On the practical side, Eq. (21) underlines that the av-
eraged information contained in ESPEs only requires the
computation of the A-body ground-state. As long as
one is not interested in the full spectroscopic strength
of the A±1 systems but only in their centroids, one only
needs to compute one nucleus instead of three. In prac-
tice however, Eq. (25) is rarely computed in terms of
the correlated density matrix, e.g. shell-model applica-
tions usually invoke a filling approximation typical of an
independent-particle approximation. This is believed to
be a decent approximation as long as (i) low-lying states
carry a major part of the single-particle spectroscopic
strength, as for the transfer on a doubly closed-shell nu-
cleus, and (ii) nucleons of the other species are themselves
not strongly correlated, because of pairing for example.
See, e.g., Ref. [23] and references therein for a related
discussion. Such an issue becomes critical whenever one
is looking into, e.g., the neutron shell structure of a neu-
tron open-shell nucleus. In such a situation, a normal
filling is inappropriate and it is mandatory to fold the
monopole interaction in Eq. (25) with a density matrix
reflecting the presence of correlations in the system.

Using that the even-even ground state the one-nucleon
transfer is performed on is a J⇧ = 0+ state, Wigner-
Eckart’s theorem allows one to obtain the explicit de-
pendence of spectroscopic amplitudes on mp and Mµ,
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⌦ = H � µA (19)

A = h 0|A| 0i (20)

⌦0 =
X

A0

|cA0 |2 ⌦A0

0 ⇡ EA
0 � µA (21)

Equation (14) ensures that  cent
p (~r�⌧) and ecentp are

consistent in the sense that the asymptotic behaviour of
the former is driven by the latter, e.g. for ecentp < 0 the
radial part of the wave function behaves asymptotically
as

 cent
p (r�⌧) �!

r!+1 Cp
e�⇠p r

⇠p r
, (22)

where ⇠p ⌘ (�2mecentp /~2)1/2. Such a result under-
lines that single-particle wave-functions associated with
ESPEs are intrinsically di↵erent from overlap functions
Uµ(r�⌧) (V⌫(r�⌧)) which are probed in transfer experi-
ments.

Experimentally, the extraction of ESPEs requires to
collect the full spectroscopic strength up to high enough
missing energies, i.e. the complete set of separation en-
ergies and cross sections from both one-nucleon stripping
and pickup reactions. This unfortunately limits the pos-
sibility to perform sound comparisons on a systematic
basis. Indeed, there are at best only a few nuclei along a
given isotopic or isotonic chain that are characterized by
complete enough spectroscopic data.

E. Sum rule

It is tedious but straightforward to prove that the nth

moment of S(!) fulfils the identity

M(n)
pq = h A

0 |{
n commutatorsz }| {

[. . . [[ap, H], H], . . .], a†q}| A
0 i . (23)

Using the second quantized form of T , V 2N, and V 3N, to-
gether with identities provided in Appendix A and sym-
metries of interaction matrix elements, Eq. (23) applied
to n = 1 leads to [12, 13, 21]

hcent
pq = Tpq +

X

rs

V̄ 2N
prqs ⇢

[1]
sr +

1

4

X

rstv

V̄ 3N
prtqsv ⇢

[2]
svrt

⌘ h1 , (24)

where V̄ 2N
prqs and V̄ 3N

prtqsv are anti-symmetrized matrix el-
ements and where

⇢[1]pq ⌘ h A
0 |a†qap| A

0 i =
X

µ

V p
µ
⇤ V q

µ , (25a)

⇢[2]pqrs ⌘ h A
0 |a†ra†saqap| A

0 i , (25b)

denote one- and two-body density matrices of the corre-

lated A-body ground-state, respectively. The static field
h1, already introduced in Sec. II A, contains both the
kinetic energy and the energy-independent part of the
one-nucleon self-energy in the A-body ground state [21].
Equation (24) demonstrates that the centroid matrix

is a one-body field possessing a simple structure and an
intuitive meaning. In particular, the centroid field re-
duces to the Hartree-Fock (HF) mean field in the HF
approximation. As a result, ESPEs are nothing but HF
single-particle energies in such a case and are equal to
one-nucleon separation energies according to Koopmans’
theorem [22]. Consistently, overlap, centroid, and HF
single-particle wave-functions coincide in that limit. Of
course, centroid energies also reduce to eigenvalues of
the one-body Hamiltonian in the limit of an uncorrelated
system. When correlations beyond HF are switched on,
ESPEs are modified through the presence of correlated
density matrices in Eq. (24); i.e. the B-nucleon interac-
tion is folded with the correlated (B-1)-body density ma-
trix ⇢[B-1]. Through that transition, ESPEs continuously
evolve as centroid energies rather than as observable sep-
aration energies such that Koopmans’ theorem does not
hold any more. Centroid energies are schematically com-
pared to observable binding and separation energies in
Figure 3.
On the practical side, Eq. (24) underlines that the av-

eraged information contained in ESPEs only requires the
computation of the A-body ground-state. As long as
one is not interested in the full spectroscopic strength
of the A±1 systems but only in their centroids, one only
needs to compute one nucleus instead of three. In prac-
tice however, Eq. (28) is rarely computed in terms of
the correlated density matrix, e.g. shell-model applica-
tions usually invoke a filling approximation typical of an
independent-particle approximation. This is believed to
be a decent approximation as long as (i) low-lying states
carry a major part of the single-particle spectroscopic
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are irreducible by definition. An example at second or-
der is given by the two diagrams (C14): the first term
(C14a) is a skeleton diagram while the second self-energy
contribution (C14b) can be generated by two successive
insertions of the first-order term (C13b).

↑ ω′ ↑ ω′′

j g

↓ ω′′′

i f

d

c

h

e

, (C14a)

c i e g
↓ ω′

← ω′′

d j f h

→ ω′′′

.(C14b)

After this distinction one can work out that the com-
plete propagators expansion can be generated by keep-
ing only irreducible skeleton self-energy diagrams and by
substituting in such diagrams all unperturbed propaga-
tors with dressed ones. Dressed propagators are Green’s
functions that are solution of Gorkov’s equations: their
appearance in the self-energy expansion generates the
self-consistency characterizing the method.
It follows that only irreducible skeleton self-energy di-

agrams with dressed or interacting propagators have to
be computed. Single-particle dressed propagators are de-
picted as solid double lines and are labelled by two indices

and an energy as the unperturbed ones, i.e.

G11
ab(ω) ≡ ↑ ω

b

a

, (C15a)

G12
ab(ω) ≡ ↑ ω

b̄

a

, (C15b)

G21
ab(ω) ≡ ↑ ω

b

ā

, (C15c)

G22
ab(ω) ≡ ↑ ω

b̄

ā

. (C15d)

The diagrammatic rules for computing the irreducible
self-energies are then the same of the reducible case, with
the only difference that dressed propagators (C15) have
to be used instead of the bare ones.

2. Self-energies

a. First order

This subsection addresses the calculation of the first-
order self-energy diagrams.
The first normal contribution corresponds to the stan-

dard Hartree-Fock self-energy. It is depicted as

Σ11 (1)
ab (ω) =

b

c

d

a
↓ ω′ ,

(C16)
and reads

Σ11 (1)
ab (ω) = −i

∫

C↑

dω′

2π

∑

cd

V̄acbd G
11
dc(ω

′) , (C17)

where the energy integral is to be performed in the up-
per half of the complex energy plane, according to the
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I. INTRODUCTION

Self-consistent Green’s function (SCGF) methods are
being successfully applied to the study of nuclear sys-
tems. Over the last two decades progress has been made
in the development of suitable formalisms and computa-
tional algorithms both for finite nuclei and infinite nu-
clear matter [1]. In infinite systems, bulk and single-
particle properties are computed through the resum-
mation of particle-particle (pp) and hole-hole (hh) lad-
der diagrams (i.e. in the T-matrix approximation) that
take into account short-range correlations induced by the
hard-core of conventional nucleon-nucleon (NN) inter-
actions. Results have been obtained at zero and finite
temperature for both symmetric and pure neutron mat-
ter based on various conventional NN potentials [2–4].
Recently, microscopic three-nucleon (NNN) forces have
been incorporated [5, 6]. There have been also attempts
to take into account nucleonic superfluidity through the
consistent treatment of anomalous propagators [7, 8].
In finite systems the most advanced SCGF calculations

feature the Faddeev random-phase approximation tech-
nique, which allows the simultaneous inclusion of pp and
ph excitations, together with a G-matrix resummation
of short-range correlations [9, 10]. At the moment, ap-
plications can access all doubly-magic nuclei up to 56Ni
[11].
In the present work SCGF calculations of finite nuclei

are implemented within a Gorkov scheme, allowing in this
way for a treatment of nucleonic superfluidity. Suitable
numerical techniques are developed in order to perform
systematic calculations of doubly-magic and semi-magic
medium-mass nuclei. One of the goals is to be able to
tackle various types of nuclear interactions, in particu-
lar in view of the recent progress involving chiral poten-
tials based on effective field theory (EFT) [12] and low-
momentum potentials obtained through the further ap-
plication of renormalization group (RG) techniques [13].
The present work also relates to the long-term devel-

opment of so-called non-empirical energy density func-
tionals (EDFs) [14–16]. There exist on-going efforts to
construct nuclear EDFs starting from underlying nuclear
interactions, with the main goal of improving the pre-
dictive power of the method away from known data that
is rather poor for existing phenomenological EDFs. The
connection with NN and NNN interactions is typically
obtained by means of density matrix expansion (DME)
techniques and many-body perturbation theory, which
allow for the construction of schemes that can be system-

atically tested and improved order by order in the inter-
action [17–21]. In this regard, recent developments and
applications of low-momentum potentials [22–24], which
seem to exhibit a perturbative nature, are instrumental.
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(t) , āb(t) ≡ ηbab̄(t) , (1)

which correspond to exchanging the state b by its part-
ner b̄ up to the phase ηb̄. By convention ¯̄a = a with
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the second block and having the same quantum numbers
as a, except for the one differentiating the two blocks.
For example one may use an anti-unitary transformation
connecting, up to a phase, the state a with the state ā.
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dual basis {ā†a} through
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are irreducible by definition. An example at second or-
der is given by the two diagrams (C14): the first term
(C14a) is a skeleton diagram while the second self-energy
contribution (C14b) can be generated by two successive
insertions of the first-order term (C13b).

↑ ω′ ↑ ω′′

j g

↓ ω′′′

i f

d

c

h

e

, (C14a)

c i e g
↓ ω′

← ω′′

d j f h

→ ω′′′

.(C14b)

After this distinction one can work out that the com-
plete propagators expansion can be generated by keep-
ing only irreducible skeleton self-energy diagrams and by
substituting in such diagrams all unperturbed propaga-
tors with dressed ones. Dressed propagators are Green’s
functions that are solution of Gorkov’s equations: their
appearance in the self-energy expansion generates the
self-consistency characterizing the method.
It follows that only irreducible skeleton self-energy di-

agrams with dressed or interacting propagators have to
be computed. Single-particle dressed propagators are de-
picted as solid double lines and are labelled by two indices

and an energy as the unperturbed ones, i.e.

G11
ab(ω) ≡ ↑ ω

b

a

, (C15a)

G12
ab(ω) ≡ ↑ ω

b̄

a

, (C15b)

G21
ab(ω) ≡ ↑ ω

b

ā

, (C15c)

G22
ab(ω) ≡ ↑ ω

b̄

ā

. (C15d)

The diagrammatic rules for computing the irreducible
self-energies are then the same of the reducible case, with
the only difference that dressed propagators (C15) have
to be used instead of the bare ones.

2. Self-energies

a. First order

This subsection addresses the calculation of the first-
order self-energy diagrams.
The first normal contribution corresponds to the stan-

dard Hartree-Fock self-energy. It is depicted as

Σ11 (1)
ab (ω) =

b

c

d

a
↓ ω′ ,

(C16)
and reads

Σ11 (1)
ab (ω) = −i

∫

C↑

dω′

2π

∑

cd

V̄acbd G
11
dc(ω

′) , (C17)

where the energy integral is to be performed in the up-
per half of the complex energy plane, according to the
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ā

, (C15c)

G22
ab(ω) ≡ ↑ ω

b̄

ā
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and approximations are introduced by including only a
certain class or subset of terms in the computation of
the self-energy, chosen according to the hierarchies be-
tween the various types of diagrams, depending on the
system considered. The validity of the standard per-
turbative expansion, however, is not always guaranteed.
This is true in particular for nuclear interactions that in-
duce strong pairing correlations between the constituents
of the many-body system, making the usual expansion
inappropriate for the large majority of existing nuclei.
The breakdown of the perturbative expansion is signaled
by the appearance of (Cooper) instabilities, which occur
when summing up certain classes of diagrams and point
out the necessity of developing an alternative diagram-
matic method.

B. Auxiliary many-body problem

In the presence of pairing effects one can develop an al-
ternative expansion method that accounts in a controlled
fashion for the appearance and destruction of condensed
nucleonic pairs.
Instead of targeting the actual ground state |ΨN

0 ⟩ of
the system, one considers a symmetry breaking state |Ψ0⟩
defined as a superposition of the true ground states of the
(N − 2)-, N -, (N + 2)-, ... particle systems, i.e.

|Ψ0⟩ ≡
even
∑

N

cN |ψN
0 ⟩ , (20)

where cN denote complex coefficients. The sum over even
particle number is said to respect the (even) number-
parity quantum number. Together with such a state, one
considers the grand-canonical-like potential Ω = H−µN ,
with µ being the chemical potential and N the particle-
number operator, in place of H [26]. The state |Ψ0⟩ is
chosen to minimize

Ω0 = ⟨Ψ0|Ω|Ψ0⟩ (21)

under the constraint

N = ⟨Ψ0|N |Ψ0⟩ , (22)

i.e. it is not an eigenstate of the particle number operator
but it has a fixed number of particle on average. Equation
(21), together with the normalization condition

⟨Ψ0|Ψ0⟩ =
even
∑

N

|cN |2 = 1 , (23)

determines coefficients cN , while Eq. (22) fixes the chem-
ical potential µ.
By choosing |Ψ0⟩ as the targeted state the initial prob-

lem of solving the many-body system with N nucleons is
replaced with another problem, whose solution approxi-
mates the initial one. The validity of such an approxi-
mation resides in the degeneracy which characterizes the

ground state of the system. The presence of a condensate
(ideally) implies that pairs of nucleons can be added or
removed from the ground-state of the system with the
same energy cost, independently of N . Such an hypoth-
esis translates into the fact that the binding energies of
the systems with N,N±2, N±4, ... particles differ by 2µ;
i.e. the idealized situation considered here corresponds
to the ansatz that all ground states obtained from the
system with N nucleons by removing or adding pairs of
particles are degenerate eigenstates of Ω such that their
binding energies fulfill

... ≈ EN+2
0 − EN

0 ≈ EN
0 − EN−2

0 ≈ ... ≈ 2µ , (24)

with µ independent of N . If the assumption is valid,
the energy obtained by solving the auxiliary many-body
problem provides the energy of the initial problem as

Ω0 =
∑

N ′

|cN ′ |2ΩN ′

0 ≈ EN
0 − µN , (25)

which follows from Eqs. (21) and (24).

C. Gorkov propagators

In order to access all one-body information contained
in |Ψ0⟩, one must generalize the single-particle propaga-
tor defined in (11) by introducing additional objects that
take into account the formation and destruction of pairs.
One introduces a set of four Green’s functions, known

as Gorkov propagators [27]

i G11
ab(t, t

′) ≡ ⟨Ψ0|T
{

aa(t)a
†
b(t

′)
}

|Ψ0⟩ , (26a)

i G12
ab(t, t

′) ≡ ⟨Ψ0|T {aa(t)āb(t′)} |Ψ0⟩ , (26b)

i G21
ab(t, t

′) ≡ ⟨Ψ0|T
{

ā†a(t)a
†
b(t

′)
}

|Ψ0⟩ , (26c)

i G22
ab(t, t

′) ≡ ⟨Ψ0|T
{

ā†a(t)āb(t
′)
}

|Ψ0⟩ , (26d)

where single-particle operators associated with the dual
basis are as defined in Eq. (1) and where the modified
Heisenberg representation is defined as

aa(t) = a(Ω)
a (t) ≡ exp[iΩt] aa exp[−iΩt] , (27a)

a†a(t) =
[

a(Ω)
a (t)

]†

≡ exp[iΩt] a†a exp[−iΩt] . (27b)

Besides the time dependence and quantum numbers
a and b identifying single-particle states, Gorkov propa-
gators Gg1g2

ab carry two additional labels g1 and g2 that
span Gorkov’s space. When g1 = 1 (g1 = 2) a particle is
annihilated in the block of a (created in the block of ā)
and vice versa for g2; i.e. g2 = 1 (g2 = 2) corresponds to
a second particle created in the block of b (annihilated
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Instead of targeting the actual ground state |ΨN

0 ⟩ of
the system, one considers a symmetry breaking state |Ψ0⟩
defined as a superposition of the true ground states of the
(N − 2)-, N -, (N + 2)-, ... particle systems, i.e.

|Ψ0⟩ ≡
even
∑

N

cN |ψN
0 ⟩ , (20)

where cN denote complex coefficients. The sum over even
particle number is said to respect the (even) number-
parity quantum number. Together with such a state, one
considers the grand-canonical-like potential Ω = H−µN ,
with µ being the chemical potential and N the particle-
number operator, in place of H [26]. The state |Ψ0⟩ is
chosen to minimize

Ω0 = ⟨Ψ0|Ω|Ψ0⟩ (21)

under the constraint

N = ⟨Ψ0|N |Ψ0⟩ , (22)

i.e. it is not an eigenstate of the particle number operator
but it has a fixed number of particle on average. Equation
(21), together with the normalization condition

⟨Ψ0|Ψ0⟩ =
even
∑

N

|cN |2 = 1 , (23)

determines coefficients cN , while Eq. (22) fixes the chem-
ical potential µ.
By choosing |Ψ0⟩ as the targeted state the initial prob-

lem of solving the many-body system with N nucleons is
replaced with another problem, whose solution approxi-
mates the initial one. The validity of such an approxi-
mation resides in the degeneracy which characterizes the

ground state of the system. The presence of a condensate
(ideally) implies that pairs of nucleons can be added or
removed from the ground-state of the system with the
same energy cost, independently of N . Such an hypoth-
esis translates into the fact that the binding energies of
the systems with N,N±2, N±4, ... particles differ by 2µ;
i.e. the idealized situation considered here corresponds
to the ansatz that all ground states obtained from the
system with N nucleons by removing or adding pairs of
particles are degenerate eigenstates of Ω such that their
binding energies fulfill

... ≈ EN+2
0 − EN

0 ≈ EN
0 − EN−2

0 ≈ ... ≈ 2µ , (24)

with µ independent of N . If the assumption is valid,
the energy obtained by solving the auxiliary many-body
problem provides the energy of the initial problem as

Ω0 =
∑

N ′

|cN ′ |2ΩN ′

0 ≈ EN
0 − µN , (25)

which follows from Eqs. (21) and (24).

C. Gorkov propagators

In order to access all one-body information contained
in |Ψ0⟩, one must generalize the single-particle propaga-
tor defined in (11) by introducing additional objects that
take into account the formation and destruction of pairs.
One introduces a set of four Green’s functions, known

as Gorkov propagators [27]

i G11
ab(t, t

′) ≡ ⟨Ψ0|T
{

aa(t)a
†
b(t

′)
}

|Ψ0⟩ , (26a)

i G12
ab(t, t

′) ≡ ⟨Ψ0|T {aa(t)āb(t′)} |Ψ0⟩ , (26b)

i G21
ab(t, t
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†
b(t
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{

ā†a(t)āb(t
′)
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|Ψ0⟩ , (26d)

where single-particle operators associated with the dual
basis are as defined in Eq. (1) and where the modified
Heisenberg representation is defined as

aa(t) = a(Ω)
a (t) ≡ exp[iΩt] aa exp[−iΩt] , (27a)

a†a(t) =
[

a(Ω)
a (t)

]†

≡ exp[iΩt] a†a exp[−iΩt] . (27b)

Besides the time dependence and quantum numbers
a and b identifying single-particle states, Gorkov propa-
gators Gg1g2

ab carry two additional labels g1 and g2 that
span Gorkov’s space. When g1 = 1 (g1 = 2) a particle is
annihilated in the block of a (created in the block of ā)
and vice versa for g2; i.e. g2 = 1 (g2 = 2) corresponds to
a second particle created in the block of b (annihilated
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are irreducible by definition. An example at second or-
der is given by the two diagrams (C14): the first term
(C14a) is a skeleton diagram while the second self-energy
contribution (C14b) can be generated by two successive
insertions of the first-order term (C13b).

↑ ω′ ↑ ω′′

j g

↓ ω′′′

i f

d

c

h

e

, (C14a)

c i e g
↓ ω′

← ω′′

d j f h

→ ω′′′

.(C14b)

After this distinction one can work out that the com-
plete propagators expansion can be generated by keep-
ing only irreducible skeleton self-energy diagrams and by
substituting in such diagrams all unperturbed propaga-
tors with dressed ones. Dressed propagators are Green’s
functions that are solution of Gorkov’s equations: their
appearance in the self-energy expansion generates the
self-consistency characterizing the method.
It follows that only irreducible skeleton self-energy di-

agrams with dressed or interacting propagators have to
be computed. Single-particle dressed propagators are de-
picted as solid double lines and are labelled by two indices

and an energy as the unperturbed ones, i.e.

G11
ab(ω) ≡ ↑ ω

b

a

, (C15a)

G12
ab(ω) ≡ ↑ ω

b̄

a

, (C15b)

G21
ab(ω) ≡ ↑ ω

b

ā

, (C15c)

G22
ab(ω) ≡ ↑ ω

b̄

ā

. (C15d)

The diagrammatic rules for computing the irreducible
self-energies are then the same of the reducible case, with
the only difference that dressed propagators (C15) have
to be used instead of the bare ones.

2. Self-energies

a. First order

This subsection addresses the calculation of the first-
order self-energy diagrams.
The first normal contribution corresponds to the stan-

dard Hartree-Fock self-energy. It is depicted as

Σ11 (1)
ab (ω) =

b

c

d

a
↓ ω′ ,

(C16)
and reads

Σ11 (1)
ab (ω) = −i

∫

C↑

dω′

2π

∑

cd

V̄acbd G
11
dc(ω

′) , (C17)

where the energy integral is to be performed in the up-
per half of the complex energy plane, according to the
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tween the various types of diagrams, depending on the
system considered. The validity of the standard per-
turbative expansion, however, is not always guaranteed.
This is true in particular for nuclear interactions that in-
duce strong pairing correlations between the constituents
of the many-body system, making the usual expansion
inappropriate for the large majority of existing nuclei.
The breakdown of the perturbative expansion is signaled
by the appearance of (Cooper) instabilities, which occur
when summing up certain classes of diagrams and point
out the necessity of developing an alternative diagram-
matic method.

B. Auxiliary many-body problem

In the presence of pairing effects one can develop an al-
ternative expansion method that accounts in a controlled
fashion for the appearance and destruction of condensed
nucleonic pairs.
Instead of targeting the actual ground state |ΨN

0 ⟩ of
the system, one considers a symmetry breaking state |Ψ0⟩
defined as a superposition of the true ground states of the
(N − 2)-, N -, (N + 2)-, ... particle systems, i.e.

|Ψ0⟩ ≡
even
∑

N

cN |ψN
0 ⟩ , (15)

where cN denote complex coefficients. The sum over even
particle number is said to respect the (even) number-
parity quantum number. Together with such a state, one
considers the grand-canonical-like potential Ω = H−µN ,
with µ being the chemical potential and N the particle-
number operator, in place of H [26]. The state |Ψ0⟩ is
chosen to minimize

Ω0 = ⟨Ψ0|Ω|Ψ0⟩ (16)

under the constraint

N = ⟨Ψ0|N |Ψ0⟩ , (17)

i.e. it is not an eigenstate of the particle number operator
but it has a fixed number of particle on average. Equation
(15), together with the normalization condition

⟨Ψ0|Ψ0⟩ =
even
∑

N

|cN |2 = 1 , (18)

determines coefficients cN , while Eq. (16) fixes the chem-
ical potential µ.
By choosing |Ψ0⟩ as the targeted state the initial prob-

lem of solving the many-body system with N nucleons is
replaced with another problem, whose solution approxi-
mates the initial one. The validity of such an approxi-
mation resides in the degeneracy which characterizes the
ground state of the system. The presence of a condensate
(ideally) implies that pairs of nucleons can be added or

removed from the ground-state of the system with the
same energy cost, independently of N . Such an hypoth-
esis translates into the fact that the binding energies of
the systems with N,N±2, N±4, ... particles differ by 2µ;
i.e. the idealized situation considered here corresponds
to the ansatz that all ground states obtained from the
system with N nucleons by removing or adding pairs of
particles are degenerate eigenstates of Ω such that their
binding energies fulfill

... ≈ EN+2
0 − EN

0 ≈ EN
0 − EN−2

0 ≈ ... ≈ 2µ , (19)

with µ independent of N . If the assumption is valid,
the energy obtained by solving the auxiliary many-body
problem provides the energy of the initial problem as

Ω0 =
∑

N ′

|cN ′ |2ΩN ′

0 ≈ EN
0 − µN , (20)

which follows from Eqs. (15) and (18).

C. Gorkov propagators

In order to access all one-body information contained
in |Ψ0⟩, one must generalize the single-particle propaga-
tor defined in (11) by introducing additional objects that
take into account the formation and destruction of pairs.
One introduces a set of four Green’s functions, known

as Gorkov propagators [27]

i G11
ab(t, t

′) ≡ ⟨Ψ0|T
{

aa(t)a
†
b(t

′)
}

|Ψ0⟩ , (21a)

i G12
ab(t, t

′) ≡ ⟨Ψ0|T {aa(t)āb(t′)} |Ψ0⟩ , (21b)

i G21
ab(t, t

′) ≡ ⟨Ψ0|T
{

ā†a(t)a
†
b(t

′)
}

|Ψ0⟩ , (21c)

i G22
ab(t, t

′) ≡ ⟨Ψ0|T
{

ā†a(t)āb(t
′)
}

|Ψ0⟩ , (21d)

where single-particle operators associated with the dual
basis are as defined in Eq. (1) and where the modified
Heisenberg representation is defined as

aa(t) = a(Ω)
a (t) ≡ exp[iΩt] aa exp[−iΩt] , (22a)

a†a(t) =
[

a(Ω)
a (t)

]†
≡ exp[iΩt] a†a exp[−iΩt] . (22b)

Besides the time dependence and quantum numbers
a and b identifying single-particle states, Gorkov propa-
gators Gg1g2

ab carry two additional labels g1 and g2 that
span Gorkov’s space. When g1 = 1 (g1 = 2) a particle is
annihilated in the block of a (created in the block of ā)
and vice versa for g2; i.e. g2 = 1 (g2 = 2) corresponds to
a second particle created in the block of b (annihilated
in the block of b̄). Green’s functions G11 and G22 are
called normal propagators while off-diagonal ones, G12

and G21, are denoted as anomalous propagators.

minimizes under the constraint➟

6

⌦ = H � µA (19)

A = h 0|A| 0i (20)

Equation (14) ensures that  cent
p (~r�⌧) and ecentp are

consistent in the sense that the asymptotic behaviour of
the former is driven by the latter, e.g. for ecentp < 0 the
radial part of the wave function behaves asymptotically
as

 cent
p (r�⌧) �!

r!+1 Cp
e�⇠p r

⇠p r
, (21)

where ⇠p ⌘ (�2mecentp /~2)1/2. Such a result under-
lines that single-particle wave-functions associated with
ESPEs are intrinsically di↵erent from overlap functions
Uµ(r�⌧) (V⌫(r�⌧)) which are probed in transfer experi-
ments.

Experimentally, the extraction of ESPEs requires to
collect the full spectroscopic strength up to high enough
missing energies, i.e. the complete set of separation en-
ergies and cross sections from both one-nucleon stripping
and pickup reactions. This unfortunately limits the pos-
sibility to perform sound comparisons on a systematic
basis. Indeed, there are at best only a few nuclei along a
given isotopic or isotonic chain that are characterized by
complete enough spectroscopic data.

E. Sum rule

It is tedious but straightforward to prove that the nth

moment of S(!) fulfils the identity

M(n)
pq = h A

0 |{
n commutatorsz }| {

[. . . [[ap, H], H], . . .], a†q}| A
0 i . (22)

Using the second quantized form of T , V 2N, and V 3N, to-
gether with identities provided in Appendix A and sym-
metries of interaction matrix elements, Eq. (21) applied
to n = 1 leads to [12, 13, 21]

hcent
pq = Tpq +

X

rs

V̄ 2N
prqs ⇢

[1]
sr +

1

4

X

rstv

V̄ 3N
prtqsv ⇢

[2]
svrt

⌘ h1 , (23)

where V̄ 2N
prqs and V̄ 3N

prtqsv are anti-symmetrized matrix el-
ements and where

⇢[1]pq ⌘ h A
0 |a†qap| A

0 i =
X

µ

V p
µ
⇤ V q

µ , (24a)

⇢[2]pqrs ⌘ h A
0 |a†ra†saqap| A

0 i , (24b)

denote one- and two-body density matrices of the corre-

lated A-body ground-state, respectively. The static field
h1, already introduced in Sec. II A, contains both the
kinetic energy and the energy-independent part of the
one-nucleon self-energy in the A-body ground state [21].
Equation (22) demonstrates that the centroid matrix

is a one-body field possessing a simple structure and an
intuitive meaning. In particular, the centroid field re-
duces to the Hartree-Fock (HF) mean field in the HF
approximation. As a result, ESPEs are nothing but HF
single-particle energies in such a case and are equal to
one-nucleon separation energies according to Koopmans’
theorem [22]. Consistently, overlap, centroid, and HF
single-particle wave-functions coincide in that limit. Of
course, centroid energies also reduce to eigenvalues of
the one-body Hamiltonian in the limit of an uncorrelated
system. When correlations beyond HF are switched on,
ESPEs are modified through the presence of correlated
density matrices in Eq. (22); i.e. the B-nucleon interac-
tion is folded with the correlated (B-1)-body density ma-
trix ⇢[B-1]. Through that transition, ESPEs continuously
evolve as centroid energies rather than as observable sep-
aration energies such that Koopmans’ theorem does not
hold any more. Centroid energies are schematically com-
pared to observable binding and separation energies in
Figure 3.
On the practical side, Eq. (22) underlines that the av-

eraged information contained in ESPEs only requires the
computation of the A-body ground-state. As long as
one is not interested in the full spectroscopic strength
of the A±1 systems but only in their centroids, one only
needs to compute one nucleus instead of three. In prac-
tice however, Eq. (26) is rarely computed in terms of
the correlated density matrix, e.g. shell-model applica-
tions usually invoke a filling approximation typical of an
independent-particle approximation. This is believed to
be a decent approximation as long as (i) low-lying states
carry a major part of the single-particle spectroscopic
strength, as for the transfer on a doubly closed-shell nu-
cleus, and (ii) nucleons of the other species are themselves
not strongly correlated, because of pairing for example.
See, e.g., Ref. [23] and references therein for a related
discussion. Such an issue becomes critical whenever one
is looking into, e.g., the neutron shell structure of a neu-
tron open-shell nucleus. In such a situation, a normal
filling is inappropriate and it is mandatory to fold the
monopole interaction in Eq. (26) with a density matrix
reflecting the presence of correlations in the system.
Using that the even-even ground state the one-nucleon
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defined as a superposition of the true ground states of the
(N − 2)-, N -, (N + 2)-, ... particle systems, i.e.

|Ψ0⟩ ≡
even
∑

N

cN |ψN
0 ⟩ , (15)

where cN denote complex coefficients. The sum over even
particle number is said to respect the (even) number-
parity quantum number. Together with such a state, one
considers the grand-canonical-like potential Ω = H−µN ,
with µ being the chemical potential and N the particle-
number operator, in place of H [26]. The state |Ψ0⟩ is
chosen to minimize

Ω0 = ⟨Ψ0|Ω|Ψ0⟩ (16)

under the constraint

N = ⟨Ψ0|N |Ψ0⟩ , (17)

i.e. it is not an eigenstate of the particle number operator
but it has a fixed number of particle on average. Equation
(15), together with the normalization condition

⟨Ψ0|Ψ0⟩ =
even
∑

N

|cN |2 = 1 , (18)

determines coefficients cN , while Eq. (16) fixes the chem-
ical potential µ.
By choosing |Ψ0⟩ as the targeted state the initial prob-

lem of solving the many-body system with N nucleons is
replaced with another problem, whose solution approxi-
mates the initial one. The validity of such an approxi-
mation resides in the degeneracy which characterizes the
ground state of the system. The presence of a condensate
(ideally) implies that pairs of nucleons can be added or

removed from the ground-state of the system with the
same energy cost, independently of N . Such an hypoth-
esis translates into the fact that the binding energies of
the systems with N,N±2, N±4, ... particles differ by 2µ;
i.e. the idealized situation considered here corresponds
to the ansatz that all ground states obtained from the
system with N nucleons by removing or adding pairs of
particles are degenerate eigenstates of Ω such that their
binding energies fulfill

... ≈ EN+2
0 − EN

0 ≈ EN
0 − EN−2

0 ≈ ... ≈ 2µ , (19)

with µ independent of N . If the assumption is valid,
the energy obtained by solving the auxiliary many-body
problem provides the energy of the initial problem as

Ω0 =
∑

N ′

|cN ′ |2ΩN ′

0 ≈ EN
0 − µN , (20)

which follows from Eqs. (15) and (18).

C. Gorkov propagators

In order to access all one-body information contained
in |Ψ0⟩, one must generalize the single-particle propaga-
tor defined in (11) by introducing additional objects that
take into account the formation and destruction of pairs.
One introduces a set of four Green’s functions, known

as Gorkov propagators [27]

i G11
ab(t, t

′) ≡ ⟨Ψ0|T
{

aa(t)a
†
b(t

′)
}

|Ψ0⟩ , (21a)

i G12
ab(t, t

′) ≡ ⟨Ψ0|T {aa(t)āb(t′)} |Ψ0⟩ , (21b)

i G21
ab(t, t

′) ≡ ⟨Ψ0|T
{

ā†a(t)a
†
b(t

′)
}

|Ψ0⟩ , (21c)

i G22
ab(t, t

′) ≡ ⟨Ψ0|T
{

ā†a(t)āb(t
′)
}

|Ψ0⟩ , (21d)

where single-particle operators associated with the dual
basis are as defined in Eq. (1) and where the modified
Heisenberg representation is defined as

aa(t) = a(Ω)
a (t) ≡ exp[iΩt] aa exp[−iΩt] , (22a)

a†a(t) =
[

a(Ω)
a (t)

]†
≡ exp[iΩt] a†a exp[−iΩt] . (22b)

Besides the time dependence and quantum numbers
a and b identifying single-particle states, Gorkov propa-
gators Gg1g2

ab carry two additional labels g1 and g2 that
span Gorkov’s space. When g1 = 1 (g1 = 2) a particle is
annihilated in the block of a (created in the block of ā)
and vice versa for g2; i.e. g2 = 1 (g2 = 2) corresponds to
a second particle created in the block of b (annihilated
in the block of b̄). Green’s functions G11 and G22 are
called normal propagators while off-diagonal ones, G12

and G21, are denoted as anomalous propagators.
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normal and anomalous irreducible self-energies. Working
in the energy representation the latter read

Σ̃ab(ω) ≡

⎛

⎝

Σ̃11
ab(ω) Σ̃12

ab(ω)

Σ̃21
ab(ω) Σ̃22

ab(ω)

⎞

⎠ , (33)

which can be divided into a proper part and a contribu-
tion coming from the auxiliary potential, i.e.

Σ̃ab(ω) ≡ Σab(ω)−Uab . (34)

Finally, Dyson’s equation is generalized as set of coupled
equations involving the two types of propagators and self-
energies. These are known as Gorkov equations [27] and
read, in Nambu’s notation,

Gab(ω) = G
(0)
ab (ω)+

∑

cd

G
(0)
ac (ω)Σ

⋆
cd(ω)Gdb(ω) . (35)

As Dyson’s equation in the standard case, Gorkov’s equa-
tions represent an expansion of interacting or dressed
single-particle normal and anomalous Green’s functions
in terms of unperturbed ones.
If the method is self-consistent, the final result does

not depend on the choice of the auxiliary potential, which
disappears from the equations once the propagators are
dressed with the corresponding self-energies. From a
practical point of view it is useful to track where the aux-
iliary potential enters and how its cancellation is eventu-
ally worked out. This is addressed in Section VA, where
the solution of Gorkov’s equations is discussed. In partic-
ular, and since such a solution is to be found through an
iterative procedure, one is however interested in choosing
a good auxiliary potential as a starting point.
Let us further remark that, as the auxiliary potential

(30) has a one-body character, i.e. it acts as a mean

field, the search for the ground state of ΩU will corre-
spond to the solution of a Bogoliubov-like problem, as
becomes evident if writing the unperturbed grand poten-
tial in matrix form

[ΩU ]ab =

(

tab − µab + Uab Ũ †
ab

Ũab −tab + µab − Uab

)

. (36)

In fact a convenient choice for ΩU is constituted by
ΩHFB , i.e. one first solves the Hartree-Fock-Bogoliubov
problem and then uses the resulting propagators GHFB

ab
as the unperturbed ones. Notice that the self-energy
corresponding to this solution, ΣHFB , eventually differs
from the first-order self-energy Σ(1) if higher orders are
included in the calculation because of the associated self-
consistent dressing of the one-body propagator.

IV. LEHMANN REPRESENTATION

A. Exact form

In view of obtaining a form of Gorkov’s equations
that is suitable for their numerical implementation, one
wishes to derive a Lehmann representation of the dressed
Green’s functions.
Let us first consider the case of normal propagators

and take G11 as an example. Substituting Eq. (15)
into Eq. (21a) and expressing the creation and annihila-
tion operators in the Schrödinger representation (see Eq.
(22)), one obtains (here and in the following all sums over
N,N ′, ... etc. are assumed to contain only even values,
unless stated otherwise)

G11
ab(t, t

′) = −i
∑

NN ′

c∗N ′cN ⟨ψN ′

0 |T
{

aa(t)a
†
b(t

′)
}

|ψN
0 ⟩

= −i
∑

N

c∗NcN⟨ψN
0 |T

{

aa(t)a
†
b(t

′)
}

|ψN
0 ⟩

= −iθ(t− t′)
∑

N

|cN |2⟨ψN
0 |aa(t)a†b(t

′)|ψN
0 ⟩+ iθ(t′ − t)

∑

N

|cN |2⟨ψN
0 |a†b(t

′)aa(t)|ψN
0 ⟩

= −iθ(t− t′)
∑

N

|cN |2 ei(E
N
0 −µN)te−i(EN

0 −µN)t′ ⟨ψN
0 |aa e−iΩ(t−t′) a†b|ψ

N
0 ⟩

+ iθ(t′ − t)
∑

N

|cN |2 ei(E
N
0 −µN)t′e−i(EN

0 −µN)t ⟨ψN
0 |a†b e

iΩ(t−t′) aa|ψN
0 ⟩ . (37)

The complete set of eigenstates of Ω in Fock space is now inserted twice and the corresponding eigenvalues when
acting with the exponential are substituted. Due to the number N in the external bra and ket, only the contributions
with N + 1 (N − 1) particles survives in the first (second) completeness relationship, such that

Ω|ψN±1
k ⟩ = [H − µN ]|ψN±1

k ⟩
= [EN±1

k − µ(N ± 1)]|ψN±1
k ⟩ (38)

Gorkov equation & self-energy expansion
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pearance in the self-energy expansion generates the self-
consistency characterizing the method.
It follows that only irreducible self-energy diagrams

with dressed or interacting propagators have to be com-
puted. Single-particle dressed propagators are depicted
as solid double lines and are labelled by two indices and
an energy as the unperturbed ones, i.e.

G11
ab(ω) ≡ ↑ ω

b

a

, (C9a)

G12
ab(ω) ≡ ↑ ω

b̄

a

, (C9b)

G21
ab(ω) ≡ ↑ ω

b

ā

, (C9c)

G22
ab(ω) ≡ ↑ ω

b̄

ā

. (C9d)

The diagrammatic rules for computing the irreducible
self-energies are then the same of the reducible case, with
the only difference that dressed propagators (C9) have to
be used instead of the bare ones.

2. Self-energies

a. First order

This subsection addresses the calculation of the first-
order self-energy diagrams.
The first normal contribution corresponds to the stan-

dard Hartree-Fock self-energy. It is depicted as

Σ11 (1)
ab =

b

c

d

a
↓ ω′ , (C10)

and reads

Σ11 (1)
ab (ω) = −i

∫

C↑

dω′

2π

∑

cd

V̄acbd G
11
dc(ω

′) , (C11)

where the energy integral is to be performed in the up-
per half of the complex energy plane, according to the
convention introduced in Rule 6. Inserting the Lehmann
form (54a) of the propagator one obtains

Σ11 (1)
ab (ω) = −i

∫

C↑

dω′

2π

∑

cd,k

V̄acbd
Ūk
d Ūk∗

c

ω′ − ωk + iη

− i

∫

C↑

dω′

2π

∑

cd,k

V̄acbd
Vk∗
d Vk

c

ω′ + ωk − iη

=
∑

cd,k

V̄acbd Vk∗
d Vk

c , (C12)

where the residue theorem has been used, i.e. the first
term, with +iη in the denominator, contains no pole in
the upper plane and thus cancels out. As in the standard
case the Hartree-Fock self-energy is energy independent.
Similarly one computes the other normal self-energy

term

Σ22 (1)
ab (ω) =

b̄

c̄

d̄

ā
↓ ω′ ,

(C13)
which reads

Σ22 (1)
ab (ω) = −i

∫

C↓

dω′

2π

∑

cd

V̄āc̄b̄d̄G
22
cd(ω

′)

= −i

∫

C↓

dω′

2π

∑

cd,k

V̄āc̄b̄d̄
V̄k
c V̄k∗

d

ω′ − ωk + iη

− i

∫

C↓

dω′

2π

∑

cd,k

V̄āc̄b̄d̄
Uk∗
c Uk

d

ω′ + ωk − iη

= −
∑

cd,k

V̄āc̄b̄d̄ V̄k
c V̄k∗

d

= −
∑

cd,k

V̄ācb̄d Vk
c̄ Vk∗

d̄

= −
∑

cd,k

V̄acbd Vk
c Vk∗

d

= −Σ11 (1)
ab (ω) . (C14)

The anomalous contributions to the self-energy at first
order are

Σ12 (1)
ab =

b̄

← ω′

a
c d̄

, (C15)
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The diagrammatic rules for computing the irreducible
self-energies are then the same of the reducible case, with
the only difference that dressed propagators (C9) have to
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2. Self-energies
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where the residue theorem has been used, i.e. the first
term, with +iη in the denominator, contains no pole in
the upper plane and thus cancels out. As in the standard
case the Hartree-Fock self-energy is energy independent.
Similarly one computes the other normal self-energy

term
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which reads
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dω′

2π
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cd

V̄āc̄b̄d̄G
22
cd(ω
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= −i
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dω′

2π

∑
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V̄k
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∫
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dω′
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∑

cd,k

V̄āc̄b̄d̄
Uk∗
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d

ω′ + ωk − iη

= −
∑

cd,k

V̄āc̄b̄d̄ V̄k
c V̄k∗
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= −
∑

cd,k

V̄ācb̄d Vk
c̄ Vk∗

d̄

= −
∑

cd,k

V̄acbd Vk
c Vk∗

d
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The anomalous contributions to the self-energy at first
order are

Σ12 (1)
ab =

b̄

← ω′

a
c d̄

, (C15)

⦿ Implemented so far first- and second-order self-energy diagrams
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where the notation Ek1k2k3 ≡ ωk1 + ωk2 + ωk3 has been introduced. Summing the two terms one has

Σ11 (2′+2′′)
ab (ω) =

1

2

∑

k1k2k3

{

Mk1k2k3
a (Mk1k2k3

b + 2Pk1k2k3
b )†

ω − Ek1k2k3 + iη
+

N k1k2k3
a

†
(N k1k2k3

b + 2Qk1k2k3
b )

ω + Ek1k2k3 − iη

}

, (94)

which can be written, using properties (90) and (91), as

Σ11 (2)
ab (ω) =

1

2

∑

k1k2k3

{

Mk1k2k3
a (Mk1k2k3

b + Pk1k2k3
b +Rk1k2k3

b )†

ω − Ek1k2k3 + iη
+

N k1k2k3
a

†
(N k1k2k3

b +Qk1k2k3
b + Sk1k2k3

b )

ω + Ek1k2k3 − iη

}

=
1

6

∑

k1k2k3

{

(Mk1k2k3
a + Pk1k2k3

a +Rk1k2k3
a ) (Mk1k2k3

b + Pk1k2k3
b +Rk1k2k3

b )†

ω − Ek1k2k3 + iη

}

+
1

6

∑

k1k2k3

{

(N k1k2k3
a +Qk1k2k3

a + Sk1k2k3
a )† (N k1k2k3

b +Qk1k2k3
b + Sk1k2k3

b )

ω + Ek1k2k3 − iη

}

Σ11
ab(ω) =

∑

k1k2k3

{

Ck1k2k3
a Ck1k2k3

b

†

ω − Ek1k2k3 + iη
+

Dk1k2k3
a

†Dk1k2k3
b

ω + Ek1k2k3 + iη

}

, (95)

with the definitions

Ck1k2k3
a ≡ 1√

6

[

Mk1k2k3
a + Pk1k2k3

a +Rk1k2k3
a

]

, (96a)

Dk1k2k3
a ≡ 1√

6

[

N k1k2k3
a +Qk1k2k3

a + Sk1k2k3
a

]

. (96b)

One can write in a similar way all other second-order self-energies computed in Section C 2 to obtain

Σ12 (2′+2′′)
ab (ω) = −

∑

k1k2k3

{

Ck1k2k3
a Dk1k2k3

b

ω − Ek1k2k3 + iη
+

Dk1k2k3
a

† Ck1k2k3
b

†

ω + Ek1k2k3 + iη

}

, (97a)

Σ21 (2′+2′′)
ab (ω) = −

∑

k1k2k3

{

Dk1k2k3
a

† Ck1k2k3
b

†

ω − Ek1k2k3 + iη
+

Ck1k2k3
a Dk1k2k3

b

ω + Ek1k2k3 + iη

}

, (97b)

Σ22 (2′+2′′)
ab (ω) =

∑

k1k2k3

{

Dk1k2k3
a

†Dk1k2k3
b

ω − Ek1k2k3 + iη
+

Ck1k2k3
a Ck1k2k3

b

†

ω + Ek1k2k3 + iη

}

. (97c)

F. Matrix representation of Gorkov’s equations

Defining quantities W and Z through

(ωk − Ek1k2k3)Wk1k2k3
k ≡

∑

a

[

Ck1k2k3
a

† Uk
a −Dk1k2k3

a Vk
a

]

(98a)

(ωk + Ek1k2k3)Zk1k2k3
k ≡

∑

a

[

−Dk1k2k3
a Uk

a + Ck1k2k3
a

† Vk
a

]

(98b)

Gorkov’s equations (67) computed in terms of second-order self-energies can be rewritten as

ωk Uk
a =

∑

b

[

(tab − µ δab + Λab)Uk
b + h̃ab Vk

b

]

+
∑

k1k2k3

[

Ck1k2k3
a Wk1k2k3

k −Dk1k2k3
a

†Zk1k2k3
k

]

(99a)

ωk Vk
a =

∑

b

[

−(tab − µ δab + Λab)Vk
b + h̃†

ab U
k
b

]

+
∑

k1k2k3

[

−Dk1k2k3
a

†Wk1k2k3
k + Ck1k2k3

a Zk1k2k3
k

]

(99b)

which grouped together with Eq. (98) provide a set of four coupled equations for unknowns U , V , W and Z that can
be displayed in a matrix form as

ωk

⎛

⎜
⎝

U
V
W
Z

⎞

⎟
⎠

k

=

⎛

⎜
⎜
⎝

T − µ+ Λ h̃ C −D†

h̃† −T + µ− Λ −D† C
C† −D E 0
−D C† 0 −E

⎞

⎟
⎟
⎠

⎛

⎜
⎝

U
V
W
Z

⎞

⎟
⎠

k

≡ Ξ

⎛

⎜
⎝

U
V
W
Z

⎞

⎟
⎠

k

(100)
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6
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a

]
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6
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a
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b

†
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}

, (97a)

Σ21 (2′+2′′)
ab (ω) = −

∑

k1k2k3

{

Dk1k2k3
a

† Ck1k2k3
b

†

ω − Ek1k2k3 + iη
+

Ck1k2k3
a Dk1k2k3

b

ω + Ek1k2k3 + iη

}

, (97b)

Σ22 (2′+2′′)
ab (ω) =

∑

k1k2k3

{

Dk1k2k3
a

†Dk1k2k3
b

ω − Ek1k2k3 + iη
+

Ck1k2k3
a Ck1k2k3

b

†

ω + Ek1k2k3 + iη

}

. (97c)

F. Matrix representation of Gorkov’s equations

Defining quantities W and Z through

(ωk − Ek1k2k3)Wk1k2k3
k ≡

∑

a

[

Ck1k2k3
a

† Uk
a −Dk1k2k3

a Vk
a

]

(98a)

(ωk + Ek1k2k3)Zk1k2k3
k ≡

∑

a

[

−Dk1k2k3
a Uk

a + Ck1k2k3
a

† Vk
a

]

(98b)

Gorkov’s equations (67) computed in terms of second-order self-energies can be rewritten as

ωk Uk
a =

∑

b

[

(tab − µ δab + Λab)Uk
b + h̃ab Vk

b

]

+
∑

k1k2k3

[

Ck1k2k3
a Wk1k2k3

k −Dk1k2k3
a

†Zk1k2k3
k

]

(99a)

ωk Vk
a =

∑

b

[

−(tab − µ δab + Λab)Vk
b + h̃†

ab U
k
b

]

+
∑

k1k2k3

[

−Dk1k2k3
a

†Wk1k2k3
k + Ck1k2k3

a Zk1k2k3
k

]

(99b)

which grouped together with Eq. (98) provide a set of four coupled equations for unknowns U , V , W and Z that can
be displayed in a matrix form as

ωk

⎛

⎜
⎝

U
V
W
Z

⎞

⎟
⎠

k

=

⎛

⎜
⎜
⎝

T − µ+ Λ h̃ C −D†

h̃† −T + µ− Λ −D† C
C† −D E 0
−D C† 0 −E

⎞

⎟
⎟
⎠

⎛

⎜
⎝

U
V
W
Z

⎞

⎟
⎠

k

≡ Ξ

⎛

⎜
⎝

U
V
W
Z

⎞

⎟
⎠

k

(100)
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convention introduced in Rule 6. Inserting the Lehmann
form (53a) of the propagator one obtains

Σ11 (1)
ab (ω) = −i

∫

C↑

dω′

2π

∑

cd,k

V̄acbd
Ūk
d Ūk∗

c

ω′ − ωk + iη

− i

∫

C↑

dω′

2π

∑

cd,k

V̄acbd
Vk∗
d Vk

c

ω′ + ωk − iη

=
∑

cd,k

V̄acbd Vk∗
d Vk

c , (C18)

where the residue theorem has been used, i.e. the first
term, with +iη in the denominator, contains no pole in
the upper plane and thus cancels out. As in the standard
case the Hartree-Fock self-energy is energy independent.
Similarly one computes the other normal self-energy

term

Σ22 (1)
ab (ω) =

b̄

c̄

d̄

ā
↓ ω′ ,

(C19)
which reads

Σ22 (1)
ab (ω) = −i

∫

C↓

dω′

2π

∑

cd

V̄āc̄b̄d̄ G
22
cd(ω

′)

= −i

∫

C↓

dω′

2π

∑

cd,k

V̄āc̄b̄d̄
V̄k
c V̄k∗

d

ω′ − ωk + iη

− i

∫

C↓

dω′

2π

∑

cd,k

V̄āc̄b̄d̄
Uk∗
c Uk

d

ω′ + ωk − iη

= −
∑

cd,k

V̄āc̄b̄d̄ V̄k
c V̄k∗

d

= −
∑

cd,k

V̄ācb̄d Vk
c̄ Vk∗

d̄

= −
∑

cd,k

V̄acbd Vk
c Vk∗

d

= −Σ11 (1)
ab (ω) . (C20)

The anomalous contributions to the self-energy at first
order are

Σ12 (1)
ab (ω) =

b̄

← ω′

a
c d̄

, (C21)

Σ21 (1)
ab (ω) = d

← ω′

c̄
ā b

, (C22)

and are written respectively as

Σ12 (1)
ab (ω) = − i

2

∫

C↑

dω′

2π

∑

cd

V̄ab̄cd̄G
12
cd(ω

′)

= − i

2

∫

C↑

dω′

2π

∑

cd,k

V̄ab̄cd̄
Ūk
c V̄k∗

d

ω′ − ωk + iη

− i

2

∫

C↑

dω′

2π

∑

cd,k

V̄ab̄cd̄
Vk∗
c Uk

d

ω′ + ωk − iη

=
1

2

∑

cd,k

V̄ab̄cd̄ Vk∗
c Uk

d , (C23)

and

Σ21 (1)
ab (ω) = − i

2

∫

C↑

dω′

2π

∑

cd

V̄c̄dāb G
21
cd(ω

′)

= − i

2

∫

C↑

dω′

2π

∑

cd,k

V̄c̄dāb
V̄k
c Ūk∗

d

ω′ − ωk + iη

− i

2

∫

C↑

dω′

2π

∑

cd,k

V̄c̄dāb
Uk∗
c Vk

d

ω′ + ωk − iη

=
1

2

∑

cd,k

V̄c̄dāb Uk∗
c Vk

d

=
1

2

∑

cd,k

V̄ābc̄d Uk∗
c Vk

d

=
[

Σ12 (1)
ba (ω)

]∗

, (C24)

where the same integration technique as in (C18) has
been used.

b. Second order

Let us proceed now the computation of the second-
order contributions. The first term is the standard
second-order self-energy

Σ11 (2′)
ab (ω) = ↑ ω′ ↑ ω′′

d g

↓ ω′′′

c f

b

a

h

e

(C25)

which reads
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convention introduced in Rule 6. Inserting the Lehmann
form (53a) of the propagator one obtains
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Ūk
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c
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∫
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dω′

2π

∑

cd,k

V̄acbd
Vk∗
d Vk

c

ω′ + ωk − iη

=
∑

cd,k

V̄acbd Vk∗
d Vk

c , (C18)

where the residue theorem has been used, i.e. the first
term, with +iη in the denominator, contains no pole in
the upper plane and thus cancels out. As in the standard
case the Hartree-Fock self-energy is energy independent.
Similarly one computes the other normal self-energy

term

Σ22 (1)
ab (ω) =

b̄

c̄

d̄

ā
↓ ω′ ,

(C19)
which reads

Σ22 (1)
ab (ω) = −i

∫

C↓

dω′

2π

∑

cd

V̄āc̄b̄d̄ G
22
cd(ω

′)

= −i

∫

C↓

dω′

2π

∑

cd,k

V̄āc̄b̄d̄
V̄k
c V̄k∗

d

ω′ − ωk + iη

− i

∫

C↓

dω′

2π

∑

cd,k

V̄āc̄b̄d̄
Uk∗
c Uk

d

ω′ + ωk − iη

= −
∑

cd,k

V̄āc̄b̄d̄ V̄k
c V̄k∗

d

= −
∑

cd,k

V̄ācb̄d Vk
c̄ Vk∗

d̄

= −
∑

cd,k

V̄acbd Vk
c Vk∗

d

= −Σ11 (1)
ab (ω) . (C20)

The anomalous contributions to the self-energy at first
order are

Σ12 (1)
ab (ω) =

b̄

← ω′

a
c d̄

, (C21)

Σ21 (1)
ab (ω) = d

← ω′

c̄
ā b

, (C22)

and are written respectively as

Σ12 (1)
ab (ω) = − i

2

∫

C↑

dω′

2π

∑

cd

V̄ab̄cd̄G
12
cd(ω

′)

= − i

2

∫

C↑

dω′

2π

∑

cd,k

V̄ab̄cd̄
Ūk
c V̄k∗

d

ω′ − ωk + iη

− i

2

∫

C↑

dω′

2π

∑

cd,k

V̄ab̄cd̄
Vk∗
c Uk

d

ω′ + ωk − iη

=
1

2

∑

cd,k

V̄ab̄cd̄ Vk∗
c Uk

d , (C23)

and

Σ21 (1)
ab (ω) = − i

2

∫

C↑

dω′

2π

∑

cd

V̄c̄dāb G
21
cd(ω

′)

= − i

2

∫

C↑

dω′

2π

∑

cd,k

V̄c̄dāb
V̄k
c Ūk∗

d

ω′ − ωk + iη

− i

2

∫

C↑

dω′

2π

∑

cd,k

V̄c̄dāb
Uk∗
c Vk

d

ω′ + ωk − iη

=
1

2

∑

cd,k

V̄c̄dāb Uk∗
c Vk

d

=
1

2

∑

cd,k

V̄ābc̄d Uk∗
c Vk

d

=
[

Σ12 (1)
ba (ω)

]∗

, (C24)

where the same integration technique as in (C18) has
been used.

b. Second order

Let us proceed now the computation of the second-
order contributions. The first term is the standard
second-order self-energy

Σ11 (2′)
ab (ω) = ↑ ω′ ↑ ω′′

d g

↓ ω′′′

c f

b

a

h

e

(C25)

which reads
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form (53a) of the propagator one obtains

Σ11 (1)
ab (ω) = −i

∫

C↑

dω′

2π

∑

cd,k

V̄acbd
Ūk
d Ūk∗

c

ω′ − ωk + iη

− i

∫

C↑

dω′

2π

∑

cd,k

V̄acbd
Vk∗
d Vk

c

ω′ + ωk − iη

=
∑

cd,k

V̄acbd Vk∗
d Vk

c , (C18)

where the residue theorem has been used, i.e. the first
term, with +iη in the denominator, contains no pole in
the upper plane and thus cancels out. As in the standard
case the Hartree-Fock self-energy is energy independent.
Similarly one computes the other normal self-energy

term

Σ22 (1)
ab (ω) =

b̄

c̄

d̄

ā
↓ ω′ ,

(C19)
which reads

Σ22 (1)
ab (ω) = −i

∫

C↓

dω′

2π

∑

cd

V̄āc̄b̄d̄ G
22
cd(ω

′)

= −i

∫

C↓

dω′

2π

∑

cd,k

V̄āc̄b̄d̄
V̄k
c V̄k∗

d

ω′ − ωk + iη

− i

∫

C↓

dω′

2π

∑

cd,k

V̄āc̄b̄d̄
Uk∗
c Uk

d

ω′ + ωk − iη

= −
∑

cd,k

V̄āc̄b̄d̄ V̄k
c V̄k∗

d

= −
∑

cd,k

V̄ācb̄d Vk
c̄ Vk∗

d̄

= −
∑

cd,k

V̄acbd Vk
c Vk∗

d

= −Σ11 (1)
ab (ω) . (C20)

The anomalous contributions to the self-energy at first
order are

Σ12 (1)
ab (ω) =

b̄

← ω′

a
c d̄

, (C21)

Σ21 (1)
ab (ω) = d

← ω′

c̄
ā b

, (C22)

and are written respectively as

Σ12 (1)
ab (ω) = − i

2

∫

C↑

dω′

2π

∑

cd

V̄ab̄cd̄G
12
cd(ω

′)

= − i

2

∫

C↑

dω′

2π

∑

cd,k

V̄ab̄cd̄
Ūk
c V̄k∗

d

ω′ − ωk + iη

− i

2

∫

C↑

dω′

2π

∑

cd,k

V̄ab̄cd̄
Vk∗
c Uk

d

ω′ + ωk − iη

=
1

2

∑

cd,k

V̄ab̄cd̄ Vk∗
c Uk

d , (C23)

and

Σ21 (1)
ab (ω) = − i

2

∫

C↑

dω′

2π

∑

cd

V̄c̄dāb G
21
cd(ω

′)

= − i

2

∫

C↑

dω′

2π

∑

cd,k

V̄c̄dāb
V̄k
c Ūk∗

d

ω′ − ωk + iη

− i

2

∫

C↑

dω′

2π

∑

cd,k

V̄c̄dāb
Uk∗
c Vk

d

ω′ + ωk − iη

=
1

2

∑

cd,k

V̄c̄dāb Uk∗
c Vk

d

=
1

2

∑

cd,k

V̄ābc̄d Uk∗
c Vk

d

=
[

Σ12 (1)
ba (ω)

]∗

, (C24)

where the same integration technique as in (C18) has
been used.

b. Second order

Let us proceed now the computation of the second-
order contributions. The first term is the standard
second-order self-energy

Σ11 (2′)
ab (ω) = ↑ ω′ ↑ ω′′

d g

↓ ω′′′

c f

b

a

h

e

(C25)

which reads
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which yields

Σ22 (2′)
ab (ω) = −1

2

∫
dω′

2π

dω′′

2π

∑

cdefgh

V̄āēc̄f̄ V̄d̄ḡb̄h̄ G22
cd(ω′)G22

fg(ω
′′)G22

he(ω
′ + ω′′ − ω)

= −1

2

∫
dω′

2π

dω′′

2π

∑

cdefgh,k1k2k3

V̄āēc̄f̄ V̄d̄ḡb̄h̄

{

V̄k1
c V̄k1∗

d

ω′ − ωk1
+ iη

+
Uk1∗

c Uk1

d

ω′ + ωk1
− iη

}

×
{

V̄k2

f V̄k2∗
g

ω′ − ωk2
+ iη

+
Uk2∗

f Uk2
g

ω′ + ωk2
− iη

} {

V̄k3

h V̄k3∗
e

ω′ − ωk3
+ iη

+
Uk3∗

h Uk3
e

ω′ + ωk3
− iη

}

=
1

2

∑

cdefgh,k1k2k3

V̄āēc̄f̄ V̄d̄ḡb̄h̄

{

V̄k1
c V̄k1∗

d V̄k2

f V̄k2∗
g Uk3∗

h Uk3
e

ω − (ωk1
+ ωk2

+ ωk3
) + iη

+
Uk1∗

c Uk1

d Uk2∗
f Uk2

g V̄k3

h V̄k3∗
e

ω + (ωk3
+ ωk1

+ ωk2
)− iη

}

, (C19)

and

Σ22 (2′′)
ab (ω) =

d̄ ḡ

↑ ω′

c̄ f

↑ ω′′′↑ ω′′

b̄

ā

h̄

e

, (C20)

which is evaluated as

Σ22 (2′′)
ab (ω) = −

∫
dω′

2π

dω′′

2π

∑

cdefgh

V̄āec̄f V̄d̄ḡb̄h̄ G22
cd(ω′)G12

fh(ω′′)G21
ge(ω

′ + ω′′ − ω) (C21)

= −
∫

dω′

2π

dω′′

2π

∑

cdefgh,k1k2k3

V̄āec̄f V̄d̄ḡb̄h̄

{

V̄k1
c V̄k1∗

d

ω′ − ωk1
+ iη

+
Uk1∗

c Uk1

d

ω′ + ωk1
− iη

}

×
{

Ūk2

f V̄k2∗
h

ω′′ − ωk2
+ iη

+
Vk2∗

f Uk2

h

ω′′ + ωk2
− iη

} {

V̄k3
g Ūk3∗

e

ω′ + ω′′ − ω − ωk3
+ iη

+
Uk3∗

g Vk3
e

ω′ + ω′′ − ω + ωk3
− iη

}

=
∑

cdefgh,k1k2k3

V̄āec̄f V̄d̄ḡb̄h̄

{

V̄k1
c V̄k1∗

d Ūk2

f V̄k2∗
h V̄k3

g Ūk3∗
e

ω − (ωk1
+ ωk2

+ ωk3
) + iη

+
Uk1∗

c Uk1

d Vk2∗
f Uk2

h Uk3∗
g Vk3

e

ω + (ωk3
+ ωk1

+ ωk2
)− iη

}

.

The first of the anomalous self-energy is

Σ12 (2′)
ab (ω) = h b̄

← ω′

↑ ω′′ ↓ ω′′′

c f

a

d̄g

e

, (C22)

29

Σ11 (2′)
ab (ω) = −1

2

∫
dω′

2π

dω′′

2π

dω′′′

2π

∑

cdefgh

V̄aecf V̄dgbh G11
cd(ω′)G11

fg(ω
′′)G11

he(ω
′′′) δ(ω − ω′ − ω′′ + ω′′′)

= −1

2

∫
dω′

2π

dω′′

2π

∑

cdefgh

V̄aecf V̄dgbh G11
cd(ω′)G11

fg(ω
′′)G11

he(ω
′ + ω′′ − ω) . (C13)

The integrations over the two energy variables are performed in this case using two successive applications of the
formula

I(E) =

∫ +∞

−∞

dE′

2πi

{
F1

E′ − f1 + iη
+

B1

E′ − b1 − iη

} {
F2

E′ − E − f2 + iη
+

B2

E′ − E − b2 − iη

}

=

{
F1B2

E − (f1 − b2) + iη
− F2B1

E − (f2 − b1)− iη

}

. (C14)

The above integral, defined on the real axis, is computed by extending the integration to a large semicircle in the
upper or lower complex half plane of E′ (this can be done since the integrand behaves as |E′|−2 for |E′| → ∞ and
this branch do not contribute to the integral) and then by using the residue theorem. Of the four terms, two have
poles in the same half plane and yield zero as the contour can be closed in the other half. Applying this formula to
the integral (C13) we obtain

Σ11 (2′)
ab (ω) = −1

2

∫
dω′

2π

dω′′

2π

∑

cdefgh,k1k2k3

V̄aecf V̄dgbh

{

Ūk1
c Ūk1∗

d

ω′ − ωk1
+ iη

+
Vk1∗

c Vk1

d

ω′ + ωk1
− iη

}

×
{

Ūk2

f Ūk2∗
g

ω′′ − ωk2
+ iη

+
Vk2∗

f Vk2
g

ω′′ + ωk2
− iη

} {

Ūk3

h Ūk3∗
e

ω′ + ω′′ − ω − ωk3
+ iη

+
Vk3∗

h Vk3
e

ω′ + ω′′ − ω + ωk3
− iη

}

=
1

2

∑

cdefgh,k1k2k3

V̄aecf V̄dgbh

{

Ūk1
c Ūk1∗

d Ūk2

f Ūk2∗
g Vk3∗

h Vk3
e

ω − (ωk1
+ ωk2

+ ωk3
) + iη

+
Vk1∗

c Vk1

d Vk2∗
f Vk2

g Ūk3

h Ūk3∗
e

ω + (ωk3
+ ωk1

+ ωk2
)− iη

}

. (C15)

With the same technique we can evaluate all other terms contributing to the second order self-energy. We have

Σ11 (2′′)
ab (ω) = ↑ ω′

d ḡ

c f

↑ ω′′′↑ ω′′

b

a

h̄

e

(C16)

which reads

Σ11 (2′′)
ab (ω) = −

∫
dω′

2π

dω′′

2π

∑

cdefgh

V̄aecf V̄dḡbh̄ G11
cd(ω′)G12

fh(ω′′)G21
ge(ω

′ + ω′′ − ω) (C17)

= −
∫

dω′

2π

dω′′

2π

∑

cdefgh,k1k2k3

V̄aecf V̄dḡbh̄

{

Ūk1
c Ūk1∗

d

ω′ − ωk1
+ iη

+
Vk1∗

c Vk1

d

ω′ + ωk1
− iη

}

×
{

Ūk2

f V̄k2∗
h

ω′′ − ωk2
+ iη

+
Vk2∗

f Uk2

h

ω′′ + ωk2
− iη

} {

V̄k3
g Ūk3∗

e

ω′ + ω′′ − ω − ωk3
+ iη

+
Uk3∗

g Vk3
e

ω′ + ω′′ − ω + ωk3
− iη

}

=
∑

cdefgh,k1k2k3

V̄aecf V̄dḡbh̄

{

Ūk1
c Ūk1∗

d Ūk2

f V̄k2∗
h Uk3∗

g Vk3
e

ω − (ωk1
+ ωk2

+ ωk3
) + iη

+
Vk1∗

c Vk1

d Vk2∗
f Uk2

h V̄k3
g Ūk3∗

e

ω + (ωk3
+ ωk1

+ ωk2
)− iη

}

.

The two diagrams of the other normal self-energy Σ22 are respectively

Σ22 (2′)
ab (ω) = ↑ ω′ ↓ ω′′′

d̄ ḡ

↑ ω′′

c̄ f̄

b̄

ā

h̄

ē

, (C18)

31

for what concerns the first contribution, which reads

Σ12 (2′)
ab (ω) =

∫
dω′

2π

dω′′

2π

∑

cdefgh

V̄aecf V̄hb̄gd̄ G12
cd(ω′)G11

eg(ω′′)G11
hf (ω′ + ω′′ − ω) (C23)

=

∫
dω′

2π

dω′′

2π

∑

cdefgh,k1k2k3

V̄aecf V̄hb̄gd̄

{

Ūk1
c V̄k1∗

d

ω′ − ωk1
+ iη

+
Vk1∗

c Uk1

d

ω′ + ωk1
− iη

}

×
{

Ūk2
e Ūk2∗

g

ω′′ − ωk2
+ iη

+
Vk2∗

e Vk2
g

ω′′ + ωk2
− iη

} {

Ūk3

h Ūk3∗
f

ω′ + ω′′ − ω − ωk3
+ iη

+
Vk3∗

h Vk3

f

ω′ + ω′′ − ω + ωk3
− iη

}

= −
∑

cdefgh,k1k2k3

V̄aecf V̄hb̄gd̄

{

Ūk1
c V̄k1∗

d Ūk2
e Ūk2∗

g Vk3∗
h Vk3

f

ω − (ωk1
+ ωk2

+ ωk3
) + iη

+
Vk1∗

c Uk1

d Vk2∗
e Vk2

g Ūk3

h Ūk3∗
f

ω + (ωk3
+ ωk1

+ ωk2
)− iη

}

,

and

Σ12 (2′′)
ab (ω) =

c f

← ω′

↓ ω′′′

h̄ b̄

↖ ω′′

e
a

d̄ḡ

, (C24)

yielding

Σ12 (2′′)
ab (ω) =

1

2

∫
dω′

2π

dω′′

2π

∑

cdefgh

V̄aecf Vh̄b̄ḡd̄ G12
cd(ω′)G12

fg(ω
′′)G21

he(ω
′ + ω′′ − ω) (C25)

=
1

2

∫
dω′

2π

dω′′

2π

∑

cdefgh,k1k2k3

V̄aecf Vh̄b̄ḡd̄

{

Ūk1
c V̄k1∗

d

ω′ − ωk1
+ iη

+
Vk1∗

c Uk1

d

ω′ + ωk1
− iη

}

×
{

Ūk2

f V̄k2∗
g

ω′′ − ωk2
+ iη

+
Vk2∗

f Uk2
g

ω′′ + ωk2
− iη

} {

V̄k3

h Ūk3∗
e

ω′ + ω′′ − ω − ωk3
+ iη

+
Uk3∗

h Vk3
e

ω′ + ω′′ − ω + ωk3
− iη

}

= −1

2

∑

cdefgh,k1k2k3

V̄aecf Vh̄b̄ḡd̄

{

Ūk1
c V̄k1∗

d Ūk2

f V̄k2∗
g Uk3∗

h Vk3
e

ω − (ωk1
+ ωk2

+ ωk3
) + iη

+
Vk1∗

c Uk1

d Vk2∗
f Vk2

g V̄k3

h Ūk3∗
e

ω + (ωk3
+ ωk1

+ ωk2
)− iη

}

,

Finally

Σ21 (2′)
ab (ω) =

g d

↑ ω′′ ↓ ω′′′

ā e

c̄

b

↑ ω′′′

h

f

, (C26)
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including quasiparticle-phonon couplings in the self-energy,
either phenomenologically [15] or in the framework of nuclear
field theory [16]. Recently, we have introduced a fully ab initio
approach based on the Gorkov ansatz that extends the SCGF
formalism to open-shell nuclei [17,18]. Together with the
latest advances on elementary internucleon interactions, such
a development paves the way for an ab initio description of
complete isotopic and isotonic chains in the mid-/heavy-mass
region of the nuclear chart.

A crucial issue for ab initio approaches concerns the ability
to perform numerical calculations in increasingly large model
spaces, with the aims of thoroughly checking the convergence
and of constantly extending the reach to heavier systems.
More generally, ab initio methods must eventually assess all
sources of theoretical uncertainties and attribute theoretical
error bands to their predictions. This is a necessary condition to
be in the position of exploiting the remaining discrepancy with
experiment as a measure of the quality of the input many-body
Hamiltonian. The intent of the present work is to discuss
the numerical implementation of Gorkov-Green’s function
techniques for finite systems and evaluate uncertainties as-
sociated with model-space truncations and the algorithm used
to solve Gorkov’s equation. Other sources of error, including
uncertainties related to renormalization group transformations
of the Hamiltonian and to many-body truncations have already
been discussed in the literature [6,8] and will be addressed
thoroughly for Gorkov theory in future works.

A long-standing problem with self-consistent calculations
of one-body propagators in finite systems concerns the rapid
increase of the number of poles generated at each iterative step.
The fast growth is expected as the Lehmann representation
of one-body Green’s functions [see Eqs. (3) and (13) below]
develops a continuous cut along the real energy axis in
connection with unbound states. This cut is discretized by a
growing number of discrete energy states as the the size of the
model space is increased. In practical calculations, one needs
to limit the number of discretized poles in a way that self-bound
systems can still be accurately calculated. Traditionally, this
has been achieved by either binning the self-energy poles along
the energy axis or by employing Lanczos algorithms to project
the energy denominators onto smaller Krylov spaces [19–24].
The latter approach is preferable since the original self-energy
is retrieved in the limit of increasing Krylov basis size.
However, corresponding calculations relied on the further
approximation that the self-energy is diagonal in the one-body
Hilbert space. This approximation can result in significant
inaccuracies and should be avoided. Moreover, several pivots
are necessary to correctly reproduce the off-diagonal features
of the self-energy, leading to a block Lanczos algorithm [25].
Other works have avoided Krylov projection techniques and
performed self-consistent calculations by manually selecting
the set of poles carrying the largest strength while collecting
the others into few effective poles. These ad hoc procedures
have led to successful investigations [26,27] but do not offer
the possibility to systematically assess errors.

Our recent SCGF calculations [6,18,28,29] have relied on
modified Lanczos and Arnoldi algorithms to perform reduction
to Krylov spaces defined by multiple pivots, as originally
suggested in Ref. [25]. This approach guarantees convergence

to the full original self-energy in the limit of increasing
Krylov space dimension and, hence, is suitable for ab initio
calculations. However, no account has been given so far of the
performance and accuracy of this method in nuclear structure
applications. One aim of the present work is to fill this gap.

The paper is organized as follows. In Sec. II Gorkov-
Green’s function theory is briefly reviewed, with a focus on
the aspects inherent to the solution of Gorkov’s equation. In
Sec. III the numerical implementation of Gorkov’s equation is
discussed, with particular emphasis on the modified Lanczos
algorithm employed in the diagonalization. A remainder of the
relevant Lanczos formulas as well as details on the treatment
of chemical potentials can be found in the Appendixes. The
performance of the Krylov projection is analyzed in Sec. IV A.
In Sec. IV B different degrees of self-consistency in the
iterative solution of Gorkov’s equations are compared. The
dependence of the results on the size of the single-particle
model space, i.e., on the basis used to represent the matrix
elements of one and two-body operators at play, is investigated
in Sec. IV C, followed by final remarks in Sec. V.

II. GORKOV-GREEN’S FUNCTION THEORY

A. Gorkov’s equation

Given the intrinsic Hamiltonian

Hint ≡ T + V − TCM, (1)

Gorkov-SCGF theory targets the ground state |!0⟩ of the
grand-canonical-like potential " ≡ Hint − µp Ẑ − µn N̂ , hav-
ing the targeted proton Z = ⟨!0|Ẑ|!0⟩ and neutron N =
⟨!0|N̂ |!0⟩ numbers on average. Here, µp (µn) denotes the
proton (neutron) chemical potential and Ẑ (N̂ ) the proton-
(neutron-)number operator.

The complete dynamics is embodied in a set of four Green’s
functions known as Gorkov’s propagators [30],2

G(ω) =
(

G11(ω) G12(ω)
G21(ω) G22(ω)

)
, (2)

whose matrix elements read in the Lehmann representation

G11
ab(ω) =

∑

k

{
U k

a U k∗
b

ω − ωk + iη
+ V̄k∗

a V̄k
b

ω + ωk − iη

}
, (3a)

G12
ab(ω) =

∑

k

{
U k

a Vk∗
b

ω − ωk + iη
+ V̄k∗

a Ū k
b

ω + ωk − iη

}
, (3b)

G21
ab(ω) =

∑

k

{
Vk

a U k∗
b

ω − ωk + iη
+ Ū k∗

a V̄k
b

ω + ωk − iη

}
, (3c)

G22
ab(ω) =

∑

k

{
Vk

a Vk∗
b

ω − ωk + iη
+ Ū k∗

a Ū k
b

ω + ωk − iη

}
. (3d)

2Two-dimensional matrices in Gorkov space are denoted in boldface
throughout the paper. Nonboldface quantities are used for vectors and
matrices defined on the one-body Hilbert space H1. Their specific
matrix elements are denoted by latin letter subscripts {a,b, . . .}, which
label single-particle basis states of H1.

024323-2

where

⦿ After perturbation expansion, Wick theorem, definition of self-energy, one gets to

(and similarly for G(0) and Σ*)

➟ Because of symmetry properties, only 2 out of 4 self-energies need to be computed

➟ Number of topologically distinct diagrams increases
[Somà, Duguet & Barbieri 2011]
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⦿ Next step: inclusion of ADC(3)
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We extend Gorkov-Green’s function formalism to the algebraic diagrammatic construction scheme
at third order [ADC(3)].

I. INTRODUCTION

There are 17 topologically distinct diagrams contribut-
ing to Gorkov ADC(3), all containing three interaction
lines. One interaction line is always connected to the in-
coming propagator, another one to the outgoing propaga-
tor. The diagrams can be then divided into three classes
depending on the nature of the intermediate interaction
line (not connected to any external line):

• Class A (intermediate “particle-particle1”)

• Class B (intermediate “hole-hole”)

• Class C (intermediate “particle-hole”)

We can further label a diagram according to the posi-
tion of the “hole” line (first from the left, second or third)
in the top and bottom interaction respectively, i.e. each
diagram will be denoted with Xij , where X ∈ {A,B,C}
and {i, j} ∈ {1, 2, 3}. In Figs. 1, 2 and 3 diagrams of
class A, B and C respectively are displayed.

1
4

A33

1
2

A32 = A31

1
2

A23 = A13 A11 = A22 = A12 = A21

FIG. 1. Gorkov ADC(3) diagrams of class A

∗ c.barbieri@surrey.ac.uk
† thomas.duguet@cea.fr
‡ vittorio.soma@cea.fr

1 In Dyson language.
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1
4

B33

1
2

B32 = B31

1
2

B23 = B13 B11 = B22 = B12 = B21

FIG. 2. Gorkov ADC(3) diagrams of class B

C33 C32 C31

C23 C22 C21

C13 C12 C11

FIG. 3. Gorkov ADC(3) diagrams of class C
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FIG. 2. Gorkov ADC(3) diagrams of class B

C33 C32 C31

C23 C22 C21

C13 C12 C11

FIG. 3. Gorkov ADC(3) diagrams of class C
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Gorkov

1

2
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2

34

ADC(n)

n 1 2 3

# diagrams

⦿ Normal 3rd-order self-energy Σ11 reads
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normal and anomalous irreducible self-energies. Working
in the energy representation the latter read

Σ̃ab(ω) ≡

⎛

⎝

Σ̃11
ab(ω) Σ̃12

ab(ω)

Σ̃21
ab(ω) Σ̃22

ab(ω)

⎞

⎠ , (33)

which can be divided into a proper part and a contribu-
tion coming from the auxiliary potential, i.e.

Σ̃ab(ω) ≡ Σab(ω)−Uab . (34)

Finally, Dyson’s equation is generalized as set of coupled
equations involving the two types of propagators and self-
energies. These are known as Gorkov equations [27] and
read, in Nambu’s notation,

Gab(ω) = G
(0)
ab (ω)+

∑

cd

G
(0)
ac (ω)Σ

⋆
cd(ω)Gdb(ω) . (35)

As Dyson’s equation in the standard case, Gorkov’s equa-
tions represent an expansion of interacting or dressed
single-particle normal and anomalous Green’s functions
in terms of unperturbed ones.
If the method is self-consistent, the final result does

not depend on the choice of the auxiliary potential, which
disappears from the equations once the propagators are
dressed with the corresponding self-energies. From a
practical point of view it is useful to track where the aux-
iliary potential enters and how its cancellation is eventu-
ally worked out. This is addressed in Section VA, where
the solution of Gorkov’s equations is discussed. In partic-
ular, and since such a solution is to be found through an
iterative procedure, one is however interested in choosing
a good auxiliary potential as a starting point.
Let us further remark that, as the auxiliary potential

(30) has a one-body character, i.e. it acts as a mean

field, the search for the ground state of ΩU will corre-
spond to the solution of a Bogoliubov-like problem, as
becomes evident if writing the unperturbed grand poten-
tial in matrix form

[ΩU ]ab =

(

tab − µab + Uab Ũ †
ab

Ũab −tab + µab − Uab

)

. (36)

In fact a convenient choice for ΩU is constituted by
ΩHFB , i.e. one first solves the Hartree-Fock-Bogoliubov
problem and then uses the resulting propagators GHFB

ab
as the unperturbed ones. Notice that the self-energy
corresponding to this solution, ΣHFB , eventually differs
from the first-order self-energy Σ(1) if higher orders are
included in the calculation because of the associated self-
consistent dressing of the one-body propagator.

IV. LEHMANN REPRESENTATION

A. Exact form

In view of obtaining a form of Gorkov’s equations
that is suitable for their numerical implementation, one
wishes to derive a Lehmann representation of the dressed
Green’s functions.
Let us first consider the case of normal propagators

and take G11 as an example. Substituting Eq. (15)
into Eq. (21a) and expressing the creation and annihila-
tion operators in the Schrödinger representation (see Eq.
(22)), one obtains (here and in the following all sums over
N,N ′, ... etc. are assumed to contain only even values,
unless stated otherwise)

G11
ab(t, t

′) = −i
∑

NN ′

c∗N ′cN ⟨ψN ′

0 |T
{

aa(t)a
†
b(t

′)
}

|ψN
0 ⟩

= −i
∑

N

c∗NcN⟨ψN
0 |T

{

aa(t)a
†
b(t

′)
}

|ψN
0 ⟩

= −iθ(t− t′)
∑

N

|cN |2⟨ψN
0 |aa(t)a†b(t

′)|ψN
0 ⟩+ iθ(t′ − t)

∑

N

|cN |2⟨ψN
0 |a†b(t

′)aa(t)|ψN
0 ⟩

= −iθ(t− t′)
∑

N

|cN |2 ei(E
N
0 −µN)te−i(EN

0 −µN)t′ ⟨ψN
0 |aa e−iΩ(t−t′) a†b|ψ

N
0 ⟩

+ iθ(t′ − t)
∑

N

|cN |2 ei(E
N
0 −µN)t′e−i(EN

0 −µN)t ⟨ψN
0 |a†b e

iΩ(t−t′) aa|ψN
0 ⟩ . (37)

The complete set of eigenstates of Ω in Fock space is now inserted twice and the corresponding eigenvalues when
acting with the exponential are substituted. Due to the number N in the external bra and ket, only the contributions
with N + 1 (N − 1) particles survives in the first (second) completeness relationship, such that

Ω|ψN±1
k ⟩ = [H − µN ]|ψN±1

k ⟩
= [EN±1

k − µ(N ± 1)]|ψN±1
k ⟩ (38)

Energy-dependent eigenvalue problem
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substituting the Lehmann representation (59) for G and the operatorial form

G
(0)
ab = (ω − ΩU )

−1
ab (61)

for the unperturbed propagator, lead to

lim
ω→−ωk

{

Y
k†
a Y

k
b =

∑

cd

(ω − ΩU )
−1
ac Σ̃cd(ω)Y

k†
d Y

k
b

}

. (62)

Multiplying both sides by (ω − ΩU )ea and summing over a yields

lim
ω→−ωk

{

∑

a

(ω − ΩU )ea Y
k†
a =

∑

d

Σ̃ed(ω)Y
k†
d

}

, (63)

such that (33) and (35) finally allows one to write the matrix equation

ω

(

Vk∗
a

Uk∗
a

)

=
∑

b

(

tab − µab + Σ11
ab(ω) Σ12

ab(ω)
Σ21

ab(ω) −tab + µab + Σ22
ab(ω)

)(

Vk∗
b

Uk∗
b

)

, (64)

where the two sides are evaluated at ω = −ωk. Computing the residue at ωk one similarly obtains

ω

(

Ūk
a

V̄k
a

)

=
∑

b

(

tab − µab + Σ11
ab(ω) Σ12

ab(ω)
Σ21

ab(ω) −tab + µab + Σ22
ab(ω)

)(

Ūk
b

V̄k
b

)

, (65)

expression now evaluated at ω = ωk, which can be rewritten as

∑

b

(

tab − µab + Σ11
ab(ω) Σ12

ab(ω)
Σ21

ab(ω) −tab + µab + Σ22
ab(ω)

)∣
∣
∣
∣
ωk

(

Uk
b

Vk
b

)

= ωk

(

Uk
a

Vk
a

)

. (66)

The latter relationship represents a system of coupled eigenvalue equations for the spectroscopic amplitudes U and
V . The result is independent of the auxiliary potential U , which cancelled out leaving only the proper self-energy
contributions that act as an energy-dependent potential. The self-energy depends in turn on the amplitudes U and V ,
which requires the solution to be obtained through an iterative procedure. At each iteration the chemical potential µ
has to be fixed such that Eq. (16) is fulfilled, which translates into the condition that amplitudes V satisfy

N =
∑

a

ρaa =
∑

a,k

∣
∣Vk

a

∣
∣
2
, (67)

where

ρab ≡ ⟨Ψ0|a†baa|Ψ0⟩ =
∑

k

Vk
b Vk

a
∗

(68)

is the (normal) density matrix.

B. Normalization condition

In order to work out the normalization of the spectroscopic amplitudes let us consider the expansion of Gorkov’s
equations (34) around the pole −ωk. Let us remind that a complex function f(z) can be expanded in a Laurent series
around a point c in the complex plane as

f(z) =
n=+∞
∑

n=−∞

an (z − c)n , (69)

with

an ≡ 1

2πi

∫

C

f(z) dz

(z − c)n+1
, (70)

Gorkov equation & self-energy expansion
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F. Matrix representation of Gorkov’s equations

Defining quantities W and Z through

(ωk − Ek1k2k3)Wk1k2k3
k ≡

∑

a

[

Ck1k2k3
a

† Uk
a −Dk1k2k3

a Vk
a

]

(98a)

(ωk + Ek1k2k3)Zk1k2k3
k ≡

∑

a

[

−Dk1k2k3
a Uk

a + Ck1k2k3
a

† Vk
a

]

(98b)

Gorkov’s equations (66) computed in terms of second-order self-energies can be rewritten as

ωk Uk
a =

∑

b

[

(tab − µab + Λab)Uk
b + h̃ab Vk

b

]

+
∑

k1k2k3

[

Ck1k2k3
a Wk1k2k3

k −Dk1k2k3
a

†Zk1k2k3
k

]

, (99a)

ωk Vk
a =

∑

b

[

−(tab − µab + Λab)Vk
b + h̃†

ab U
k
b

]

+
∑

k1k2k3

[

−Dk1k2k3
a

†Wk1k2k3
k + Ck1k2k3

a Zk1k2k3
k

]

, (99b)

which grouped together with Eq. (98) provide a set of four coupled equations for unknowns U , V , W and Z that can
be displayed in a matrix form as

⎛

⎜
⎜
⎝

T − µ+ Λ h̃ C −D†

h̃† −T + µ− Λ −D† C
C† −D E 0
−D C† 0 −E

⎞

⎟
⎟
⎠

⎛

⎜
⎜
⎝

Uk

Vk

Wk

Zk

⎞

⎟
⎟
⎠

= ωk

⎛

⎜
⎜
⎝

Uk

Vk

Wk

Zk

⎞

⎟
⎟
⎠

(100)

where Ξ is an energy-independent Hermitian matrix. The diagonalization of Ξ is equivalent to solving the second-
order Gorkov equations. Such a transformation is made possible by the explicit energy dependence embodied in the
Lehmann representation: the known pole structure of the propagators, and consequently of second-order self-energy
contributions, is used to recast Gorkov’s equations under the form of an energy-independent eigenvalue problem,
whose eigenvalues and eigenvectors yield the complete set of poles of one-body Green’s functions. The solution of this
eigenvalue problem still has to be solved self-consistently together with Eq. (67).
In order to derive a normalization condition for the column vectors in Eq. (100) let us expand Eq. (81) by inserting

the second-order self-energies in the form (95) and (97)

∑

a

∣
∣X

k
a

∣
∣
2
= 1 +

∑

ab

X
k
a
† ∂Σab(ω)

∂ω

∣
∣
∣
∣
ω=ωk

X
k
b

= 1 +
∑

ab

∑

k1k2k3

{

Uk∗
a

∂

∂ω

[

Ck1k2k3
a Ck1k2k3

b

†

ω − Ek1k2k3 + iη
+

Dk1k2k3
a

† Dk1k2k3
b

ω + Ek1k2k3 + iη

]

Uk
b

− Uk∗
a

∂

∂ω

[

Ck1k2k3
a Dk1k2k3

b

ω − Ek1k2k3 + iη
+

Dk1k2k3
a

† Ck1k2k3
b

†

ω + Ek1k2k3 + iη

]

Vk
b

− Vk∗
a

∂

∂ω

[

Dk1k2k3
a

† Ck1k2k3
b

†

ω − Ek1k2k3 + iη
+

Ck1k2k3
a Dk1k2k3

b

ω + Ek1k2k3 + iη

]

Uk
b

+ Vk∗
a

∂

∂ω

[

Dk1k2k3
a

†Dk1k2k3
b

ω − Ek1k2k3 + iη
+

Ck1k2k3
a Ck1k2k3

b

†

ω + Ek1k2k3 + iη

]

Vk
b

}∣
∣
∣
∣
∣
ω=ωk

= 1−
∑

ab

∑

k1k2k3

⎧

⎨

⎩

(

Uk∗
a Ck1k2k3

a − Vk∗
a Dk1k2k3

a
†
) (

Ck1k2k3
b

† Uk
b −Dk1k2k3

b Vk
b

)

(ωk − Ek1k2k3)
2

−

(

Uk∗
a Dk1k2k3

a
† − Vk∗

a Ck1k2k3
a

) (

Dk1k2k3
b Uk

b − Ck1k2k3
b

† Vk
b

)

(ωk + Ek1k2k3)
2

⎫

⎬

⎭

= 1−
∑

k1k2k3

[

Wk1k2k3
k

†Wk1k2k3
k + Zk1k2k3

k

†Zk1k2k3
k

]

. (101)
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including quasiparticle-phonon couplings in the self-energy,
either phenomenologically [15] or in the framework of nuclear
field theory [16]. Recently, we have introduced a fully ab initio
approach based on the Gorkov ansatz that extends the SCGF
formalism to open-shell nuclei [17,18]. Together with the
latest advances on elementary internucleon interactions, such
a development paves the way for an ab initio description of
complete isotopic and isotonic chains in the mid-/heavy-mass
region of the nuclear chart.

A crucial issue for ab initio approaches concerns the ability
to perform numerical calculations in increasingly large model
spaces, with the aims of thoroughly checking the convergence
and of constantly extending the reach to heavier systems.
More generally, ab initio methods must eventually assess all
sources of theoretical uncertainties and attribute theoretical
error bands to their predictions. This is a necessary condition to
be in the position of exploiting the remaining discrepancy with
experiment as a measure of the quality of the input many-body
Hamiltonian. The intent of the present work is to discuss
the numerical implementation of Gorkov-Green’s function
techniques for finite systems and evaluate uncertainties as-
sociated with model-space truncations and the algorithm used
to solve Gorkov’s equation. Other sources of error, including
uncertainties related to renormalization group transformations
of the Hamiltonian and to many-body truncations have already
been discussed in the literature [6,8] and will be addressed
thoroughly for Gorkov theory in future works.

A long-standing problem with self-consistent calculations
of one-body propagators in finite systems concerns the rapid
increase of the number of poles generated at each iterative step.
The fast growth is expected as the Lehmann representation
of one-body Green’s functions [see Eqs. (3) and (13) below]
develops a continuous cut along the real energy axis in
connection with unbound states. This cut is discretized by a
growing number of discrete energy states as the the size of the
model space is increased. In practical calculations, one needs
to limit the number of discretized poles in a way that self-bound
systems can still be accurately calculated. Traditionally, this
has been achieved by either binning the self-energy poles along
the energy axis or by employing Lanczos algorithms to project
the energy denominators onto smaller Krylov spaces [19–24].
The latter approach is preferable since the original self-energy
is retrieved in the limit of increasing Krylov basis size.
However, corresponding calculations relied on the further
approximation that the self-energy is diagonal in the one-body
Hilbert space. This approximation can result in significant
inaccuracies and should be avoided. Moreover, several pivots
are necessary to correctly reproduce the off-diagonal features
of the self-energy, leading to a block Lanczos algorithm [25].
Other works have avoided Krylov projection techniques and
performed self-consistent calculations by manually selecting
the set of poles carrying the largest strength while collecting
the others into few effective poles. These ad hoc procedures
have led to successful investigations [26,27] but do not offer
the possibility to systematically assess errors.

Our recent SCGF calculations [6,18,28,29] have relied on
modified Lanczos and Arnoldi algorithms to perform reduction
to Krylov spaces defined by multiple pivots, as originally
suggested in Ref. [25]. This approach guarantees convergence

to the full original self-energy in the limit of increasing
Krylov space dimension and, hence, is suitable for ab initio
calculations. However, no account has been given so far of the
performance and accuracy of this method in nuclear structure
applications. One aim of the present work is to fill this gap.

The paper is organized as follows. In Sec. II Gorkov-
Green’s function theory is briefly reviewed, with a focus on
the aspects inherent to the solution of Gorkov’s equation. In
Sec. III the numerical implementation of Gorkov’s equation is
discussed, with particular emphasis on the modified Lanczos
algorithm employed in the diagonalization. A remainder of the
relevant Lanczos formulas as well as details on the treatment
of chemical potentials can be found in the Appendixes. The
performance of the Krylov projection is analyzed in Sec. IV A.
In Sec. IV B different degrees of self-consistency in the
iterative solution of Gorkov’s equations are compared. The
dependence of the results on the size of the single-particle
model space, i.e., on the basis used to represent the matrix
elements of one and two-body operators at play, is investigated
in Sec. IV C, followed by final remarks in Sec. V.

II. GORKOV-GREEN’S FUNCTION THEORY

A. Gorkov’s equation

Given the intrinsic Hamiltonian

Hint ≡ T + V − TCM, (1)

Gorkov-SCGF theory targets the ground state |!0⟩ of the
grand-canonical-like potential " ≡ Hint − µp Ẑ − µn N̂ , hav-
ing the targeted proton Z = ⟨!0|Ẑ|!0⟩ and neutron N =
⟨!0|N̂ |!0⟩ numbers on average. Here, µp (µn) denotes the
proton (neutron) chemical potential and Ẑ (N̂ ) the proton-
(neutron-)number operator.

The complete dynamics is embodied in a set of four Green’s
functions known as Gorkov’s propagators [30],2

G(ω) =
(

G11(ω) G12(ω)
G21(ω) G22(ω)

)
, (2)

whose matrix elements read in the Lehmann representation

G11
ab(ω) =

∑

k

{
U k

a U k∗
b

ω − ωk + iη
+ V̄k∗

a V̄k
b

ω + ωk − iη

}
, (3a)

G12
ab(ω) =

∑

k

{
U k

a Vk∗
b

ω − ωk + iη
+ V̄k∗

a Ū k
b

ω + ωk − iη

}
, (3b)

G21
ab(ω) =

∑

k

{
Vk

a U k∗
b

ω − ωk + iη
+ Ū k∗

a V̄k
b

ω + ωk − iη

}
, (3c)

G22
ab(ω) =

∑

k

{
Vk

a Vk∗
b

ω − ωk + iη
+ Ū k∗

a Ū k
b

ω + ωk − iη

}
. (3d)

2Two-dimensional matrices in Gorkov space are denoted in boldface
throughout the paper. Nonboldface quantities are used for vectors and
matrices defined on the one-body Hilbert space H1. Their specific
matrix elements are denoted by latin letter subscripts {a,b, . . .}, which
label single-particle basis states of H1.
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one can prove that such quantities display the properties

∑

k1k2k3

Mk1k2k3
a Mk1k2k3

b

∗
= +

∑

k1k2k3

Pk1k2k3
a Pk1k2k3

b

∗

= +
∑

k1k2k3

Rk1k2k3
a Rk1k2k3

b

∗
,

and

∑

k1k2k3

Mk1k2k3
a Pk1k2k3

b

∗
= +

∑

k1k2k3

Mk1k2k3
a Rk1k2k3

b

∗

= +
∑

k1k2k3

Pk1k2k3
a Mk1k2k3

b

∗

= −
∑

k1k2k3

Pk1k2k3
a Rk1k2k3

b

∗

= +
∑

k1k2k3

Rk1k2k3
a Mk1k2k3

b

∗

= −
∑

k1k2k3

Rk1k2k3
a Pk1k2k3

b

∗
.

Similarly, for N , Q and S one has
∑

k1k2k3

N k1k2k3
a

∗ N k1k2k3
b = +

∑

k1k2k3

Qk1k2k3
a

∗ Qk1k2k3
b

= +
∑

k1k2k3

Sk1k2k3
a

∗ Sk1k2k3
b ,

and
∑

k1k2k3

N k1k2k3
a

∗ Qk1k2k3
b = +

∑

k1k2k3

N k1k2k3
a

∗ Sk1k2k3
b

= +
∑

k1k2k3

Qk1k2k3
a

∗ N k1k2k3
b

= −
∑

k1k2k3

Qk1k2k3
a

∗ Sk1k2k3
b

= +
∑

k1k2k3

Sk1k2k3
a

∗ N k1k2k3
b

= −
∑

k1k2k3

Sk1k2k3
a

∗ Qk1k2k3
b .

Analogous properties can be derived for terms mixing
{M,P ,R} and {N ,Q,S}.
Let us now consider Σ11, whose second-order contribu-

tions, evaluated in Eqs. (B28) and (B30), can be written
as

Σ(2)
αβ(ω) =

1

2

∑

n1n2n3,k1k2k3

{

Mn1n2k3
α Mn1n2k3

β

∗

ω − E+
n1n2k3

+ iη
+

(Nk1k2n3
α )∗ Nk1k2n3

β

ω − E−
k1k2n3

− iη

}

E+
n1n2k3

≡ E+
n1

+ E+
n2
− E−

k3

E−
k1k2n3

≡ E−
k1

+ E−
k2
− E+

n3

Σ11 (2′)
ab (ω) =

1

2

∑

k1k2k3

{

Mk1k2k3
a Mk1k2k3

b

∗

ω − Ek1k2k3 + iη
+

(N̄ k1k2k3
a )∗ N̄ k1k2k3

b

ω + Ek1k2k3 − iη

}

(74)

Σ11 (2′′)
ab (ω) = −

∑

k1k2k3

{

Mk1k2k3
a Pk1k2k3

b

∗

ω − Ek1k2k3 + iη
+

(N̄ k1k2k3
a )∗ Q̄k1k2k3

b

ω + Ek1k2k3 − iη

}

, (75)

where the notation Ek1k2k3 ≡ ωk1 +ωk2 +ωk3 has been introduced. Summing the two terms and using properties (72)
and (73) one obtains

Σ11 (2′+2′′)
ab (ω) =

∑

k1k2k3

{

Ck1k2k3
a (Ck1k2k3

b )∗

ω − Ek1k2k3 + iη
+

(D̄k1k2k3
a )∗ D̄k1k2k3

b

ω + Ek1k2k3 − iη

}

, (76)

where

Ck1k2k3
a ≡ 1√

6

[

Mk1k2k3
a − Pk1k2k3

a −Rk1k2k3
a

]

, (77a)

Dk1k2k3
a ≡ 1√

6

[

N k1k2k3
a −Qk1k2k3

a − Sk1k2k3
a

]

. (77b)
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Notice that from Eqs. (70) follow C̄k1k2k3
a = ηa Ck1k2k3

ã and D̄k1k2k3
a = −ηaDk1k2k3

ã . All other second-order self-energies
computed in Section B 2 can be written similarly according to

Σ12 (2′+2′′)
ab (ω) =

∑

k1k2k3

{

Ck1k2k3
a (Dk1k2k3

b )∗

ω − Ek1k2k3 + iη
+

(D̄k1k2k3
a )∗ C̄k1k2k3

b

ω + Ek1k2k3 − iη

}

, (78a)

Σ21 (2′+2′′)
ab (ω) =

∑

k1k2k3

{

Dk1k2k3
a (Ck1k2k3

b )∗

ω − Ek1k2k3 + iη
+

(C̄k1k2k3
a )∗ D̄k1k2k3

b

ω + Ek1k2k3 − iη

}

, (78b)

Σ22 (2′+2′′)
ab (ω) =

∑

k1k2k3

{

Dk1k2k3
a (Dk1k2k3

b )∗

ω − Ek1k2k3 + iη
+

(C̄k1k2k3
a )∗ C̄k1k2k3

b

ω + Ek1k2k3 − iη

}

. (78c)

E. Energy-independent eigenvalue problem

(E−
k − E+

n1n2k3
)Wn1n2k3

k ≡
∑

α

(Mn1n2k3
α )∗ V k∗

α

(E−
k − E−

k1k2n3
)Zk1k2n3

k ≡
∑

α

Nk1k2n3
α V k∗

α

Defining quantities W and Z through

(ωk − Ek1k2k3)Wk1k2k3
k ≡

∑

a

[

(Ck1k2k3
a )∗ Uk

a + (Dk1k2k3
a )∗ Vk

a

]

, (79a)

(ωk + Ek1k2k3)Zk1k2k3
k ≡

∑

a

[

D̄k1k2k3
a Uk

a + C̄k1k2k3
a Vk

a

]

, (79b)

Gorkov’s equations (58) computed in terms of second-order self-energies can be rewritten as

ωk Uk
a =

∑

b

[

(Tab − µ δab + Λab)Uk
b + h̃ab Vk

b

]

+
∑

k1k2k3

[

Ck1k2k3
a Wk1k2k3

k + (D̄k1k2k3
a )∗ Zk1k2k3

k

]

, (80a)

ωk Vk
a =

∑

b

[

−(Tab − µ δab + Λ∗
āb̄)V

k
b + h̃∗

ab Uk
b

]

+
∑

k1k2k3

[

Dk1k2k3
a Wk1k2k3

k + (C̄k1k2k3
a )∗ Zk1k2k3

k

]

. (80b)

The four relations above provide a set of coupled equations for unknowns U , V , W and Z that can be displayed in a
matrix form as

ωk

⎛

⎜
⎝

U
V
W
Z

⎞

⎟
⎠

k

=

⎛

⎜
⎜
⎝

T − µ+ Λ h̃ C D̄†

h̃† −T + µ− Λ̄∗ DT C̄∗

C† D∗ E 0
D̄ C̄T 0 −E

⎞

⎟
⎟
⎠

⎛

⎜
⎝

U
V
W
Z

⎞

⎟
⎠

k

≡ Ξ

⎛

⎜
⎝

U
V
W
Z

⎞

⎟
⎠

k

, (81)

E−
k

⎛

⎝

V ∗

W
Z

⎞

⎠

k

=

⎛

⎝

t+ Σ(1) M N∗

M † E+ 0
NT 0 E−

⎞

⎠

⎛

⎝

V ∗

W
Z

⎞

⎠

k

≡ Ξ

⎛

⎝

V ∗

W
Z

⎞

⎠

k

where Ξ is an energy-independent Hermitian matrix. The
diagonalization of Ξ is equivalent to solving Gorkov’s
equation. Such a transformation is made possible by
the explicit energy dependence embodied in the Lehmann
representation, i.e. the known pole structure of the prop-

agators, and consequently of second-order self-energy
contributions, is used to recast Gorkov’s equations under
the form of an energy-independent eigenvalue problem
whose eigenvalues and eigenvectors yield the complete set
of poles of one-body Green’s functions. The solution of

using

Lehmann representations hold!

From 2p-1h & 2h-1p to 3qp

➟ Many more possibilities
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FIG. 1. Dimension scheme for the Gorkov matrix !.

in memory storage. Nevertheless, this eventually results in a
gain of more than one order of magnitude in computational
time with respect to solving Eq. (5) directly. As discussed at
length in the following, the large dimension of ! does not
preclude convergence in model spaces that are large enough
for modern ab initio nuclear structure calculations.

A. Self-consistency and dimensionality

Gorkov’s matrix depends on eigenvalues ωk and amplitudes
(U k ,Vk), which implies that the solution must be searched for
iteratively. To see how the energy-independent form, Eq. (19),
involves a drastic increase of the dimensionality of the problem
at each iteration, let us partition the matrix ! as follows:

! =

⎛

⎜⎜⎝

h h̃ C D̄∗

h̃† −h̄∗ D C̄∗

C† D† E 0
D̄T C̄T 0 −E

⎞

⎟⎟⎠ ≡
(

!(1) !(2)

!(2) † E

)
.

(20)

The number of states in the single-particle basis, Nb, defines
the dimension of the first-order block !(1) (see Fig. 1). Each of
the four sub-blocks in !(1) is Nb × Nb, for a total of 2Nb × 2Nb

matrix elements. The matrix E is diagonal for second-order
self-energies and its elements are all possible combinations of
three pole energies {ωk1,ωk2 ,ωk3}. A product state solution of
the HFB problem is typically chosen as the reference state so
that Nb positive quasiparticle energies are involved at the first
iteration. In this situation, the number of poles in Eqs. (13) is

Ns ≈
(

Nb

3

)
≈ N3

b

6
. (21)

Since Nb ≪ (Nb)3 it follows that dim(!) = Ntot ≈ N3
b /3. In a

general, e.g. m-scheme, implementation Nb of order of a few
hundreds are typically needed to achieve convergence. Thus,
the diagonalization of Gorkov’s matrix for large model spaces
may be infeasible with current computational resources, even
for the first iteration.

Diagonalizing ! the first time, about (Nb)3/6 new poles
(i.e. one-quasiparticle states) are generated, which repre-
sent the new fragments carrying each a fraction of the
spectral strength distribution. In the second iteration, the

number of possible three-quasiparticle energies Ek1k2k3 has
increased accordingly, resulting in Ns ≈ N9

b /216/6, which
leads to dim(!) ≈ N9

b /1000 × N9
b /1000. In the nth iteration

the matrix ! will have expanded to dimensions of order
N3n

b × N3n

b . This growth clearly prevents the exact treatment
of all poles in an actual (self-consistent) calculation and one
has to keep dim(!) below a threshold that makes the scheme
computationally tractable.

B. Krylov projection

We follow Ref. [25] and project the energy denominators
of #(dyn)(ω) to a smaller Krylov subspace. Doing so, the
dimensional growth of Gorkov’s matrix is contained and a
sustainable computational procedure can be developed.

We consider a set of pivot vectors pi with elements

pi
κ =

∑

a

C∗κ
a Ui

a +
∑

a

D̄κ
aV i

a , (22)

where (Ui , V i) are linearly independent vectors in the space
of HFB quasiparticle states, i.e., of the 2Nb eigensolutions of
!(1). In general, one needs as many pivots as there are single-
particle basis states in the model space to properly converge
all off-diagonal elements of Eqs. (13) [25]. Up to Np = 2Nb

starting pivots are thus used to generate a Krylov subspace K
associated with the submatrix E in Eq. (19). Our particular
implementation exploits a Lanczos-type algorithm that uses
one pivot at a time and iterates it Nℓ times, independently of
the others. Each time Lanczos iterations are started with a new
pivot, pi , this added pivot is first orthogonalized with respect
to the basis vectors already generated. This is equivalent to a
block Lanczos reduction based on a slightly modified set of
pivots {pi ′}. Eventually, the dimension of the Krylov space is
the number of total Lanczos iterations, NL = dim(K) = Nℓ ×
Np. Full details of the algorithm are given in Appendix A.

The block E in Eq. (20) reduces to a matrix of lower
dimensions,

E −→ E ′ =
(
L† E L

−L† E L

)
, (23)

where L is the collection of vectors generated by the Lanczos
procedure. The two off-diagonal blocks !(2) and !(2) † are
transformed accordingly:

!(2) −→ !′(2) = !(2)
(
L
L

)
, (24a)

!(2) † −→ !′(2) † =
(
L† L†) !(2) † . (24b)

These projected blocks are inserted in the original Gorkov
matrix

! −→ !′ =
(

!(1) !′(2)

!′(2) † E ′

)
, (25)

whose dimension is now dim(!′) = N ′
tot × N ′

tot = (2Nb +
2NL) × (2Nb + 2NL). Gorkov-Krylov’s matrix !′ is finally
(fully) diagonalized with standard diagonalization routines.
For a sufficiently large number of iterations dim(K) → dim(E)
and the exact result is recovered. In terms of Lehmann
representation, Eq. (13), the Krylov projected quantities results
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in memory storage. Nevertheless, this eventually results in a
gain of more than one order of magnitude in computational
time with respect to solving Eq. (5) directly. As discussed at
length in the following, the large dimension of ! does not
preclude convergence in model spaces that are large enough
for modern ab initio nuclear structure calculations.

A. Self-consistency and dimensionality

Gorkov’s matrix depends on eigenvalues ωk and amplitudes
(U k ,Vk), which implies that the solution must be searched for
iteratively. To see how the energy-independent form, Eq. (19),
involves a drastic increase of the dimensionality of the problem
at each iteration, let us partition the matrix ! as follows:

! =

⎛

⎜⎜⎝

h h̃ C D̄∗

h̃† −h̄∗ D C̄∗

C† D† E 0
D̄T C̄T 0 −E

⎞

⎟⎟⎠ ≡
(

!(1) !(2)

!(2) † E

)
.

(20)

The number of states in the single-particle basis, Nb, defines
the dimension of the first-order block !(1) (see Fig. 1). Each of
the four sub-blocks in !(1) is Nb × Nb, for a total of 2Nb × 2Nb

matrix elements. The matrix E is diagonal for second-order
self-energies and its elements are all possible combinations of
three pole energies {ωk1,ωk2 ,ωk3}. A product state solution of
the HFB problem is typically chosen as the reference state so
that Nb positive quasiparticle energies are involved at the first
iteration. In this situation, the number of poles in Eqs. (13) is

Ns ≈
(

Nb

3

)
≈ N3

b

6
. (21)

Since Nb ≪ (Nb)3 it follows that dim(!) = Ntot ≈ N3
b /3. In a

general, e.g. m-scheme, implementation Nb of order of a few
hundreds are typically needed to achieve convergence. Thus,
the diagonalization of Gorkov’s matrix for large model spaces
may be infeasible with current computational resources, even
for the first iteration.

Diagonalizing ! the first time, about (Nb)3/6 new poles
(i.e. one-quasiparticle states) are generated, which repre-
sent the new fragments carrying each a fraction of the
spectral strength distribution. In the second iteration, the

number of possible three-quasiparticle energies Ek1k2k3 has
increased accordingly, resulting in Ns ≈ N9

b /216/6, which
leads to dim(!) ≈ N9

b /1000 × N9
b /1000. In the nth iteration

the matrix ! will have expanded to dimensions of order
N3n

b × N3n

b . This growth clearly prevents the exact treatment
of all poles in an actual (self-consistent) calculation and one
has to keep dim(!) below a threshold that makes the scheme
computationally tractable.

B. Krylov projection

We follow Ref. [25] and project the energy denominators
of #(dyn)(ω) to a smaller Krylov subspace. Doing so, the
dimensional growth of Gorkov’s matrix is contained and a
sustainable computational procedure can be developed.

We consider a set of pivot vectors pi with elements

pi
κ =

∑

a

C∗κ
a Ui

a +
∑

a

D̄κ
aV i

a , (22)

where (Ui , V i) are linearly independent vectors in the space
of HFB quasiparticle states, i.e., of the 2Nb eigensolutions of
!(1). In general, one needs as many pivots as there are single-
particle basis states in the model space to properly converge
all off-diagonal elements of Eqs. (13) [25]. Up to Np = 2Nb

starting pivots are thus used to generate a Krylov subspace K
associated with the submatrix E in Eq. (19). Our particular
implementation exploits a Lanczos-type algorithm that uses
one pivot at a time and iterates it Nℓ times, independently of
the others. Each time Lanczos iterations are started with a new
pivot, pi , this added pivot is first orthogonalized with respect
to the basis vectors already generated. This is equivalent to a
block Lanczos reduction based on a slightly modified set of
pivots {pi ′}. Eventually, the dimension of the Krylov space is
the number of total Lanczos iterations, NL = dim(K) = Nℓ ×
Np. Full details of the algorithm are given in Appendix A.

The block E in Eq. (20) reduces to a matrix of lower
dimensions,

E −→ E ′ =
(
L† E L

−L† E L

)
, (23)

where L is the collection of vectors generated by the Lanczos
procedure. The two off-diagonal blocks !(2) and !(2) † are
transformed accordingly:

!(2) −→ !′(2) = !(2)
(
L
L

)
, (24a)

!(2) † −→ !′(2) † =
(
L† L†) !(2) † . (24b)

These projected blocks are inserted in the original Gorkov
matrix

! −→ !′ =
(

!(1) !′(2)

!′(2) † E ′

)
, (25)

whose dimension is now dim(!′) = N ′
tot × N ′

tot = (2Nb +
2NL) × (2Nb + 2NL). Gorkov-Krylov’s matrix !′ is finally
(fully) diagonalized with standard diagonalization routines.
For a sufficiently large number of iterations dim(K) → dim(E)
and the exact result is recovered. In terms of Lehmann
representation, Eq. (13), the Krylov projected quantities results
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where h ⌘ T �µ+⇤ and E ⌘ diag{E


}. The derivation
of the energy-independent matrix ⌅ can be generalized
to higher-order truncations of the self-energy as long as
the latter can be expressed through the Lehmann repre-
sentation (13).

III. NUMERICAL ALGORITHM

Identical solutions are associated with Gorkov’s equa-
tion in the form (5) or (19). Numerically, however, the
treatment of an energy-dependent eigenvalue equation is
not particularly desirable. Attempts solve Eq. (5) di-
rectly have revealed problematic due to the presence of
the energy denominators in ⌃(!) that imply drastic vari-
ations of the self-energy near its poles [? ]. Even with
very fine meshes in energy, this issue severely limits the
resolution of the calculation [? ]. Alternatively, each pole
can be searched for individually [? ? ? ] but this involves
a lengthy numerical procedure that does not guarantee
the access to all solutions of Eq. (5), i.e. a sizeable frac-
tion of the spectral strength may be neglected. Working
with Eq. (19), on the other hand, avoids divergences
and automatically guarantees the extraction of all the
poles at once. The price to pay is a severe growth in the
dimension of Gorkov’s matrix, with consequent limita-
tions on its diagonalization and a stringent requirement
in memory storage. Nevertheless, this eventually results
in a gain of more than one order of magnitude in compu-
tational time with respect to solving Eq. (5) directly. As
discussed at length in the following, the large dimension
of ⌅ does not preclude convergence in model spaces that
are large enough for modern ab initio nuclear structure
calculations.

A. Self-consistency and dimensionality

Gorkov’s matrix depends on eigenvalues !
k

and am-
plitudes (Uk,Vk), which implies that the solution must
be searched for iteratively. To see how the energy-
independent form, Eq. (19), involves a drastic increase
of the dimensionality of the problem at each iteration, let
us partition the matrix ⌅ as follows
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The number of states in the single-particle basis, N

b

,
defines the dimension of the first-order block ⌅(1) (see
Fig. 1). Each of the four sub-blocks in ⌅(1) is N

b

⇥ N
b

,
for a total of 2N

b

⇥ 2N
b

matrix elements. The matrix
E is diagonal for second-order self-energies and its el-
ements are all possible combinations of three pole en-
ergies {!

k

1

,!
k

2

,!
k

3

}. A product state solution of the
HFB problem is typically chosen as the reference state
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FIG. 1. Dimension scheme for the Gorkov matrix ⌅.

so that N
b

positive quasi-particle energies are involved
at the first iteration. In this situation, the number of
poles in Eqs. (13) is

N
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⇡
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N
b
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◆

⇡ N3
b

6
. (21)

Since N
b

⌧ (N
b

)3 it follows that dim(⌅) = N
tot

⇡ N3
b

/3.
In a general, e.g. m-scheme, implementation N

b

of order
of a few hundreds is typically needed to achieve conver-
gence. Thus, the diagonalization of Gorkov’s matrix for
large model spaces may be infeasible with current com-
putational resources, even for the first iteration.
Diagonalizing ⌅ the first time, about (N
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)3/6 new
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represent the new fragments carrying each a fraction of
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has increased accordingly, resulting in N
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/1000⇥N9
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/1000.
In the n-th iteration the matrix ⌅ will have expanded
to dimensions of order N3n

b

⇥ N3n

b

. This growth clearly
prevents the exact treatment of all poles in an actual
(self-consistent) calculation and one has to keep dim(⌅)
below a threshold that makes the scheme computation-
ally tractable.

B. Krylov projection

We follow Ref. [? ] and project the energy denomina-
tors of ⌃(dyn)(!) to a smaller Krylov subspace. Doing so,
the dimensional growth of Gorkov’s matrix is contained
and a sustainable computational procedure can be devel-
oped.
We consider a set of pivot vectors pi with elements

pi


=
X
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U i

a

+
X
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D̄
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V i

a

, (22)
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3QP configurations space into a tractable Krylov sub-
space. Here, we present the details of the particular
Lanczos-based algorithm presently employed in Gorkov-
and Dyson-Green’s functions calculations [? ? ? ? ].

When solving Eq. (20), one needs to handle a matrix
E of large dimensions N

s

⇥ N
s

. Let H
LG

be the space
spanned by the eigenstates of E, with dim(H

LG

) = N
s

,
and p a vector of dimension N

s

(usually referred to as
the pivot). The Krylov subspace of order r is the linear
subspace of H

LG

spanned by the images of p under the
first r powers of E, i.e.

K(r) ⌘ span
�

p, E p, E2 p, E3 p, . . . , Er�1 p
 

. (A1)

Provided that E does not separates in sub-blocks of sep-
arate symmetry, one has that

K(Ns) = H
LG

. (A2)

The Lanczos algorithm is a procedure that gener-
ates an orthonormal basis {v

j

; j = 1, 2, . . . r} of K(r)

in the case where E is Hermitian. Basis vectors v
j

are obtained through a recursive procedure that involves
vector-matrix multiplications, as follows
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where at each step the newly generated vector v
j

is fur-
ther normalized to 1. Following the above construction
one has

e
ij

= (e
ji

)⇤ = v†
i

E v
j

for all i, j (A4a)

and

e
ij

= 0 for |i� j| � 2 , (A4b)

such that the projection E0 of the matrix E on K(r) is
hermitian and tridiagonal.

A similar procedure is applied here to reduce response
operators such as Eq. (26), where E is defined in a
large configuration space H

LG

and the matrix product
CC† is defined in a smaller space H

SM

. In this situa-
tion, it becomes necessary to exploit more than a single
pivot vector to quickly converge all degrees of freedom
in H

SM

. In our Gorkov calculations, H
SM

is the HFB
one-body Hilbert space, which has twice the dimension
of the single-particle basis employed. Thus, we generate
N

p

= 2N
b

di↵erent vectors according to Eq. (22).
Let {p(i); i = 1, . . . N

p

} be a set of linearly independent
vectors. The new Krylov space is generated by extend-
ing the definition of Eq. (A1) and the Lanczos proce-
dure (A3) to the case of multiple pivots. Each vector
p(i) is thus iterated a number of times r

i

, so that the
total dimension of the basis generated is

N
L

=

Np
X

i=1

r
i

. (A5)

In our algorithm, Lanczos iterations (A3) are performed
in sequence for each starting vector p(i). It is therefore
important that, at the starting of each new set of iter-
ations, the pivots are orthonormalized to the previously
generated basis vectors.

The first pivot p(1) is simply iterated r
1

times as follow
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Up to this point the projected matrix E0 still maintains a
tridiagonal structure and the vector u(1) is orthogonal to

the first r
1

basis vectors {v(1)

1

, . . .v(1)

r

1

}. As already men-
tioned, p(2) has first to be orthogonalized with respect
to the latters. Hence, one writes

p(2) ⌘
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+ d(1) v(2)
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, (A7)

imposing ||v(2)

1

|| = 1, and takes v(2)

1

as the new pivot.

Since v(2)

1

is orthogonal to all previous vectors, using the
hermiticity of H and the tridiagonal form of Eqs. (A6)
one can prove that
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In general, each vector p(i), with i � 2, will be orthonor-
malised to the previously generated portion of the basis
according to

p(i) ⌘
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such that the projection E0 of the matrix E on K(r) is
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A similar procedure is applied here to reduce response
operators such as Eq. (26), where E is defined in a
large configuration space H
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and the matrix product
CC† is defined in a smaller space H
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. In this situa-
tion, it becomes necessary to exploit more than a single
pivot vector to quickly converge all degrees of freedom
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In our algorithm, Lanczos iterations (A3) are performed
in sequence for each starting vector p(i). It is therefore
important that, at the starting of each new set of iter-
ations, the pivots are orthonormalized to the previously
generated basis vectors.
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such that the projection E0 of the matrix E on K(r) is
hermitian and tridiagonal.

A similar procedure is applied here to reduce response
operators such as Eq. (26), where E is defined in a
large configuration space H

LG

and the matrix product
CC† is defined in a smaller space H

SM

. In this situa-
tion, it becomes necessary to exploit more than a single
pivot vector to quickly converge all degrees of freedom
in H

SM

. In our Gorkov calculations, H
SM

is the HFB
one-body Hilbert space, which has twice the dimension
of the single-particle basis employed. Thus, we generate
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= 2N
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di↵erent vectors according to Eq. (22).
Let {p(i); i = 1, . . . N
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} be a set of linearly independent
vectors. The new Krylov space is generated by extend-
ing the definition of Eq. (A1) and the Lanczos proce-
dure (A3) to the case of multiple pivots. Each vector
p(i) is thus iterated a number of times r
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, so that the
total dimension of the basis generated is
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In our algorithm, Lanczos iterations (A3) are performed
in sequence for each starting vector p(i). It is therefore
important that, at the starting of each new set of iter-
ations, the pivots are orthonormalized to the previously
generated basis vectors.

The first pivot p(1) is simply iterated r
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times as follow
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In general, each vector p(i), with i � 2, will be orthonor-
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3QP configurations space into a tractable Krylov sub-
space. Here, we present the details of the particular
Lanczos-based algorithm presently employed in Gorkov-
and Dyson-Green’s functions calculations [? ? ? ? ].

When solving Eq. (20), one needs to handle a matrix
E of large dimensions N

s

⇥ N
s

. Let H
LG

be the space
spanned by the eigenstates of E, with dim(H

LG

) = N
s

,
and p a vector of dimension N

s

(usually referred to as
the pivot). The Krylov subspace of order r is the linear
subspace of H

LG

spanned by the images of p under the
first r powers of E, i.e.

K(r) ⌘ span
�

p, E p, E2 p, E3 p, . . . , Er�1 p
 

. (A1)

Provided that E does not separates in sub-blocks of sep-
arate symmetry, one has that

K(Ns) = H
LG

. (A2)

The Lanczos algorithm is a procedure that gener-
ates an orthonormal basis {v

j

; j = 1, 2, . . . r} of K(r)

in the case where E is Hermitian. Basis vectors v
j

are obtained through a recursive procedure that involves
vector-matrix multiplications, as follows
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⦿ In Gorkov theory, no distinction between “particles” and “holes”
➟ Dimension of Gorkov matrix larger than in Dyson case

⦿ Both computation of the matrix itself and Krylov projection numerically more costly

➟ Generalised Lanczos algorithm can be developed  ➝   small Krylov spaces work fine
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Oxygen g.s. energies
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the number of neutrons increases. This is attributable to the
strong components of the proton-neutron forces, which also
enhances their correlations. However, the overall dependence
on proton-neutron asymmetry is rather mild. We note that the
vicinity to the neutron dripline would require to explicitly
account for the continuum. Reference [71] found that this
effect is sizable for 24,28O and leads to further quenching
of the proton SFs. Again, this could be interpreted as a
reduced gap between the highest neutron quasihole state and
the nearby particle continuum. In this sense, the reduction of
SFs is an indirect consequence of the change in proton-neutron
asymmetry, which first affects energy gaps.

For the case of the NN + 3N -induced Hamiltonian we
find a completely similar picture, with SFs of dominant peaks
being on average slightly larger than those obtained with the
full interaction. Also in this case, stronger quenchings are
associated with increased fragmentation of nearby strength
and the narrowing of (sub-)shell gaps. Thus, we conclude that
the general effects of the original 3NFs on the quenching of
absolute SFs mainly results from the rearrangement of shell
orbits and excitation gaps.

C. Results for open shells

The present implementation of the Gorkov-GF approach
allows calculations up to the second order in the self-energy
[i.e., at the ADC(2) level]. Although this does not guarantee
the best precision for quasiparticle energies [49], it still yields
proper predictions for the trend of binding energies [22].

We plot the Gorkov-predicted binding energies for all
oxygen isotopes in Fig. 6 and compare them to the Dyson-
ADC(3) results where available. For the Dyson case, the
NN + 3N -induced Hamiltonian systematically underbinds
the full isotopic chain and predicts 28O to be bound with
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FIG. 6. (Color online) Binding energies of oxygen isotopes.
Dashed and solid lines join the results from Dyson-ADC(3) cal-
culations with the NN + 3N -induced (squares) and full (circles)
Hamiltonians. The shaded area highlights the changes owing to the
original 3NF at NNLO. The open diamonds, joined by dot-dashed
lines, are from Gorkov calculations at second order and include
open-shell isotopes. Odd-even isotopes are obtained by summing
total binging energies of the even-even systems [Eq. (10)] and the
energies for addition or removal of a neutron [Eq. (12)]. Experiment
are from Refs. [56,57,60,63,72].

respect to 24O. This is fully corrected by including the
original 3NF at leading order, which brings all results to about
3% form the experiment or closer. This is well within the
estimated theoretical errors discussed above [19]. The dot-
dashed line shows the trend of ground-state energies for the full
Hamiltonian obtained form Gorkov, which include the 18,20,26O
isotopes. This demonstrates that the fraction of binding missed
by the second-order truncation is rather constant across the
whole isotopic chain and, in the present case, of about
2–4 MeV. The result is a constant shift with respect to the
complete ADC(3) prediction and the overall trend of binding
energy is reproduced very close to the experiment. Note that
binding energies for odd-even oxygens can be calculated either
as neutron addition or neutron removal from two different
nearby isotopes. Figure 6 shows that this procedure can lead
to somewhat different results, which should be taken as an
indication of the errors owing to the second-order many-body
truncation. For the more complete Dyson-ADC(3) method and
the full Hamiltonian, these differences are never larger than
200 keV and are not visible in the plot. Our calculations with
the more accurate Dyson-ADC(3) scheme predict 28O to be
unbound with respect to 24O by 5.2 MeV. However, this value
should be slightly affected by the vicinity to the continuum
[17], which was neglected in the present work.

Figure 7 shows the analogous information for the binding
energies of the nitrogen and fluorine isotopic chains, obtained
through removal and addition of one proton. This confirms that
all considerations made regarding the effects of leading-order
3NFs on the oxygens also apply to their neighboring chains. In
particular, the repulsive effect on the d3/2 neutron orbit is key
in determining the neutron driplines at 23N and 24O. Fluorine
isotopes have been observed experimentally up to 31F but with
a 29F that is very weakly bound. Figure 7 clearly demonstrates
that this is attributable to an very subtle cancellation between
the repulsion form 3NFs and the attraction generated by one
extra proton [19].

The general qualitative features of the spectral functions
discussed in the previous sections are also found in our Gorkov
propagators but with an even more spread single-particle
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FIG. 7. (Color online) Same as Fig. 6 but for the binding energies
of nitrogen and fluorine isotopes. These are calculated as addition
or removal of a proton to and from even-even oxygen isotopes.
Experiment are from Refs. [56–58,63,72].
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effect is sizable for 24,28O and leads to further quenching
of the proton SFs. Again, this could be interpreted as a
reduced gap between the highest neutron quasihole state and
the nearby particle continuum. In this sense, the reduction of
SFs is an indirect consequence of the change in proton-neutron
asymmetry, which first affects energy gaps.

For the case of the NN + 3N -induced Hamiltonian we
find a completely similar picture, with SFs of dominant peaks
being on average slightly larger than those obtained with the
full interaction. Also in this case, stronger quenchings are
associated with increased fragmentation of nearby strength
and the narrowing of (sub-)shell gaps. Thus, we conclude that
the general effects of the original 3NFs on the quenching of
absolute SFs mainly results from the rearrangement of shell
orbits and excitation gaps.

C. Results for open shells
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allows calculations up to the second order in the self-energy
[i.e., at the ADC(2) level]. Although this does not guarantee
the best precision for quasiparticle energies [49], it still yields
proper predictions for the trend of binding energies [22].

We plot the Gorkov-predicted binding energies for all
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total binging energies of the even-even systems [Eq. (10)] and the
energies for addition or removal of a neutron [Eq. (12)]. Experiment
are from Refs. [56,57,60,63,72].

respect to 24O. This is fully corrected by including the
original 3NF at leading order, which brings all results to about
3% form the experiment or closer. This is well within the
estimated theoretical errors discussed above [19]. The dot-
dashed line shows the trend of ground-state energies for the full
Hamiltonian obtained form Gorkov, which include the 18,20,26O
isotopes. This demonstrates that the fraction of binding missed
by the second-order truncation is rather constant across the
whole isotopic chain and, in the present case, of about
2–4 MeV. The result is a constant shift with respect to the
complete ADC(3) prediction and the overall trend of binding
energy is reproduced very close to the experiment. Note that
binding energies for odd-even oxygens can be calculated either
as neutron addition or neutron removal from two different
nearby isotopes. Figure 6 shows that this procedure can lead
to somewhat different results, which should be taken as an
indication of the errors owing to the second-order many-body
truncation. For the more complete Dyson-ADC(3) method and
the full Hamiltonian, these differences are never larger than
200 keV and are not visible in the plot. Our calculations with
the more accurate Dyson-ADC(3) scheme predict 28O to be
unbound with respect to 24O by 5.2 MeV. However, this value
should be slightly affected by the vicinity to the continuum
[17], which was neglected in the present work.

Figure 7 shows the analogous information for the binding
energies of the nitrogen and fluorine isotopic chains, obtained
through removal and addition of one proton. This confirms that
all considerations made regarding the effects of leading-order
3NFs on the oxygens also apply to their neighboring chains. In
particular, the repulsive effect on the d3/2 neutron orbit is key
in determining the neutron driplines at 23N and 24O. Fluorine
isotopes have been observed experimentally up to 31F but with
a 29F that is very weakly bound. Figure 7 clearly demonstrates
that this is attributable to an very subtle cancellation between
the repulsion form 3NFs and the attraction generated by one
extra proton [19].

The general qualitative features of the spectral functions
discussed in the previous sections are also found in our Gorkov
propagators but with an even more spread single-particle
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or removal of a proton to and from even-even oxygen isotopes.
Experiment are from Refs. [56–58,63,72].
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⦿ Calculation of full isotopic chains becomes possible

⦿ Example of oxygen: Dyson-ADC(3) vs Gorkov-ADC(2)

➟ Correlation energy from 3rd order amount to a few percent (for soft interactions)

➟ Trend (i.e. energy differences) well captured at second order

○Hamiltonian: chiral N3LO 2N (500 MeV) + N2LO 3N (400 MeV),  SRG-evolved to 2.0 fm-1

[Entem & Machleidt 2003; Navrátil 2007; Roth et al. 2012]

[Cipollone, Barbieri & Navrátil 2015]
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FIG. 3. (Color online) Two-nucleon separation energies, S2n , of Ca
isotopes. Results for second order Gorkov calculation for are shown
for the induced (crosses) and full (open squares) Hamiltonians and
are compared to the experiment (full squares) [28–30]. Results from
shell model calculations with chiral 3NFs (full line) [8, 30] and cou-
pled cluster (dashed line) [14] are also shown.

significantly too large (small) for N  20 (N > 20). Including
chiral 3NFs correct this behaviour to a large extent and pre-
dict S2n close to the experiment for isotopes above 42Ca. Fig-
ure 3 also shows results for microscopic shell model [8, 30]
and coupled cluster [14] calculations above 41Ca and 49Ca,
respectively, which are based on similar chiral forces. Our
calculations confirm and extend these results within a full-
fledged ab-initio approach for the first time. The results are
quite remarkable, considering that NN+3N chiral interactions
have been fitted solely to few-body data up to A = 4.

The S2n jump between N=20 and N=22 is largely over-
estimated with the NN plus induced 3NFs, which confirms
the findings of Refs. [13, 31] based on the original NN in-
teraction. The experimental Z=20 magic gap across 48Ca is
�⇡(48Ca) ⌘ 2E

48Ca
0 � E

49Sc
0 � E

47K
0 = 6.2 MeV, whereas it was

found to be 10.5 MeV in Ref. [31]. The magic gap is some-
what larger in the present calculations, i.e. it is equal to
16.5 MeV with the NN plus induced 3NF and is reduced to
12.4 MeV including the full 3NF, which still overestimates
experiment by about 6 MeV.

Performing the integral in the Koltun sum rule (3) expresses
the binding energy as a weighted sum of one-nucleon re-
moval energies. The systematic overbinding observed in the
present results thus relates to a spectrum in the A-1 system
(not shown here) that is too spread out. This has already been
seen in Ref. [13] and is reflected in the excessive distance be-
tween major nuclear shells, or e↵ective single-particle ener-
gies (ESPE) [19, 32]. In turn, the overestimated N=20 magic
gap and the jump of the S2n between N=20 and N=22 relate
to the exaggerated energy separation between sd and pf ma-
jor shells generated by presently employed chiral interactions.
Eventually, a too dilute ESPE spectrum translates into under-
estimated radii.

Presently, ADC(3)-corrected energies with the NN plus full
3NF (Fig. 2) overbind 40Ca, 48Ca and 52Ca by 0.90, 0.73, and
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FIG. 4. (Color online) Two-neutron separation energies, S2n , along
Ar, K, Ca, Sc and Ti isotopic chains. The experimental values (solid
symbols) [28–30] are compared to second order Gorkov calculations
with the NN plus full 3NF (full lines). Values for K, Ca, Sc and Ti
are respectively shifted by +5 MeV, 10 MeV, 15 MeV and 20 MeV
for display purposes. Isolated open symbols are AME2012 extrapo-
lations of experimental data [28].

0.72 MeV/A, respectively. It can be conjectured that such a
behaviour correlates with a predicted saturation point of sym-
metric nuclear matter that is too bound and located at too
high density compared to the empirical point. Recent calcu-
lations of homogeneous nuclear matter based on chiral inter-
actions [2, 3] predict a saturation point in the vicinity of the
empirical point with an uncertainty that is compatible with
the misplacement suggested by our analysis. However, such
calculations use a di↵erent 3NF cuto↵ ⇤3N=500 MeV and dif-
ferent values of cD and cE . Additional SCGF calculations as
in Ref. [3] but with the same NN+3N chiral interactions used
here would help in confirming this conjecture.

The systematic of S2n obtained with the NN plus full 3NF is
displayed in Fig. 4 along Ar, K, Ca, Sc and Ti isotopic chains,
up to N=32. When the neutron chemical potential lies within
the pf shell, predicted S2n reproduce experiment to good ac-
curacy without adjusting any parameter beyond A = 4 data.
Still, the quality slightly deteriorates as the proton chemical
potential moves down into the sd shell, i.e. going from Ca to
K and Ar elements. The increasing underestimation of the S2n

is consistent with a too large gap between proton sd and pf ma-
jor shells that prevents quadrupole neutron-proton correlations
to switch on. The too large jump of the S2n between N=20
and N=22 is visible for all elements and becomes particularly
pronounced as one moves away from the proton magic 40Ca
nucleus where the experimental jump is progressively washed
out. At N=18, the situation deteriorates when going from 38Ca
to 41Sc and 42Ti (but not going to 37K and 36Ar), i.e. when the
proton chemical potential moves up into the pf shell. This is
again consistent with an exaggerated shell gap between sd pf
shells that prevents neutron-proton correlations to switch on
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FIG. 3. (Color online) Two-nucleon separation energies, S2n , of Ca
isotopes. Results for second order Gorkov calculation for are shown
for the induced (crosses) and full (open squares) Hamiltonians and
are compared to the experiment (full squares) [28–30]. Results from
shell model calculations with chiral 3NFs (full line) [8, 30] and cou-
pled cluster (dashed line) [14] are also shown.

significantly too large (small) for N  20 (N > 20). Including
chiral 3NFs correct this behaviour to a large extent and pre-
dict S2n close to the experiment for isotopes above 42Ca. Fig-
ure 3 also shows results for microscopic shell model [8, 30]
and coupled cluster [14] calculations above 41Ca and 49Ca,
respectively, which are based on similar chiral forces. Our
calculations confirm and extend these results within a full-
fledged ab-initio approach for the first time. The results are
quite remarkable, considering that NN+3N chiral interactions
have been fitted solely to few-body data up to A = 4.

The S2n jump between N=20 and N=22 is largely over-
estimated with the NN plus induced 3NFs, which confirms
the findings of Refs. [13, 31] based on the original NN in-
teraction. The experimental Z=20 magic gap across 48Ca is
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0 = 6.2 MeV, whereas it was

found to be 10.5 MeV in Ref. [31]. The magic gap is some-
what larger in the present calculations, i.e. it is equal to
16.5 MeV with the NN plus induced 3NF and is reduced to
12.4 MeV including the full 3NF, which still overestimates
experiment by about 6 MeV.

Performing the integral in the Koltun sum rule (3) expresses
the binding energy as a weighted sum of one-nucleon re-
moval energies. The systematic overbinding observed in the
present results thus relates to a spectrum in the A-1 system
(not shown here) that is too spread out. This has already been
seen in Ref. [13] and is reflected in the excessive distance be-
tween major nuclear shells, or e↵ective single-particle ener-
gies (ESPE) [19, 32]. In turn, the overestimated N=20 magic
gap and the jump of the S2n between N=20 and N=22 relate
to the exaggerated energy separation between sd and pf ma-
jor shells generated by presently employed chiral interactions.
Eventually, a too dilute ESPE spectrum translates into under-
estimated radii.

Presently, ADC(3)-corrected energies with the NN plus full
3NF (Fig. 2) overbind 40Ca, 48Ca and 52Ca by 0.90, 0.73, and

18 20 22 24 26 28 30 32
0

10

20

30

40

50

60

N

S 2
n [

M
eV

]

Ar

K

Ca
Sc

Ti

FIG. 4. (Color online) Two-neutron separation energies, S2n , along
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symbols) [28–30] are compared to second order Gorkov calculations
with the NN plus full 3NF (full lines). Values for K, Ca, Sc and Ti
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for display purposes. Isolated open symbols are AME2012 extrapo-
lations of experimental data [28].

0.72 MeV/A, respectively. It can be conjectured that such a
behaviour correlates with a predicted saturation point of sym-
metric nuclear matter that is too bound and located at too
high density compared to the empirical point. Recent calcu-
lations of homogeneous nuclear matter based on chiral inter-
actions [2, 3] predict a saturation point in the vicinity of the
empirical point with an uncertainty that is compatible with
the misplacement suggested by our analysis. However, such
calculations use a di↵erent 3NF cuto↵ ⇤3N=500 MeV and dif-
ferent values of cD and cE . Additional SCGF calculations as
in Ref. [3] but with the same NN+3N chiral interactions used
here would help in confirming this conjecture.

The systematic of S2n obtained with the NN plus full 3NF is
displayed in Fig. 4 along Ar, K, Ca, Sc and Ti isotopic chains,
up to N=32. When the neutron chemical potential lies within
the pf shell, predicted S2n reproduce experiment to good ac-
curacy without adjusting any parameter beyond A = 4 data.
Still, the quality slightly deteriorates as the proton chemical
potential moves down into the sd shell, i.e. going from Ca to
K and Ar elements. The increasing underestimation of the S2n

is consistent with a too large gap between proton sd and pf ma-
jor shells that prevents quadrupole neutron-proton correlations
to switch on. The too large jump of the S2n between N=20
and N=22 is visible for all elements and becomes particularly
pronounced as one moves away from the proton magic 40Ca
nucleus where the experimental jump is progressively washed
out. At N=18, the situation deteriorates when going from 38Ca
to 41Sc and 42Ti (but not going to 37K and 36Ar), i.e. when the
proton chemical potential moves up into the pf shell. This is
again consistent with an exaggerated shell gap between sd pf
shells that prevents neutron-proton correlations to switch on
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Other isotopes have similar speeds of convergence, e.g., the
same variation of the model space induces a change of 1 MeV
in 40Ca. Thus, one expects convergence errors to cancel to a
large extent when calculating two-neutron separation energies
S2n ≡ EZ,N

0 − EZ,N−2
0 . To test this we performed exponential

extrapolations of the calculated binding energies of a few
nuclei, using the last few odd values of Nmax. We found
variations of at most ≈500 keV with respect to the value
calculated at Nmax = 13. Hence, we take this as an estimate
of the convergence error on computed S2n. In the following
we present our results calculated for Nmax = 13 and !! =
28 MeV, which corresponds to the minimum of the curve
in Fig. 1. For isotopes beyond N = 32, appropriate extrap-
olations and larger model spaces are required and will be
considered in future works.

The accuracy of the many-body truncation of the self-
energy at second order must also be assessed. To this extent,
we consider the standard (Dyson) formulation of SCGF
implemented within the third-order algebraic diagrammatic
construction [ADC(3)], which goes beyond the full third
order [26,27]. The comparison in closed-shell isotopes 40Ca,
48Ca, and 52Ca (top panel of Fig. 2) shows that the correction
from third- and higher-order diagrams is rather constant along
the chain. Respectively, in Nmax = 9 we obtain E

ADC(3)−Dys
0 −
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FIG. 2. (Color online) Experimental (solid squares) [28–30] and
calculated ground-state energies of Ca isotopes. Top panel: Second-
order Gorkov and Dyson-ADC(3) results for 40,48,52Ca obtained with
a Nmax = 9 model space and the full Hamiltonian. Bottom panel:
Second-order Gorkov results with NN plus induced (crosses) and
NN plus full (open squares) 3NFs and Nmax = 13. Full 3NF Gorkov
results corrected for the ADC(3) correlation energy extracted from
the top panel (dotted line with solid triangles). IM-SRG results [12]
are for the same 3NF and are extrapolated to infinite model space
(diamonds with error bars).

E2nd−Gkv
0 = −10.6, −12.1, and −12.6 MeV, which correspond

to ≈2.7% of the total binding energy. Assuming that these
differences are converged with respect to the model space, we
add them to our second-order Gorkov results with Nmax=13
and display the results in the bottom panel of Fig. 2. Resulting
values agree well with IM-SRG calculations of 40Ca and
48Ca based on the same Hamiltonian [12]. This confirms the
robustness of the present results across different many-body
methods. The error due to missing induced 4NFs was also
estimated in Ref. [12] by varying the SRG cutoff over a
(limited) range. Up to ≈1% variations were found for masses
A ! 56 (e.g., less than 0.5% for 40Ca and 48Ca) when changing
λ between 1.88 and 2.24 fm−1. We take this estimate to be
generally valid for all the present calculations.

A first important result of this work appears in the bottom
panel of Fig. 2, which compares the results obtained with
NN plus induced 3NFs and NN plus full 3NFs. The trend
of the binding energy of Ca isotopes is predicted incorrectly
by the induced 3NFs alone. This is fully amended by the
inclusion of leading chiral 3NFs. However, the latter introduce
additional attraction that results in a systematic overbinding of
ground-state energies throughout the whole chain. Analogous
results are obtained for Ar, K, Sc, and Ti isotopic chains (not
shown here), leading to the same conclusion regarding the role
of the initial chiral 3NF in providing the correct trend and in
generating overbinding at the same time.

The NN plus induced 3N interaction, which originates
from the NN -only N3LO potential, generates a wrong slope
in Fig. 2 and exaggerates the kink at 40Ca. The corresponding
two-nucleon separation energies are shown in Fig. 3 and
are significantly too large (small) for N ! 20 (N > 20).
Including chiral 3NFs corrects this behavior to a large extent
and predicts S2n close to the experiment for isotopes above
42Ca. Figure 3 also shows results for microscopic shell
model [19,30] and coupled-cluster [9] calculations above
41Ca and 49Ca, respectively, which are based on similar chiral
forces. Our calculations confirm and extend these results
within a full-fledged ab initio approach for the first time.
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FIG. 3. (Color online) Two-nucleon separation energies, S2n , of
Ca isotopes. Gorkov calculations are shown for the induced (crosses)
and full (open squares) Hamiltonians and are compared to the exper-
iment (solid squares) [28–30]. Results from shell-model calculations
with chiral 3NFs (solid line) [19,30] and coupled cluster (dashed
line) [9] are also shown.
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Other isotopes have similar speeds of convergence, e.g., the
same variation of the model space induces a change of 1 MeV
in 40Ca. Thus, one expects convergence errors to cancel to a
large extent when calculating two-neutron separation energies
S2n ≡ EZ,N

0 − EZ,N−2
0 . To test this we performed exponential

extrapolations of the calculated binding energies of a few
nuclei, using the last few odd values of Nmax. We found
variations of at most ≈500 keV with respect to the value
calculated at Nmax = 13. Hence, we take this as an estimate
of the convergence error on computed S2n. In the following
we present our results calculated for Nmax = 13 and !! =
28 MeV, which corresponds to the minimum of the curve
in Fig. 1. For isotopes beyond N = 32, appropriate extrap-
olations and larger model spaces are required and will be
considered in future works.

The accuracy of the many-body truncation of the self-
energy at second order must also be assessed. To this extent,
we consider the standard (Dyson) formulation of SCGF
implemented within the third-order algebraic diagrammatic
construction [ADC(3)], which goes beyond the full third
order [26,27]. The comparison in closed-shell isotopes 40Ca,
48Ca, and 52Ca (top panel of Fig. 2) shows that the correction
from third- and higher-order diagrams is rather constant along
the chain. Respectively, in Nmax = 9 we obtain E
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FIG. 2. (Color online) Experimental (solid squares) [28–30] and
calculated ground-state energies of Ca isotopes. Top panel: Second-
order Gorkov and Dyson-ADC(3) results for 40,48,52Ca obtained with
a Nmax = 9 model space and the full Hamiltonian. Bottom panel:
Second-order Gorkov results with NN plus induced (crosses) and
NN plus full (open squares) 3NFs and Nmax = 13. Full 3NF Gorkov
results corrected for the ADC(3) correlation energy extracted from
the top panel (dotted line with solid triangles). IM-SRG results [12]
are for the same 3NF and are extrapolated to infinite model space
(diamonds with error bars).

E2nd−Gkv
0 = −10.6, −12.1, and −12.6 MeV, which correspond

to ≈2.7% of the total binding energy. Assuming that these
differences are converged with respect to the model space, we
add them to our second-order Gorkov results with Nmax=13
and display the results in the bottom panel of Fig. 2. Resulting
values agree well with IM-SRG calculations of 40Ca and
48Ca based on the same Hamiltonian [12]. This confirms the
robustness of the present results across different many-body
methods. The error due to missing induced 4NFs was also
estimated in Ref. [12] by varying the SRG cutoff over a
(limited) range. Up to ≈1% variations were found for masses
A ! 56 (e.g., less than 0.5% for 40Ca and 48Ca) when changing
λ between 1.88 and 2.24 fm−1. We take this estimate to be
generally valid for all the present calculations.

A first important result of this work appears in the bottom
panel of Fig. 2, which compares the results obtained with
NN plus induced 3NFs and NN plus full 3NFs. The trend
of the binding energy of Ca isotopes is predicted incorrectly
by the induced 3NFs alone. This is fully amended by the
inclusion of leading chiral 3NFs. However, the latter introduce
additional attraction that results in a systematic overbinding of
ground-state energies throughout the whole chain. Analogous
results are obtained for Ar, K, Sc, and Ti isotopic chains (not
shown here), leading to the same conclusion regarding the role
of the initial chiral 3NF in providing the correct trend and in
generating overbinding at the same time.

The NN plus induced 3N interaction, which originates
from the NN -only N3LO potential, generates a wrong slope
in Fig. 2 and exaggerates the kink at 40Ca. The corresponding
two-nucleon separation energies are shown in Fig. 3 and
are significantly too large (small) for N ! 20 (N > 20).
Including chiral 3NFs corrects this behavior to a large extent
and predicts S2n close to the experiment for isotopes above
42Ca. Figure 3 also shows results for microscopic shell
model [19,30] and coupled-cluster [9] calculations above
41Ca and 49Ca, respectively, which are based on similar chiral
forces. Our calculations confirm and extend these results
within a full-fledged ab initio approach for the first time.
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FIG. 3. (Color online) Two-nucleon separation energies, S2n , of
Ca isotopes. Gorkov calculations are shown for the induced (crosses)
and full (open squares) Hamiltonians and are compared to the exper-
iment (solid squares) [28–30]. Results from shell-model calculations
with chiral 3NFs (solid line) [19,30] and coupled cluster (dashed
line) [9] are also shown.
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⦿ Gorkov GF led to the first ab initio calculations of isotopic chains around Z=20

[Somà et al. 2014]

○ 3NF necessary for magic gaps
○ Consistent picture across 5 chains
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variations of at most ≈500 keV with respect to the value
calculated at Nmax = 13. Hence, we take this as an estimate
of the convergence error on computed S2n. In the following
we present our results calculated for Nmax = 13 and !! =
28 MeV, which corresponds to the minimum of the curve
in Fig. 1. For isotopes beyond N = 32, appropriate extrap-
olations and larger model spaces are required and will be
considered in future works.

The accuracy of the many-body truncation of the self-
energy at second order must also be assessed. To this extent,
we consider the standard (Dyson) formulation of SCGF
implemented within the third-order algebraic diagrammatic
construction [ADC(3)], which goes beyond the full third
order [26,27]. The comparison in closed-shell isotopes 40Ca,
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FIG. 2. (Color online) Experimental (solid squares) [28–30] and
calculated ground-state energies of Ca isotopes. Top panel: Second-
order Gorkov and Dyson-ADC(3) results for 40,48,52Ca obtained with
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Second-order Gorkov results with NN plus induced (crosses) and
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results corrected for the ADC(3) correlation energy extracted from
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are for the same 3NF and are extrapolated to infinite model space
(diamonds with error bars).
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to ≈2.7% of the total binding energy. Assuming that these
differences are converged with respect to the model space, we
add them to our second-order Gorkov results with Nmax=13
and display the results in the bottom panel of Fig. 2. Resulting
values agree well with IM-SRG calculations of 40Ca and
48Ca based on the same Hamiltonian [12]. This confirms the
robustness of the present results across different many-body
methods. The error due to missing induced 4NFs was also
estimated in Ref. [12] by varying the SRG cutoff over a
(limited) range. Up to ≈1% variations were found for masses
A ! 56 (e.g., less than 0.5% for 40Ca and 48Ca) when changing
λ between 1.88 and 2.24 fm−1. We take this estimate to be
generally valid for all the present calculations.

A first important result of this work appears in the bottom
panel of Fig. 2, which compares the results obtained with
NN plus induced 3NFs and NN plus full 3NFs. The trend
of the binding energy of Ca isotopes is predicted incorrectly
by the induced 3NFs alone. This is fully amended by the
inclusion of leading chiral 3NFs. However, the latter introduce
additional attraction that results in a systematic overbinding of
ground-state energies throughout the whole chain. Analogous
results are obtained for Ar, K, Sc, and Ti isotopic chains (not
shown here), leading to the same conclusion regarding the role
of the initial chiral 3NF in providing the correct trend and in
generating overbinding at the same time.

The NN plus induced 3N interaction, which originates
from the NN -only N3LO potential, generates a wrong slope
in Fig. 2 and exaggerates the kink at 40Ca. The corresponding
two-nucleon separation energies are shown in Fig. 3 and
are significantly too large (small) for N ! 20 (N > 20).
Including chiral 3NFs corrects this behavior to a large extent
and predicts S2n close to the experiment for isotopes above
42Ca. Figure 3 also shows results for microscopic shell
model [19,30] and coupled-cluster [9] calculations above
41Ca and 49Ca, respectively, which are based on similar chiral
forces. Our calculations confirm and extend these results
within a full-fledged ab initio approach for the first time.
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FIG. 3. (Color online) Two-nucleon separation energies, S2n , of
Ca isotopes. Gorkov calculations are shown for the induced (crosses)
and full (open squares) Hamiltonians and are compared to the exper-
iment (solid squares) [28–30]. Results from shell-model calculations
with chiral 3NFs (solid line) [19,30] and coupled cluster (dashed
line) [9] are also shown.
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○ Two-neutron separation energies reproduced
○ 3NF overbind but correct overall trend



➟ New mass measurements challenge theory
➟ General fair agreement, but N=32 gap overestimated

Potassium masses and g.s. (re)inversion

[Rosenbusch et al. 2015]

The top panel in Fig. 5 shows the experimental and
computed HFB S2n values for the potassium and calcium
isotopic chains. The theoretical S2n are computed for nuclei
of even neutron number. Self-consistent quasiparticle
blocking of the odd protons is performed for the potassium
isotopes, by using the procedure described in Ref. [27].
A strength of the pairing interaction of −200 MeV fm3

reproduces the very smooth S2n trend observed in Ref. [11].
It describes correctly the experimental values on average
but underestimates the drop at the crossing of the magic
neutron numbers. A reduction of the strength of the pairing
interaction (solid lines) leads to a significant improvement
of the description of the experimental S2n trend. The
addition of the tensor term with the SLy5 interaction leads
to a change in the wrong direction. However, a recent
work [28] has shown that the effect of the tensor term in
mean-field calculations strongly depends on the way it is
constrained to experimental data.
In addition to the empirical HFB approach, it is now

possible to perform calculations up to the medium mass
region using ab initio methods (see, e.g., Refs. [29–36]).

Thus, new mass calculations have been performed in the
ab initio GGF framework [31,37,38] that allow for the
study of open-shell nuclei. This method is particularly
suited for the present purpose due to the ease of calculating
odd-even systems, which also makes it a unique tool to
investigate neighboring isotopic chains.
In our calculations, the only input are two- and three-

body interactions fitted to properties of systems with
A ¼ 2, 3, and 4, without any further adjustments of the
parameters. GGF calculations have recently addressed
the region around Z ¼ 20 [31] and are extended here for
the first time beyond N ¼ 32 for potassium.
The present calculations made use of two- and three-

nucleon forces derived within chiral effective field theory at
next-to-next-to- and next-to-next-to-next-to-leading order
(N2LO and N3LO), respectively [39,40], extended to the
low-momentum scale λ ¼ 2.0 fm−1 by means of free-space
similarity renormalization-group techniques. The many-
body treatment is set by a second-order truncation in the
GGF self-energy expansion [37]. Model spaces up to 14
harmonic oscillator shells were employed, and three-body
interactions were restricted to basis states with E3max ≤ 16.
Infrared extrapolations of the calculated ground state
energies were subsequently performed following
Ref. [41]. We note that, in the present case, this procedure
is formally defective due to the different truncations of one-
and three-body model spaces. Nevertheless, we find that
the trend expected from Ref. [41] is qualitatively repro-
duced, although with larger extrapolation uncertainties.
This is in agreement with other calculations [35]. As an
example, we obtain binding energies of 439.52(0.71) MeV
for 51K and 443.31(0.85) MeV for 53K. This overbinding of
about 0.7 MeV=A is a general feature of currently available
chiral interactions, and it is a constant effect through-
out the whole isotopic chain that cancels in separation
energies [31,35,36].
GGF results for S2n of 47;49;51;53K and 48;50;52;54Ca are

shown in the bottom panel in Fig. 5 and are all resulting
from the infrared extrapolation. Different sources of
uncertainty affect the present theoretical results (see
Refs. [31,38] for a detailed discussion). In particular, this
method breaks particle-number symmetry (like HFB
theory) and generates the correct expectation values for
the proton and neutron numbers only on average, with a
finite variance. However, the associated errors are expected
to cancel with good accuracy for energy differences (such
as S2n). The uncertainties indicated in Fig. 5 are uniquely
those originating from the extrapolation fit and range
between 0.4 and 1.5 MeV with increasing mass number.
In general, GGF calculations are in fair agreement with
measured S2n, with the mismatch at 53K being on the order
of the truncation error. The significant drop from 51K to 53K
is qualitatively reproduced but overestimated by theory,
which also leads to an overestimation of the empirical shell
gap for potassium. In contrast to the N ¼ 28 gap, which is
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FIG. 5 (color online). Two-neutron separation energies for the
isotopic chains of potassium (left axes) and calcium (right axes);
note the shifted scales. Open symbols, data from Ref. [21]; filled
symbols, calcium data from Ref. [11] and new mass data from
this work. Top: With S2n values from HFB calculations using the
SLy4 (green lines) and the SLy5 (red lines) interaction, with
volume-type delta pairing of strength V0 ¼ −150 MeV fm3

(solid lines) or V0 ¼ −200 MeV fm3 (dashed lines). Bottom:
With S2n values obtained from ab initio Gorkov-Green function
theory (see the text for details).
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⦿ Gorkov-Green’s functions can tackle odd Z chains
SHELL STRUCTURE OF POTASSIUM ISOTOPES DEDUCED . . . PHYSICAL REVIEW C 90, 034321 (2014)

FIG. 6. (Color online) (a) Energy difference between the lowest
1/2+ and 3/2+ states obtained in 37–53K from ab initio Gorkov-
Green‘s function calculations and experiment. Ab initio results have
been shifted by 2.58 MeV to match the experimental (1/2+–3/2+)
splitting in 47K. (b) πd3/2 and πs1/2 effective single-particle energies
(ESPE) in 37−53K calculated in Gorkov-Green’s functions theory.

good test case to validate/invalidate specific features of basic
internucleon interactions and innovative many-body theories.

To complement the above analysis, the lower panel of
Fig. 6 provides the evolution of proton 1d3/2 and 2s1/2 shells.
These two effective single-particle energies (ESPEs) recollect
[51] the fragmented 3/2+ and 1/2+ strengths obtained from
one-proton addition and removal processes on neighboring Ca
isotones. Within the present theoretical description, the evo-
lution of the observable (i.e., theoretical-scheme independent)
lowest-lying 1/2+ and 3/2+ states does qualitatively reflect the
evolution of the underlying nonobservable (i.e., theoretical-
scheme dependent) single-particle shells. As such, the energy
gap between the two shells decreases from 5.76 MeV in 39K to
1.81 MeV in 47K which is a reduction of about 70%. Adding
four neutrons in the ν2p3/2 shell causes the energy difference
to increase again to 4.03 MeV.

B. Even-A

The configuration of the even-A potassium isotopes arises
from the coupling between an unpaired proton in the sd
shell with an unpaired neutron. Different neutron orbitals
are involved, starting from 38K where a hole in the ν1d3/2

is expected, then gradually filling the ν1f7/2 and finally, the
ν2p3/2 for 48,50K.

In order to investigate the composition of the ground-state
wave functions of the even-A K isotopes, we first compare the
experimental magnetic moments to the semi-empirical values.
Based on the additivity rule for the magnetic moments (g
factors) and assuming a weak coupling between the odd proton
and the odd neutron, the semi-empirical magnetic moments
can be calculated using the following formula [55]: µse =
gse · I , with

gse = g(jπ ) + g(jν)
2

+ g(jπ ) − g(jν)
2

jπ (jπ + 1) − jν(jν + 1)
I (I + 1)

, (6)

where g(jπ ) and g(jν) are the experimental g factors of
nuclei with an odd proton or neutron in the corresponding
orbital. The calculations were performed using the measured
g factors of the neighboring isotopes with the odd-even and
even-odd number of particles in jπ and jν , respectively. For
the empirical values of unpaired protons, results from Table III
were used. The g factors for the odd neutrons were taken from
the corresponding Ca isotones [56–59]. The obtained results
with the list of isotopes used for different configurations are
presented in Table VI.

A comparison between the experimental and semi-
empirical g factors is shown in Fig. 7. For 38K, the semi-
empirical value calculated from 39K and 39Ca provides
excellent agreement with the experimental result. This con-
firms that the dominant component in the wave function for
the ground state originates from the coupling between a hole
in the π1d3/2 and the ν1d3/2. By adding more neutrons, the
ν1f7/2 orbital is filled for 40K up to 46K. In order to calculate the
semi-empirical g factors for these isotopes, g(jπ ) is provided
from neighboring odd-A K isotopes (Table III) combined
with g(jν) of the subsequent odd-A Ca isotones starting from
N = 21 up to N = 27. The trend of the experimental g factors
is very well reproduced by the semi-empirical calculations
suggesting that the dominant component in the wave function
of these isotopes is π1d−1

3/2 ⊗ ν1f n
7/2 where n = 1,3,5,7. For

48K, two semi-empirical values are calculated by considering a
coupling between a proton hole in the π2s1/2 or the π1d3/2 with

TABLE VI. Semi-empirical g factors obtained for certain con-
figurations using the additivity rule in Eq. (6) (see text for more
details). In the calculations, results from Table III were used for
g(jπ ), while for g(jν) Ca data were taken from [56–59]. For 48K,
different configurations are considered for I = 1.

Isotope Iπ Configuration gse (g(jπ );g(jν))

38K 3+ π1d−1
3/2 ⊗ ν1d−1

3/2 +0.47 (39K; 39Ca)
40K 4− π1d−1

3/2 ⊗ ν1f7/2 −0.31 (39K; 41Ca)
42K 2− π1d−1

3/2 ⊗ ν1f 3
7/2 −0.64 (41K; 43Ca)

44K 2− π1d−1
3/2 ⊗ ν1f 5

7/2 −0.62 (43K; 45Ca)
46K 2− π1d−1

3/2 ⊗ ν1f −1
7/2 −0.65 (45K; 47Ca)

48K 1− π1d−1
3/2 ⊗ ν2p3/2 −0.40 (45K; 49Ca)

48K 1− π2s−1
1/2 ⊗ ν2p3/2 −2.11 (47K; 49Ca)

034321-7
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FIG. 1. (Color online) Experimental energies for 1/2+ and 3/2+

states in odd-A K isotopes. Inversion of the nuclear spin is obtained in
47,49K and reinversion back in 51K. Results are taken from [16,23–25].
Ground-state spin for 49K and 51K were established [22].

of the orbitals is driven by the monopole part of the proton-
neutron interaction, which can be decomposed into three com-
ponents: the central, vector, and tensor. Initially Otsuka et al.
[12] suggested that the evolution of the ESPEs is mainly due to
the tensor component. However, in more recent publications
[11,13,14] several authors have shown that both the tensor
term as well as the central term have to be considered.

Regarding the shell model, potassium isotopes are excellent
probes for this study, with only one proton less than the magic
number Z = 20. Nevertheless, little and especially conflicting
information is available so far for the neutron-rich potassium
isotopes. Level schemes based on the tentatively assigned spins
of the ground state were provided for 48K [15] and 49K [16]. In
addition, an extensive discussion was presented by Gaudefroy
[17] on the energy levels and configurations of N = 27,28,
and 29 isotones in the shell-model framework and compared
to the experimental observation, where available. However, the
predicted spin of 2− for 48K, is in contradiction with Iπ = (1−)
proposed by Królas et al. [15]. In addition, the nuclear spin of
the ground state of 50K was proposed to be 0− [18] in contrast
to the recent β-decay studies where it was suggested to be
1− [19]. The ground state spin-parity of 49K was tentatively
assigned to be (1/2+) by Broda et al. [16], contrary to the
earlier tentative (3/2+) assignment from β-decay spectroscopy
[20]. For 51K, the nuclear spin was tentatively assigned to be
(3/2+) by Perrot et al. [21].

Our recent hyperfine structure measurements of potassium
isotopes using the collinear laser spectroscopy technique
provided unambiguous spin values for 48–51K and gave the
answer to the question as to what happens with the proton sd
orbitals for isotopes beyond N = 28. By measuring the nuclear
spins of 49K and 51K to be 1/2 and 3/2 [22], respectively,
the evolution of these two states in the potassium isotopes
is firmly established. This is presented in Fig. 1 for isotopes
from N = 18 up to N = 32 where the inversion of the states
is observed at N = 28 followed by the reinversion back at
N = 32. In addition, we have confirmed a spin-parity 1− for
48K and 0− for 50K [26]. The measured magnetic moments
of 48–51K were not discussed in detail so far and will be
presented in this article. Additionally, based on the comparison
between experimental data and shell-model calculations, the
configuration of the ground-state wave functions will be

FIG. 2. (Color online) Schematic representation of the setup for
collinear laser spectroscopy at ISOLDE.

addressed as well. Finally, ab initio Gorkov-Green’s function
calculations of the odd-A isotopes will be discussed.

II. EXPERIMENTAL PROCEDURE

The experiment was performed at the collinear laser
spectroscopy beam line COLLAPS [27] at ISOLDE/CERN.
The radioactive ion beam was produced by 1.4-GeV protons
(beam current about 1.7 µA) impinging on a thick UCx target
(45 g/cm2). Ionization of the resulting fragments was achieved
by the surface ion source. The target and the ionizing tube
were heated to around 2000 ◦C. The accelerated ions (up to
40 kV) were mass separated by the high resolution separator
(HRS). The gas-filled Paul trap (ISCOOL) [28,29] was used
for cooling and bunching of the ions. Multiple bunches spaced
by 90 ms were generated after each proton pulse. The bunched
ions were guided to the setup for collinear laser spectroscopy
where they were superimposed with the laser. A schematic
representation of the beam line for collinear laser spectroscopy
is shown in Fig. 2.

A cw titanium:sapphire (Ti:Sa) laser was operated close
to the Doppler-shifted 4s 2S1/2 → 4p 2P1/2 transition at
769.9 nm, providing around 1 mW power into the beam
line. Stabilization of the laser system during the experiment
was ensured by locking the laser to a reference Fabry-Perot
interferometer maintained under vacuum, which in turn was
locked to a frequency stabilized helium-neon (HeNe) laser.
An applied voltage of ±10 kV on the charge exchange cell
(CEC) provided the Doppler tuning for the ions, which
were neutralized through the collisions with potassium vapor.
Scanning of the hyperfine structure (hfs) was performed by
applying an additional voltage in a range of ±500 V. The
resonance photons were recorded by four photomultiplier
tubes (PMT) placed immediately after the CEC. By gating
the signal on the PMTs to the fluorescence photons from the
bunches, the signal was only recorded for about 6 µs when
the bunches were in front of the PMTs. Consequently, the
background related to the scattered laser light was suppressed
by a factor ∼104 (6 µs/90 ms). More details about the setup
can be found in Ref. [26].

III. RESULTS

In Fig. 3 typical hyperfine spectra for 48–51K are shown.
The raw data are saved as counts versus scanning voltage. The
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Oxygen & calcium radii
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⦿ Ab initio calculations over mid-mass chains as test tools to develop new Hamiltonians

⦿ Example: two sets of 2N+3N chiral interactions

[Entem & Machleidt 2003; Navrátil 2007; Roth et al. 2012]

➟ Conventional* N3LO 2N (500 MeV) + N2LO 3N (400 MeV)    [EM]

➟ Unconventional* N2LO 2N+3N (450 MeV)    [NNLOsat]
[Ekström et al. 2015]

○ LECs fitted on A≤25

○ Simultaneous optimisation

○ Non-local 3NF regulator
* With respect to the usual reductionist strategy of ab initio calculations

⦿ NNLOsat considerably improves on the description of nuclear radii

[Somà et al. in preparation]
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Symmetry breaking and restoration

⦿ Variance in particle number as an indicator of symmetry breaking
Variance in particle number

We compute

�A =

q
h ˆA2i � h ˆAi2 . (1)

We have

ˆA =

X

a

c†aca , (2)

ˆA2
=

X

ab

c†acac
†
bcb

=

X

ab

c†a(�ab � c†bca)cb

=

ˆA�
X

ab

c†ac
†
bcacb

=

ˆA�
X

abcd

c†ac
†
bcdcc �ad �bc

=

ˆA+

X

abcd

c†ac
†
bcdcc �ac �bd

=

ˆA+

1

4

X

abcd

2 (�ac �bd � �ad �bc) c
†
ac

†
bcdcc

=

ˆA+

1

4

X

abcd

s̄abcd c
†
ac

†
bcdcc (3)

with

s̄abcd ⌘ 2 (�ac �bd � �ad �bc) = (ab| ˆS|cd� dc) = hab| ˆS|cdi , (4)

ˆS ⌘ ˆA2 � ˆA . (5)

In general (Eq. C25 of paper I)

¯Vabcd =

X

JM

p
1 + �↵� �nanb

p
1 + ��� �ncnd C

JM
jamajbmb

CJM
jcmcjdmd

¯V J [↵���]
nanbncnd

(6)

and the code needs properly antisymmetrized, normalised, J-coupled interaction matrix elements. Therefore

s̄JMJ 0M 0 [↵���]
nanbncnd

=

X

mambmcmd

1p
1 + �↵� �nanb

1p
1 + ��� �ncnd

CJM
jamajbmb

CJ 0M 0

jcmcjdmd
s̄abcd

=

X

mamd

1p
1 + �↵� �nanb

1p
1 + ��� �ncnd

CJM
jamajdmd

CJ 0M 0

jamajdmd
2 �ac �bd

�
X

mamc

1p
1 + �↵� �nanb

1p
1 + ��� �ncnd

CJM
jamajcmc

CJ 0M 0

jcmcjama
2 �ad �bc

=

1p
1 + �↵� �nanb

1p
1 + ��� �ncnd

2

⇥
�ac �bd � (�1)

ja+jc�J �ad �bc
⇤

(7)

In conclusion

s̄J [↵���]
nanbncnd

=

1p
1 + �↵� �nanb

1p
1 + ��� �ncnd

2

⇥
�ac �bd � (�1)

ja+jc�J �ad �bc
⇤

(8)

and

�A =

q
h ˆSi+ h ˆAi � h ˆAi2 . (9)
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➟ Only concerns neutron number
➟ Decreases as many-body order increases

⦿ Eventually, symmetries need to be restored

⦿ Only recently the formalism was developed for MBPT and CC

[Duguet 2014]

⦿ Symmetry-restored Gorkov GF formalism still to be developed

○ Case of SU(2)

○ Case of U(1) [Duguet & Signoracci 2016]



Plan of the lectures

5. Three-body forces

6. Green’s functions for open-shell nuclei

○ Degenerate systems and symmetry breaking

○ Gorkov theory

7. Public Green’s function code

○ Examples of results in open-shell nuclei

8. Extras



BoccaDorata code

⦿ A public version of a GF code implemented for finite nuclei is publicly available at

http://personal.ph.surrey.ac.uk/~cb0023/bcdor/bcdor/Comp_Many-Body_Phys.html

http://personal.ph.surrey.ac.uk/~cb0023/bcdor/bcdor/Comp_Many-Body_Phys.html


BoccaDorata code

⦿ Public version of the code includes up to 2nd-order self-energy and handles two-body interactions

○ ADC(3) (and more, in fact) self-energy

⦿ Extensions (non-public):
✓ Main developer: C. Barbieri  (Surrey)

✓ Other developers: !!
! ! A. Cipollone  (Surrey/Bologna)!
! ! V. Somà  (Saclay)○ Treatment of three-body interactions

○ Gorkov scheme (for open-shells)

⦿ Self-consistent Green’s function code for finite systems

✓ The name Bocca Dorata comes from a Brazilian priestess !
           in the comic series Corto Maltese by Hugo Pratt

⦿ Bonus (also in the public version):

○ MBPT(2)
○ Coupled-cluster doubles



Data types

1. Model space

2. One-body propagator

4. (Two-body) interaction

○ Defines the set of (HO) basis states that enter the calculation
○ Serves as reference for other data types

○ Can be generated within the code or read from file

○ Central object on which most operation are performed

○ Can be generated within the code or read from file

○ Needs to be generated externally (but can be manipulated in BoccaDorata)

3. Self-energy

○ Mainly used to build Dyson matrix (final eigenvalue problem)

○ Can be generated within the code or read from file

⦿ BoccaDorata builds on 4 main data types (C++ classes)



General structure

⦿ Needed objects are loaded/initialised

⦿ (If it’s a 2nd-order calculation) dimensions of self-energy/propagator arrays are estimated

⦿ Iterations start
➟ Loop over partial waves starts

➟ HF self-energy is computed
➟ Kinetic energy is added

➟ (If it’s a 2nd-order calculation) dynamic self-energy is computed/read from file

➟ Dyson matrix is built and diagonalised
➟ (If it’s a 2nd-order calculation) Lanczos algorithm is run

➟ Partial wave contributions to N, Z and E are computed

➟ Loop over partial waves ends

⦿ Iterations end

➟ Old G is erased, new G will be input for the next iteration

⦿ Final results are written to screen/file



Single-particle propagator

⦿ This is how a one-body propagator looks like

2
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