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independent of c.m. coordinate (Intrinsic Jacobi coordinates).
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Few-body problem

Few-body problem

Nuclear Shell model - Great success in describing quantum systems
Traditional Hamiltonian with one particle variables cannot represent
the wave function of system in a proper way because of center of
mass motion (not translationally invariant)
Problems with HO basis expansion and convergence (Partially solved
by supercomputing)
Solution: Direct construction of many fermion wave function
independent of c.m. coordinate (Intrinsic Jacobi coordinates).
Topic of Talk: 5HOB - tool for calculation of permutation element
Pn1n for specific binary cluster models
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Antisymmetrization of orbital variables

When trying to ensure Pauli principle, one has to antisymmetrize the
given system.
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Antisymmetrization of orbital variables

When trying to ensure Pauli principle, one has to antisymmetrize the
given system.
Antisymetrizator calculation based on Sn permutation operators
Coupled cluster formalism, ensures that having antisymmetrized
sub-clusters only two particle permutation operator Pn1n is required to
calculate.
Pn1n calculation for binary clusters N = N1 + N2:

System composed of N1 and N2 = 2;First cluster has two intrinsic K
and N − K − 2 particle subclusters
System composed of N1 and N2 = 1 particle clusters;First cluster has
its own clusterization of K and N − K − 1
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General Jacobi tree

General Jacobi tree for N particle system, composed of N1 and 2 particles,
where the first cluster has two intrinsic K and N − K − 2 particle
subclusters
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Example: Five body system

Jacobi tree for N = 5 particle system, composed of N1 = 3 and N2 = 2
particles.
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General Jacobi tree

General Jacobi tree for N particle system, composed of N1 and 1 particles,
where the N1 cluster has two intrinsic K and N − K − 2 particle
subclusters.
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Example: Eight body system

Jacobi tree for N = 8 particle system, composed of N1 = 7 and N2 = 1
particles.

r1 r2 r3 r4 r5 r6 r7 r8

ρ1 ρ2 ρ3

ρ4

ρ5

ρ6

ρ0, ρ7
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Coordinate transformation matrix

The coordinate transformation matrix of four Jacobi coordinates can be
written as a product of five matrices in the following way:

 ρ′
1

ρ′
2

ρ′
3

ρ′
4

 =


√

d1
1+d1

√
1

1+d1
0 0√

1
1+d1

−
√

d1
1+d1

0 0
0 0 1 0
0 0 0 1




1 0 0 0

0
√

d2
1+d2

√
1

1+d2 0

0
√

1
1+d2

−
√

d2
1+d2

0
0 0 0 1



×


1 0 0 0
0 1 0 0

0 0
√

d3
1+d3

√
1

1+d3

0 0
√

1
1+d3

−
√

d3
1+d3




1 0 0 0

0
√

d2
1+d2

√
1

1+d2
0

0
√

1
1+d2

−
√

d2
1+d2

0
0 0 0 1



×


√

d1
1+d1

√
1

1+d1
0 0√

1
1+d1

−
√

d1
1+d1

0 0
0 0 1 0
0 0 0 1


 ρ1

ρ2
ρ3
ρ4

 .

Use of two-body Talmi-Moshinsky transformation
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Factorization of transformation T34(d3)

Middle matrix can be factorized like this:


1 0 0 0
0 1 0 0

0 0
√

d3
1+d3

√
1

1+d3

0 0
√

1
1+d3

−
√

d3
1+d3



=


1 0 0 0
0 1 0 0
0 0

√ x
1+x

√
1

1+x
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√
1

1+x −
√ x

1+x


 1 0 0 0

0 1 0 0
0 0 1 0
0 0 0 −1




1 0 0 0
0 1 0 0
0 0

√ x
1+x

√
1

1+x
0 0

√
1

1+x −
√ x

1+x


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S = T12(d1)T23(d2)T34(x)
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Coordinate transformation can be written in a following way: ρ′

1
ρ′

2
ρ′

3
ρ′

4

 = S

 1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

 ST

 ρ1
ρ2
ρ3
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 .
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Construction of brackets

Basis construction using angular momentum algebra
|((e1l1, e2l2)L12, e3l3)L123, e4l4)L〉
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Construction of brackets

Basis construction using angular momentum algebra
|((e1l1, e2l2)L12, e3l3)L123, e4l4)L〉

Bracket construction as sum through intermediate variables:

〈α|T12(d1)T23(d2)|α′〉
=
∑
β
〈α|T12(d1)|β〉〈β|T23(d2)|α′〉,

where β denotes intermediate states.
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Construction of brackets

Using this technique we can write the five particle wavefunction
transformation M induced by the coordinate transformation S:

〈(((e1l1, e2l2)L12, e3l3)L123, e4l4)L|M|(((e′
1l ′

1, e′
2l ′

2)L′
12, e′

3l ′
3)L′

123, e′
4l ′

4)L′〉 =∑
ε2λ2

〈e1l1, e2l2 : L12
∣∣e′

1l ′
1, ε2λ2 : L12

〉
d1
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∑
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5HOB = MT FM
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Calculation results:

E Dim T (E0) δ(E0) δrel(E0)

0 1 0.0005 0 0
1 4 0.0003 1.1e − 12 2.9e − 13
2 26 0.0009 1.1e − 11 4.2e − 13
3 84 0.013 4.9e − 11 5.9e − 13
4 295 0.038 2.4e − 10 8.2e − 13
5 776 6 9.1e − 10 1.2e − 12
6 2044 111 3.7e − 9 1.8e − 12
7 4616 1270 1.3e − 8 2.8e − 12
8 10234 13646 4.6e − 8 4.5e − 12
9 20640 111897 1.5e − 7 7.5e − 12

Figure: Calculation of 5HOB. Here E means HO energy quanta; Dimension is size
of calculated transformation matrix; Calculation time is presented in seconds.The
error δ(E0) and relative error δrel(E0) for the HO energy E0 for the normalisation
condition of the 5HOB transformation matrix. Calculations were performed with
supercomputer "HPC Sauletekis", using 1 node (12 cores). We used standard
double precision for calculation and library "MPI" for parallelism.
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Conclusions

Conclusions:

Solve center of mass motion problem
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Conclusions

Conclusions:

Solve center of mass motion problem
Intrinsic angular momenta coupling
Achieve lower matrix dimensions

Need to compute Talmi - Moshinsky brackets - computationally
expensive
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Conclusions

Questions?
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