Mean-field Calculations of Hypernuclear Spectra 28th Indian-Summer School of Physics

Jan Pokorný

Czech Technical University in Prague

30 August 2016, Prague

Motivation

Motivation

Why study hypernuclei?

- hypernucleus system of protons, neutrons, and one or more hyperons
- hyperon serves as a deep probe in the nucleus
- study of hypernuclei helps with the understanding of nuclear structure and YN interactions
- hypothetically in dense nuclear matter neutron stars

Production mechanisms of hypernuclei

- strangeness exchange reactions $K^+ + {}^AZ \rightarrow^A_{\Lambda}Z + \pi^+$
- associated production reactions $\pi^+ + {}^A\mathbf{Z} \rightarrow^A_{\Lambda}\mathbf{Z} + K^+$
- electroproduction of hypernuclei $e^- + {}^A{\rm Z} \to e^{-'} + K^+ + {}^A_\Lambda({\rm Z}{-}1)$ Observed hypernuclei
 - $\bullet\,$ about 30 species of single-
 Λ hypernuclei from $^3_{\Lambda}{\rm H}$ to
 $^{208}_{\Lambda}{\rm Bi}$
 - \bullet double-A hypernuclei: ${}^{~~6}_{\Lambda\Lambda} {\rm He},\, {}^{~10}_{\Lambda\Lambda} {\rm Be},\, {\rm and}\, {}^{~13}_{\Lambda\Lambda} {\rm B}$
 - other: only ${}^4_\Sigma {\rm He},$ no evidence of Ξ and Ω hypernuclei

Self-consistent mean-field model

mean-field model: protons, neutrons, and hyperons different particles placed in different potential wells – description of hypernuclei not limited by the number of particles in the system

spherical harmonic oscillator basis – $N_{\rm max},\,\hbar\omega$

Hamiltonian of a single- Λ hypernucleus

 $\widehat{H} = \widehat{T} + \widehat{V}^{\rm NN} + \widehat{V}^{\rm \Lambda N} - \widehat{T}_{\rm CM}$

- nuclear core Hartree-Fock method nuclear mean field realistic NN interaction N²LO_{opt} [1] + density-dependent NN term [2] to mimic NNN interactions
 - Hartree-Fock method mutual interactions between nucleons \Rightarrow mean field
- A interacts with the nuclear mean field through effective YNG AN interaction derived from Nijmegen model ESC08c [3]
- A. Ekström, et al., PRL 110, 192502 (2013).
- [2~] H. Hergert et al., PRC ${\bf 83},\,064317$ (2011).
- $[3\;\;]$ M. Isaka et al., PRC ${\bf 89},\,024310$ (2014).

Model

NN interactions

• N^2LO_{opt} [1] + density-dependent NN term [2]

DDNN term

$$\widehat{V}^{\text{NN,DD}} = \frac{C_{\rho}}{6} (1 + \widehat{P}_{\sigma}) \rho \left(\frac{\vec{r}_1 + \vec{r}_2}{2}\right) \delta(\vec{r}_1 - \vec{r}_2)$$
(2)

• contributes to the HF energy the same as contact three-body NNN interaction

Contact NNN interaction

$$\widehat{V}^{\text{NNN}} = C_{3\text{N}}\delta(\vec{r}_1 - \vec{r}_2)\delta(\vec{r}_2 - \vec{r}_3)$$
(3)

- A. Ekström, et al., PRL 110, 192502 (2013).
- [2] H. Hergert et al., PRC 83, 064317 (2011).

Model

Nuclear density distributions

DDNN term is needed to obtain realistic density distributions

Model

ΛN interaction

• YNG AN interaction derived from the Nijmegen model ESC08c $[1\]$

Central part

$$G(r; k_{\rm F}) = \sum_{i=1}^{3} (a_i + b_i k_{\rm F} + c_i k_{\rm F}^2) \exp\left(-\frac{r^2}{\beta_i^2}\right)$$

 a_i, b_i, c_i parameters which differ with spin and parity channels

• SLS and ALS terms – Scheerbaum approximation

Fermi momentum $k_{\rm F}$ – Thomas-Fermi approximation

$$k_{\rm F} = \left(\frac{3\pi^2}{2}\langle\rho\rangle\right)^{1/3}, \quad \langle\rho\rangle = \int \mathrm{d}^3 r \;\rho_{\rm N}(\vec{r})\rho_{\Lambda}(\vec{r}) \tag{5}$$

M. Isaka et al., PRC 89, 024310 (2014).

Jan Pokorný (CTU)

Mean-field Calculations

(4)

Convergence of the Λ single-particle spectra in ${}^{41}_{\Lambda}$ Ca

states with $\varepsilon^{\Lambda} > 0$ – possible excitations – we do not mention them further; data from BNL (π^+, K^+) [R. E. Chrien, Nucl. Phys. A **478**, 705c (1988)]

Jan Pokorný (CTU)

Mean-field Calculations

Stability of the Λ single-particle spectra in ${}^{41}_{\Lambda}$ Ca

converged bound states stable; data from BNL (π^+, K^+) [R. E. Chrien, Nucl. Phys. A **478**, 705c (1988)]

Dependence of the Λ single-particle spectra in ${}^{41}_{\Lambda}$ Ca on parameters C_{ρ} and $k_{\rm F}$

 C_{ρ} fitted, $k_{\rm F}$ fitted; k_F left from previous calculation; $k_{\rm F}$ fitted to $C_{\rho} = 0$; data from BNL (π^+, K^+) [R. E. Chrien, Nucl. Phys. A **478**, 705c (1988)]

Dependence of the Λ single-particle spectra in $^{17}_{~\Lambda}{\rm O}$ on interactions

computing the Λ single-particle spectra in $^{17}_{~\Lambda}{\rm O}$ with different NN and $\Lambda{\rm N}$ interactions

- new NN interaction CD-Bonn+V_{low-k} with cut-off parameter $\lambda = 2.6 \text{ fm}^{-1} [1] + \text{DDNN term} [2]$
- $\bullet\,$ new YNG AN interaction derived from Nijmegen model ESC08a [3]
- (i.) $N^2LO_{opt} + YNG ESC08c$
- (ii.) $N^2LO_{opt} + YNG ESC08a$
- (iii.) CD-Bonn + YNG ESC08c
- (iv.) CD-Bonn + YNG ESC08a

NN interaction CD-Bonn with λ (+ DDNN term) also gives realistic nuclear density distribution

- [1] R. Machleidt, PRC **63**, 024001 (2001).
- $[2\;\;]$ H. Hergert et al., PRC ${\bf 83},\,064317$ (2011).
- [3] Y. Yamamoto et al., Prog. Theor. Phys. Supp. 185, 72 (2010).

Dependence of the Λ single-particle spectra in $^{17}_{~\Lambda}{\rm O}$ on interactions

data from FINUDA $K^-_{stop}+^A{\rm Z}\to^A_\Lambda{\rm Z}+\pi^-$ [M. Agnello et al., Phys. Lett. B 698, 219 (2011)]

Convergence of the Λ single-particle spectra in $^{209}_{\Lambda}$ Pb

spectrum did not reach convergence, N_{max} is too small; data from KEK (π^+, K^+) [T. Hasegawa et al., Phys. Rev. C 53, 1210 (1996).]

Jan Pokorný (CTU)

Mean-field Calculations

Conclusions and future plans

Conclusions

- we computed Λ single-particle energies in ${}^{41}_{\Lambda}$ Ca, ${}^{17}_{\Lambda}$ O, and ${}^{209}_{\Lambda}$ Pb within the mean-field approach
- convergence and stability of the Λ bound states in ${}^{41}_{\Lambda}$ Ca
- $\bullet\,$ independence of the Λ spectrum in $^{17}_{~\Lambda}{\rm O}$ on the choice of NN and $\Lambda{\rm N}\,$ interactions
- significant dependence of the Λ spectrum in $^{41}_{\Lambda}\mathrm{Ca}$ on C_{ρ} and k_{F}
- convergence of the Λ spectrum not reached in ${}^{209}_{\Lambda}Pb \Rightarrow$ the basis is too small, we would achieve satisfactory results with larger N_{max}

Future plans

- reduce computational complexity \Rightarrow calculations performed in larger basis
- $\bullet\,$ implement other realistic AN interactions $\Rightarrow\, {\rm EFT}$
- incorporate $\Lambda-\Sigma$ mixing and effect of the ΛNN interactions
- study core polarization effects and beyond mean-field calculations
- perform calculations in deformed single-particle basis