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OUTLINE

@ motivation by double beta decay

@ simplistic model and its exact solution

@ standard QRPA solution of the simplistic model
@ nonlinear QRPA solution of the simplistic model

® conclusions
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MOTIVATION
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DOUBLE BETA DECAY

® nuclear matrix element must be calculated from nuclear
structure model
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ORPA FOR DOUBLE BETA DECAY

Quasiparticle Random Phase Approximation
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ORPA DESCRIPTION OF MULTIPHONON STATES

@ we can try to use result of the one-phonon state QRPA

harmonic oscillator approach
it is as good approximation as well HO approximates a given hamiltonian
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NONLINEAR QRPA DESCRIPTION OF
MULTIPHONON STATES

@ our goal is to formulate QRPA system which allows for
simultaneous description of states of multiphonon origin
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@ for that the phonon operator must be nonlinear

QU = xtm AZMt _ym gy |

pn, 12 —

novel approach

nonlinear phonon operators have been used to better describe the same-nucleus
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MODEL
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SCHEMATIC MODEL

exactly solvable model to test quality of our approach

Before formulating the realistic nonlinear QRPA approach we study

@ pn-Lipkin model [Hirsch,Hess,Civitarese 1996]
it has the structure of the realistic hamiltonian
it is defined on a single J-shell with semidegeneracy

Hp =C+ MATA+ )\Z(ATAT + AA)

where

O =Y thtm + Yo, AT = el
m m

satisfying the algebra

(A, AT =1-C/(29Q) [C, AT] = 24T

/
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K/,parametrl'zes partl.cle part1§le mter'actlons A= 20 (W2 +viul) — K (uud + vy
X Parametrizes particle-hole interactions Ao = 20 4 K upvpunvy,
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BOSON MAPPING

Marumori mapping

A, AT =1-C/(2Q2) — [B,B']=1
Hp — Hpy= ) a;B'BY
i+j7<max
@ bosonic model
It is excellent approximation for first 2() eigenstates

already for max = 4,
for moderate values of &', X', Q,

up to quadratic terms
good approximation only for 2 — oo

Hp = (2¢ 4+ M\ )B'B + \o(B'B" + BB)
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SIMPLISTIC MODEL

is in fact equivalent to the Harmonic Oscillator

_ Bi'+B _:B'—-B
q= Vol p=1 Vol
p2 1 2 92 lg,p] =i
Hp = — + —mw~q” 4 const. .
2m 2 H = (26+)\1—2)\2)
mw? = (26 4+ A +2X9)

® it has a text-book solution:

By~ Ey=nE, E=w=/(2c+\)? —4X}
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STANDARD QRPA
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STANDARD QRPA

@ define a linear phonon operator

Ql = x,B"-viB ‘

@ set an Ansatz for the ground state
0) = Ne®P B ) | N2 =1 — 42

@ annihilation condition determines the ground state parameter

1Y,
p— d: —_
@1]0) =0 = 5 X,
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STANDARD QRPA

RPA equation of motion

(5 5% )-2(5 %) (%)

A; = (0|[B,Hg,B']|0) =2e+ Ay, Bi=—{(0|[B,Hg,B]|0) =2\,

@ RPA eq. has an analytic solution

E = \JA B

¥ A+ E L = \/(2€+)\1)2—4)\§
L A+ ER-B L _(e+M)-F
y, - — B4 4o
\/(Al + E)? — B% Exact solution reproduced!
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MULTIPHONON APPROACH

the simplest approach towards higher excited states

1) = Q1 10)
L i
n) = —=Q1" [0)

@ in general, the multiphonon approach leads to equidistant
spectrum

E, — By =nE

® it an exact solution as the Hamiltonian may be rewritten as HO

Hp = EQIQl
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NONLINEAR QRPA
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ORPA FOR THE 2ND EXCITED STATE

@ define a nonlinear phonon operator

Q; = ){vz(B]LBJr —|— 62) — YQ(BB —|— CQ)

@® keep the Ansatz for the ground state

0) = Ne2B' BT |y - N2 = /1 — 442

@ RPA eq. gets little bit more complicated
.AQ BQ X2 _E Z/{z 0 X2
By A Yo )T P00 Uy Yy
A2 = (0| [BB, Hp, B'B'](0) , By = —(0|[BB,Hg, BB]|0) , U = (0|[BB,B'B']|0)

® annihilation condition

QQ‘O)ZO — dg, C9o
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QRPA FOR THE 2ND EXCITED STATE

unexpected solution

@ an analytic solution is available

d . 12 ﬁ . _(2€—|—)\1)—E
> 7 9V x, A)s

()
’ (2d)2 — 1
By = 2/(2c+ A2 — 4N

RPA ground state and exact solution reproduced!
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ORPA FOR THE 3RD EXCITED STATE

‘ Qg = X3(B" + ¢3B") — Y3(B® + ¢3B) ‘

0) = e B12T )

@ follow the same procedure

1.,/Y: 2¢e + M) — E
d3 = — —3 :—( 1) d2=12£ dlz_
2 X3 4A2 2 XQ
3(2d3) _ _(2d3)
“o (2d3)? —1 “ T 2?1

E3 = 3\/(254—)\1)2—4)\%

RPA ground state and exact solution reproduced!
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ORPA FOR EVERY EXCITED STATE

is there a phonon operator for any of excited states?

@ searching for a nonlinear phonon operator

QL:XH(BT”—I—...)Yn(B”—F...)‘

@ and keeping the Ansatz for the ground state

0) = Ne@B BT ) | N2 = /1 — 42
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ORPA FOR EVERY EXCITED STATE

important observation

® remember, the multiphonon approach gives the exact solution!

1 n 1
) = —=Q1" 0= —= = Pll0
© where with
’PJL n;O 1 c=-X1Y7
n=1 n
= B
n=2 +2 | the same operators used in
jg (BT +¢) " definition of phonon operators
"=" (B™ 4 3¢B")
"=t (BM +6cB™? 4 3¢?)
"= (B +10¢B™ + 1562 BY)
"=0 (B 4 15¢B™ + 45¢* BY? 1 15¢°)
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ORPA FOR EVERY EXCITED STATE

is there a phonon operator for any of excited states?

@ let‘s define the phonon operators as

QI;, — an;fb — ann

@ where
pio"=0
n;l BT
n=2 (B-l-z +o)
"= (B + 3¢BY)
"=t (BM +6cB™? 4 3¢?)
"= (B 4+ 10cB™ + 15¢2BY)
"=% (B® 4 15¢Bt™ + 45¢2Bf? + 15¢%)
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ORPA FOR EVERY EXCITED STATE

@ let‘s define the phonon operators as

QIL — an;r;, — ann

0) = NeB'BT )

® the same procedure leads to

. 1,/Y,  (264+M)-F
2V X, Ao
(2d)
‘ (2d)2 —1 L

@ interesting relation

i

Y
2d)" = —
X7 (2d) X,
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ORPA FOR EVERY EXCITED STATE

@ analytic expressions for RPA matrix elements is available

(2d) — (2d)?"!

1 — (2d)2"
B (2d)" 1 — (2d)"+!
Bn/Z/{n = 2/\271 1 _ (2d)2n
_ o 1 — (2d)*"
o (1 (2d)2)"

@ and finaly the energy spectrum

E, = n\/(25+)\1)2—4)\% = nkE
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SIMULTANEOUS DESCRIPTION FOR
MORE EXCITED STATES

@ (dim of RPA matrix)/2

# of states described

@ for simultaneous description of more states we need more
forward and backward amplitudes

e.g.
Ql, = X3BP + X, BT —v3B* + V| B

or in general

Nmax

Qoo = D (XiB" —YiB)| |0)

1=1

NedBTBT ‘)

@ it reproduces the correct spectrum of first n,,,x excited states

Ei :Z\/(2€‘|‘)\1)2 _4)\% for 1= 17---;nmax

Indian Summer School 2016, Prague 30.8.2016



CONCLUSIONS
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CONCLUSIONS

@ Our goal is to describe better the nuclear structure related to
double beta decay.

@ Namely, we want to formulate the simultaneous QRPA description of
mother, daughter and transition nuclei states

® We have studied the simplistic model and formulated nonlinear QRPA
for that.

@ In fact we have formulated new QRPA approach to exact solution of
harmonic oscillator.

(might be interesting result per se)

@ We plan to apply the nonlinear phonon definitions onto more
complicated systems.

Hpy, Hp, realistic models

@ The presented results might be a basis for perturbation calculations
within models with perturbative anharmonic interactions.
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DOUBLE BETA DECAY
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NEUTRINOLESS DOUBLE BETA DECAY
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NEUTRINOLESS DOUBLE BETA DECAY

@ The predicted values of half-lifes have big uncertainties mainly
from nuclear matrix elements.
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