Ab initio symplectic no-core configuration
interaction calculations (SpNCCI)
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Challenges in Ab Initio Calculations

Nuclear wavefunction is highly correlated
Lowest energy wavefunction contain highly excited configurations

Harmonic oscillator basis grows very rapidly with increasing Npyax

Construct physically adapted basis with built-in correlations:

symplectic basis
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Why the symplectic basis?

The nuclear potential only strongly couples low Ngx states, but the kinetic energy does
strongly couple configurations at high Nex to low Nex states. To obtain converged
results, the basis must include these high Nex configurations.

Symplectic algebra Sp(3,R) constains the kinetic energy operator. Selecting
basis states by their symplectic irreps preselect these high Nex states
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R. B Baker, Ab initio symplectic-model results for light and
medium-mass nuclei, Progress in ab initio techniques in nuclear
physics, Vancouver, 2016.
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QOutline
Build in correlations using symmetries

SU(3): Linear combination of states with same
particle distribution over major shells

Sp(3,R): Linear combination of states with different
major shell configurations

Carrying out calculations in SpNCCI framework
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SU(3)-NCSM basis 7
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SU(3) symmetry of a nucleus is obtained by:

SU(3) coupling particles within major shells.
Each particle has SU(3) symmetry (N,0)
where N=2n+1.

SU(8) coupling successive shells.

SU(8) coupling protons and neutrons.

References: J. P. Elliott, Proc. Roy. Soc. (London) A 245, 562 (1958). M. Harvey, in
Advances in Nuclear Physics, Volume 1, edited by M. Baranger and E. Vogt (1968),
Annalen der Physik Vol. 1, p. 67.
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SU(3)-NCSM basis: 80
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Elliot SU(3) rotations

SU(3) subgroup of Sp(3,R)

Comx @y CimecLiy

— SU(3) symmetry labeled by (A, )

— Each particle has symmetry (1,0)

— Couple particles to get total symmetry
(11,0) X (112,0) X (13,0) X ... = (4, 1)

SU(3) rotations

(Lu) XS = (L1, Lo, Lg,..} X S — {J1,J2,J5...}
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SU(8) decomposition of NCCI rotation band members
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Sp(3,R) algebra

Sp(3,R) generators

Sp(3,RR) states: |[cvwxLSJM)

20 (20
AG) = 250,00 x ) E)

B&Y = 5 5,0 x b))

Sp(3, R) raising

Sp(3,R) lowering

ChY = V2 Y] x b))

HE” = v35,(b] x b))y

SU(3) generators

HO Hamiltonian

Sp(3,R) D U(3) > SO(3)

o v w K L
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The kinetic energy

Too = 2(2HY - v6ARZ?) - v6B(?))

SU(3) generators

CS\/}U = QomdL2 + V3LimoL 1

o Lowest grade U(3) irrep (LGI),
labels the Sp(3,R) irrep

v Sp(3,R) to U(3) branching multiplicity

w  U(3) symmetry of state in Sp(3,R) irrep
k  U(3) to SO(3) branching multiplicity
L Orbital angular momentum
S Spin U(3) = U(1) ®SU(3)
J  Total angular momentum 0 = No(Ag, i)
W = Ny(Au, fh)

References: D. J. Rowe, Rep. Prog. Phys. 48, 1419 (1985). Y. Suzuki and K. T. Hecht, Nuc. Phys. A 455, 315 (1986).
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Sp(8,R) raising operator

Sp(8,R) raising operator relates states with different number of excited oscillator quanta Nex.
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23 At Nex=0, Sp(3,R) states correspond
to a single configuration, or distribution
over major shells. At higher Ny,
Sp(3,R) states are linear combinations

) of configurations.
0
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Symplectic basis

Symplectic irrep
Start with lowest grade U(3) irrep (LGI)

Repeatedly act on the LGl with the
Sp(3,R) raising operator

Symplectic basis

Select a set of LGI’s and their allowed
spins S by, e.g., taking all LGI's with
oscillator excitations N.x less than some

N()',max

Truncate each Sp(3,R) irrep by total
number of oscillator excitations Npax

A. E. McCoy

wolVex

Sp(3.R) basis
No’,max:O

28th Indian Summer School on Ab Initio Methods in Nuclear Physics

14/21



Basis dimension comparison
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-
LGI's With Ny-max > 0

Not all states with Nex = 2 are not
contained in Ny max = 0 irreps

These states are Ny max = 2 LGl

LGl with N- > 0 may have center of
mass excitation

Very straightforward to identify and
eliminate center of mass excitation

The dimension of the symplectic basis is equal to the dimension of the m-scheme
basis only if the symplectic basis includes all LGl up t0 Ny max = Nmax-
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Basis dimensions with increasing Ny max
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Calculating Hamiltonian matrix elements
In the m-scheme basis:

Hy = (=16, j,...0 ab|H |cd)

iA-2,JA-2 <
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Calculating Hamiltonian matrix elements
In the m-scheme basis:
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Calculating Hamiltonian matrix elements
Expand operators in terms of SU(3) unit tensors
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Matrix element of H in symplectic basis is given by
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Matrix elements of unit tensors in symplectic basis computed recursively
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Constructing the Hamiltonian matrix

Calculating matrix elements:
Expand the LGI’s in the SU(3)-NCSM basis

Calculate SU(3) reduced matrix elements of small set of “unit tensor” operators
between LGl’s

Generated indexed list of state labels |ocvwkLSJ)

Recursively calculate the matrix elements between all other basis states, starting from
these unit tensor reduced matrix elements

Inputs:
Relative matrix elements of the potential (JISP16, chiral, etc.)
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Conclusions

Current status:
Interfacing SpNCCI code with LSU3shell code for LGI matrix elements

Major questions:
What truncation of the basis will bring us closest to converged results?
Truncating by Ny-max and Nmax

Truncate by dominant Sp(3,R) irreps
How is convergence related to interaction?

What can identifying dominant Sp(3,R) symmetries tell us about collective behavior?

Sp(3,R) contains generators of monopole and quadrupole moments and
deformations, orbital angular momentum and quadrupole flow dynamics

Related to rotor-model and giant quadrupole resonance in the large oscillator
quanta limit

Overlap between clusters and symplectic symmetry
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