Ab initio symplectic no-core configuration interaction calculations (SpNCCI)

A. E. McCoy

University of Notre Dame

A. E. McCoy

Challenges in Ab Initio Calculations

- Nuclear wavefunction is highly correlated
- Lowest energy wavefunction contain highly excited configurations
- Harmonic oscillator basis grows very rapidly with increasing N_{max}

Construct physically adapted basis with built-in correlations: symplectic basis

The nuclear potential only strongly couples low N_{ex} states, but the kinetic energy does strongly couple configurations at high N_{ex} to low N_{ex} states. To obtain converged results, the basis must include these high N_{ex} configurations.

Symplectic algebra Sp(3, ℝ) constains the kinetic energy operator. Selecting basis states by their symplectic irreps preselect these high N_{ex} states

The nuclear potential only strongly couples low N_{ex} states, but the kinetic energy does strongly couple configurations at high N_{ex} to low N_{ex} states. To obtain converged results, the basis must include these high N_{ex} configurations.

Sp(3, \mathbb{R}) constains the kinetic energy operator. Selecting basis states by their symplectic irreps preselect these high N_{ex} states

Kinetic energy matrix		

The nuclear potential only strongly couples low N_{ex} states, but the kinetic energy does strongly couple configurations at high N_{ex} to low N_{ex} states. To obtain converged results, the basis must include these high N_{ex} configurations.

Sp(3, \mathbb{R}) constains the kinetic energy operator. Selecting basis states by their symplectic irreps preselect these high N_{ex} states

Kinetic energy matrix			

The nucleus is highly correlated

- ► Sp(3, ℝ) basis has naturally built-in correlations
- Do these correlations better match physical wavefunction?

R. B Baker, Ab initio symplectic-model results for light and medium-mass nuclei, Progress in ab initio techniques in nuclear physics, Vancouver, 2016.

Outline

Build in correlations using symmetries

- SU(3): Linear combination of states with same particle distribution over major shells
- Sp(3,R): Linear combination of states with different major shell configurations

Carrying out calculations in SpNCCI framework

$$\begin{array}{rcl} \mathrm{SU}(3) &\supset & \mathrm{SO}(3) \\ (\lambda,\mu) & \kappa & L \\ & & \otimes &\supset & SU(2) \\ & & & \mathrm{SU}(2) & J \\ & & & S \end{array}$$

- (λ, μ) SU(3) irreducible representation (irrep)
 - κ SU(3) to SO(3) branching multiplicity
 - L Orbital angular momentum

SU(3) symmetry of a nucleus is obtained by:

- 1. SU(3) coupling particles within major shells. Each particle has SU(3) symmetry (N,0)where N = 2n + I.
- 2. SU(3) coupling successive shells.
- 3. SU(3) coupling protons and neutrons.

References: J. P. Elliott, Proc. Roy. Soc. (London) A 245, 562 (1958). M. Harvey, in Advances in Nuclear Physics, Volume 1, edited by M. Baranger and E. Vogt (1968), Annalen der Physik Vol. 1, p. 67.

SU(3)-NCSM basis: ¹⁸O

$$N_{\rm ex} = \sum_i (2n_i + l_i) - N_0$$

Elliot SU(3) rotations

SU(3) subgroup of $Sp(3,\mathbb{R})$

 $C_{2M} \propto Q_{2M}$ $C_{1M} \propto L_{1M}$

- SU(3) symmetry labeled by (λ, μ)
- Each particle has symmetry $(\eta, 0)$
- Couple particles to get total symmetry $(\eta_1, 0) \times (\eta_2, 0) \times (\eta_3, 0) \times ... \rightarrow (\lambda, \mu)$

(0,1) (1,2) (2,0) (3,1) $(\lambda_{\pi},\mu_{\pi}) (\lambda_{\nu},\mu_{\nu})$ 0p 0s 0s

2

1

0

 η

SU(3) rotations

$$(\lambda,\mu) \times S \rightarrow \{L_1, L_2, L_3, ...\} \times S \rightarrow \{J_1, J_2, J_3...\}$$

S=1/2 (3,1)	Ĺ	Aligned	Anti-aligned		
	1	3/2	1/2		
	2	5/2	3/2		
	3	7/2	5/2		
	4	9/2	7/2		

SU(3) decomposition of NCCI rotation band members

Calculated with LSU3shell $N_{\text{max}} = 6$, JISP16

A. E. McCoy

$\mathrm{Sp}(3,\mathbb{R})$ generators				
$A_{LM}^{(20)} = rac{1}{\sqrt{2}} \sum_i (b_i^{\dagger} imes b_i^{\dagger})_{LM}^{(20)}$	$\operatorname{\mathbf{Sp}(3,\mathbb{R})}$ raising			
$B_{LM}^{(02)} = rac{1}{\sqrt{2}} \sum_i (b_i imes b_i)_{LM}^{(02)}$	$\mathrm{Sp}(3,\mathbb{R})$ lowering			
$C_{LM}^{(11)} = \sqrt{2} \sum_i (b_i^{\dagger} imes b_i)_{LM}^{(11)}$	SU(3) generators			
$H_{00}^{(00)} = \sqrt{3} \sum_i (b_i^\dagger imes b_i)_{00}^{(00)}$	HO Hamiltonian			

 $Sp(3,\mathbb{R})$ algebra

The kinetic energy

$$\overline{T_{00} = \frac{1}{2} (2H_{00}^{(0,0)} - \sqrt{6}A_{00}^{(2,0)} - \sqrt{6}B_{00}^{(0,2)})}$$

 $\frac{\text{SU(3) generators}}{C_{LM}^{(1,1)} = Q_{2M}\delta_{L,2}} + \sqrt{3}L_{1M}\delta_{L,1}$

Sp(3,ℝ) s	state	es: σι	νωκ	LSJM>		
$\operatorname{Sp}(3,\mathbb{R})$	\supset	U(3)	\supset	SO(3)		
σ	v	ω	κ	L		
				\otimes	\supset	SU(2)
				SU(2)		J
				S		

- $\sigma \quad \text{Lowest grade U(3) irrep (LGI),} \\ \text{labels the Sp}(3,\mathbb{R}) \text{ irrep}$
- $v \quad \text{Sp}(3,\mathbb{R}) \text{ to } U(3) \text{ branching multiplicity}$
- ω U(3) symmetry of state in Sp(3, \mathbb{R}) irrep
- κ U(3) to SO(3) branching multiplicity
- L Orbital angular momentum
- S Spin
- J Total angular momentum

 $U(3) = U(1) \otimes SU(3)$ $\sigma = N_{\sigma}(\lambda_{\sigma}, \mu_{\sigma})$ $\omega = N_{\omega}(\lambda_{\omega}, \mu_{\omega})$

References: D. J. Rowe, Rep. Prog. Phys. 48, 1419 (1985). Y. Suzuki and K. T. Hecht, Nuc. Phys. A 455, 315 (1986).

A. E. McCoy

$Sp(3,\mathbb{R})$ raising operator

 $Sp(3,\mathbb{R})$ raising operator relates states with different number of excited oscillator quanta N_{ex} .

A. E. McCoy

Symplectic basis

Symplectic irrep

- Start with lowest grade U(3) irrep (LGI)
- ► Repeatedly act on the LGI with the Sp(3, ℝ) raising operator

Symplectic basis

- Select a set of LGI's and their allowed spins S by, e.g., taking all LGI's with oscillator excitations N_{ex} less than some N_{σ,max}
- Truncate each Sp(3, R) irrep by total number of oscillator excitations N_{max}

Basis dimension comparison

28th Indian Summer School on Ab Initio Methods in Nuclear Physics

LGI's with $N_{\sigma,\max} > 0$

- Not all states with N_{ex} = 2 are not contained in N_{σ,max} = 0 irreps
- These states are $N_{\sigma,\max} = 2 \text{ LGI}$
- LGI with N_{\sigma} > 0 may have center of mass excitation
- Very straightforward to identify and eliminate center of mass excitation

► The dimension of the symplectic basis is equal to the dimension of the *m*-scheme basis only if the symplectic basis includes all LGI up to $N_{\sigma,max} = N_{max}$.

28th Indian Summer School on Ab Initio Methods in Nuclear Physics

Basis dimensions with increasing $N_{\sigma,\max}$

28th Indian Summer School on Ab Initio Methods in Nuclear Physics

Calculating Hamiltonian matrix elements

In the *m*-scheme basis:

 $H_{ij}=(-1)^P\delta_{i_1,j_1}...\delta_{i_{A-2},j_{A-2}}\left\langle ab|H|cd\right\rangle$

Calculating Hamiltonian matrix elements

In the *m*-scheme basis:

 $H_{ij} = (-1)^P \delta_{i_1, j_1} \dots \delta_{i_{A-2}, j_{A-2}} \langle ab | H | cd \rangle$

In the $Sp(3,\mathbb{R})$ basis:

28th Indian Summer School on Ab Initio Methods in Nuclear Physics

Calculating Hamiltonian matrix elements

Expand operators in terms of SU(3) unit tensors

$$H^{\omega_0\kappa_0S_0} = \sum_{\substack{\bar{N}\bar{S}\\\bar{N}'\bar{S}'}} \underbrace{\langle (\bar{N}', 0)\bar{S}' || |H^{\omega_0\xi_0S_0} || |(\bar{N}, 0)\bar{S} \rangle}_{\text{Relative matrix element in HO basis}} \mathcal{U}^{\omega_0S_0}(\bar{N}'\bar{S}', \bar{N}\bar{S})$$

Matrix element of H in symplectic basis is given by

$$\langle \sigma' \upsilon' \omega' S' ||| H^{\omega_0 v_0 S_0} ||| \sigma \upsilon \omega S \rangle_{\rho_0} = \sum_{\substack{\tilde{N} \\ \tilde{N} \\ \tilde$$

Matrix elements of unit tensors in symplectic basis computed recursively

A. E. McCoy

Constructing the Hamiltonian matrix

Calculating matrix elements:

- Expand the LGI's in the SU(3)-NCSM basis
- Calculate SU(3) reduced matrix elements of small set of "unit tensor" operators between LGI's
- Generated indexed list of state labels $|\sigma \upsilon \omega \kappa LSJ\rangle$
- Recursively calculate the matrix elements between all other basis states, starting from these unit tensor reduced matrix elements

Inputs:

Relative matrix elements of the potential (JISP16, chiral, etc.)

Conclusions

Current status:

Interfacing SpNCCI code with LSU3shell code for LGI matrix elements

Major questions:

- What truncation of the basis will bring us closest to converged results?
 - Truncating by $N_{\sigma,\max}$ and N_{\max}
 - Truncate by dominant $Sp(3,\mathbb{R})$ irreps
- How is convergence related to interaction?
- ▶ What can identifying dominant $Sp(3, \mathbb{R})$ symmetries tell us about collective behavior?
 - ► Sp(3, ℝ) contains generators of monopole and quadrupole moments and deformations, orbital angular momentum and quadrupole flow dynamics
 - Related to rotor-model and giant quadrupole resonance in the large oscillator quanta limit
 - Overlap between clusters and symplectic symmetry