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Overview

• Application: Back-bending in Band Structure of  
Chromium 48

• Method: Group Decomposition
Advantages

 New bases that can reduce matrix dimension

 Find most important parts of the wavefunction for truncation

 Another method to detect structures like rotational bands

• Results: Rotation Group – L and S separately, SU(3), 
SU(4)



Nuclear Spectra of 48Cr

 On the right our calculated spectra, we identify two bands, red and blue, along the yrast states 

(lowest energy for each I). Linear implies rotational on this scale; do we have two rotational 

bands crossing? This has been explored before*.
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Experimental data (left): Cameron, Phys. Rev. C, 49 (1994), p. 1347

*For example Gao, Horoi, et. al. Phys. Rev. C 83, 057303 (2011)



Spectra of 49Cr and50Cr
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Backbending for Chromium Isotopes

Eɣ = E(I) – E(I-2)

• Is backbending in these isotopes explained by band crossing?



The Nuclear Shell Model

 Hamiltonian

 The shell model allows us a prescription to calculate nuclear 
structure. Chromium 48, 49, 50 lie in the pf shell just above the sd-
shell which amounts to an inert Calcium 40 core. We used the 
GXPF1 interaction*:

𝐻 = 

𝑖

ℇ𝑖 +
1

2


𝑖≠𝑗

𝑉𝑖𝑗

1s

1p

2s, 1d “sd-shell”

2p, 1f “pf-shell”valence

core



To solve we pick a basis, which are tensor products of single 
particle states. Often we truncate to a shell immediately after a 
closed shell nucleus, assuming the core to be inert. Using this we 
create a finite many-body basis, in occupation space, leading to 
the many body matrix Hamiltonian, Hij. Any operator, e.g. a 
Casimir, can be obtatined as well.

Shell Model and Configuration 
Interaction

Ψ =

𝑖

𝑐𝑖| ۧ𝜓𝑖

𝐻i𝑗= Ψ𝑖 𝐻 Ψ𝑗

𝐻i𝑗𝑐𝑗 = 𝐸𝑛𝑐𝑖

𝑂i𝑗= Ψ𝑖 𝑂 Ψ𝑗

𝑂i𝑗𝑐𝑗 = 𝑜𝑛 𝑐𝑖

𝜓𝑖 =ෑ

𝑘=1

𝐴

𝑐𝑘
†| ۧ0

𝜓𝑖 = ۧ|𝑛 ⊗ ۧ|𝑛 ⊗ . . .⊗ ۧ|𝑛

𝑛 = 0 𝑜𝑟 1



 Dynamical symmetries of a system are analyzed using Group 
Theory and Lie (Continuous) Algebras. A group, 𝒢, in QM are 
basically sets of operators (e.g. matrices) that are closed under 
the group operation (e.g. matrix multiplication) and contain an 
identity operator. 

 A Lie algebra, 𝒜, is a vector space (include addition) of 
operators along with commutation, where certain members 
“generators” follows certain commutation relations.

Groups and Algebras

𝐴 ⋅ 𝐵 = 𝐶,𝑤ℎ𝑒𝑟𝑒 𝐴, 𝐵, 𝐶 ∈ 𝒢

𝐴, 𝐵 = 𝐶,𝑤ℎ𝑒𝑟𝑒 𝐴, 𝐵, 𝐶 ∈ 𝒜

𝐽𝑖 , 𝐽𝑗 = 𝜖𝑖𝑗𝑘 𝐽𝐾 , 𝑓𝑜𝑟 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟𝑠 𝑖𝑛 𝑎𝑙𝑔𝑒𝑏𝑟𝑎 𝑜𝑓 𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛 𝑔𝑟𝑜𝑢𝑝 𝑆𝑂(3)



Symmetries and Operators

 Important elements in a Lie Algebra are Casimirs, which 

commute with all other elements. For example, Ԧ𝐽 2 a rotation 

group Casimir operator, and 𝐽𝑧, a group generator, where Ԧ𝐽 is 
total angular momentum:

 𝑅 𝛼, 𝛽, 𝛾 is a rotation a operator, a representation of an 
element in the rotation group, also denoted SO(3). Take around 
the z axis:

Ԧ𝐽 = 𝐿 + Ԧ𝑆 and Ԧ𝐽 2, 𝐽𝑧 = 0

𝑅 𝛼, 𝛽, 𝛾 = 𝑒−𝑖𝐽𝑧𝛼/ℏ𝑒−𝑖𝐽𝑦𝛽/ℏ𝑒−𝑖𝐽𝑧𝛾/ℏ ⟶ 𝑅 𝜙 = 𝑒−𝑖𝐽𝑧𝜙/ℏ

𝑅 𝜙 𝜓(𝛼, 𝛽, 𝛾)= 𝜓(𝛼 + 𝜙, 𝛽, 𝛾)

*Note: Notational difference here, but J=I in graphs pulled from our paper.



Symmetries and Conservation

 If there is a dynamical symmetry the Casimir will commute with 
the Hamiltonian, resulting in simultaneous eigenvectors.

 The operators will decompose into diagonal or block diagonal 
form with closed subspaces called irreducible representations, 
labelled by a quantum number (here j and size 2j+1). For 
example, the Wigner D-matrix, a representation of a rotation:

𝐻, Ԧ𝐽 2 = 0, 𝐻, 𝐽𝑧 = 0 giving

𝐻𝜈𝑗 = 𝜀𝑗𝜈𝑗 𝐽 2𝜈𝑗 = 𝑗(𝑗 + 1)𝜈𝑗 𝐽𝑧𝜈𝑗 = 𝑚𝜈𝑗

𝑅 𝛼, 𝛽, 𝛾 | ۧ𝑗𝑚 = 

𝑚𝑚′

𝔇(𝑅)𝑚𝑚′
(𝑗)

| ۧ𝑗𝑚′
𝔇𝑚𝑚′
𝑗

=

𝔇00
0 0 0 0 0 0 ⋯

0 𝔇−1−1
1 𝔇−1 0

1 𝔇−1 1
1 0 0 ⋯

0 𝔇 0−1
1 𝔇 0 0

1 𝔇 0 1
1 0 0 ⋯

0 𝔇 1−1
1 𝔇 1 0

1 𝔇 1 1
1 0 0 ⋯

0 0 0 0 𝔇−2−2
2 𝔇−2−1

2 ⋯

0 0 0 0 𝔇−1−2
2 𝔇−1−1

2 ⋯
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱



Strength Functions

 The BIGSTICK code* has a built in function that uses Lanczos
algorithm to quickly calculate operator matrix elements or 
strengths.

 We used it to decompose eigenstates of the nuclear 
Hamiltonian for a Casimir 𝒞 into the irreducible representations, 
𝒞𝑛, of the group.

c(𝒞𝑛)
2 = 𝒞𝑛 𝜓1

2ۧ|𝜓1 =

𝑛

𝑐(𝒞𝑛) ۧ|𝒞𝑛

*Johnson et. al., Computer Physics Communications 184, p 2761 (2013)



Dynamical Symmetry

 If a dynamical symmetry we get an eigenstate of a Casimir, (left). Otherwise 
we get fragmentation (right).
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Quasi-Dynamical Symmetry

• If the fragmented distributions persists (perhaps in a rotational 
band), this is a signature of quasi-dynamical symmetry*

*D. J. Rowe, Nucl. Phys. A 745 47



Casimir Operators (Some groups have multiple):

• Rotation Group for Orbital Motion

 𝐿2

• Rotation Group for Spin

 Ԧ𝑆2

• Elliot SU(3) Fermion Collective Motion Model


1

4
(𝑄 ⋅ 𝑄 + 3𝐿2)

• SU(4) Wigner Spin-Isospin

 Ԧ𝑆2 + 𝑇2 + Ԧ𝑆2𝑇2

• 𝒬, T are Quadrupole and Iso-spin operators, respectively

Symmetry Groups Analyzed

𝒬𝑚 =
4𝜋

5

𝑟2

𝑏2
+ 𝑏2𝑝2 𝑌2𝑚(𝜃, 𝜙)



Results for Chromium L and S of 48Cr
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Results for Chromium SU(3) of 48Cr

SU(3) Casimir Eigenvalue
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Results for Chromium SU(4) of 48Cr
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Results (Summary)

 In Chromium 48 we see two different bands crossing, 

similar results for 49, 50, could explain backbending

 Yrast state J=10 in Chromium 48 not in either band

 Both bands show quasi-dynamical symmetry

 Lower yrast band shows stronger coherence in SU(3) 

compared to the upper band



Current and Future Directions

 Analyzing symmetries of lighter nuclides and ab initio 
interactions

 Testing other symmetries, like isospin (proton versus neutron 
decompositions)
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