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Overview

* Application: Back-bending in Band Structure of
Chromium 48

* Method: Group Decomposition
Advantages
v New bases that can reduce matrix dimension
v Find most important parts of the wavefunction for truncation
v' Another method to detect structures like rotational bands

* Results: Rotation Group — L and S separately, SU(3),
SU(4)



Nuclear Spectra of 48Cr

« On the right our calculated spectra, we identify two bands, red and blue, along the yrast states
(lowest energy for each I). Linear implies rotational on this scale; do we have two rotational
bands crossing? This has been explored before*.

T \ \
3445, 6* = = - e
Bz
< ] = - -
2 15} =z - .
3 P s = 4
<] H E = -
1858, 4+  Zu 28 7. .
S -z B -
g | __._sz=4 4
o "—=_=--
752,2¢  GeETL e :
, i O
O
O O+ OH\.‘\ A R R BN ‘ | ‘ |
’ 024 6 8 10 12 14 16 18

+Scale is as I(1+1)

Experimental data (left): Cameron, Phys. Rev. C, 49 (1994), p. 1347
*For example Gao, Horol, et. al. Phys. Rev. C 83, 057303 (2011)



Spectra of 4°Cr and~°Cr
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Backbending for Chromium Isotopes
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Angular momentum I

E, = E(I) - E(I-2)

* |Is backbending in these isotopes explained by band crossing?



The Nuclear Shell Model

« Hamiltonian

1
H: ZEL‘FEZVLJ
l

e

. The shell model allows us a prescription to calculate nuclear
structure. Chromium 48, 49, 50 lie in the pf shell just above the sd-
shell which amounts to an inert Calcium 40 core. We used the

GXPF1 interaction*:

valence 2p, 1f “pf-shell”
___________ 2s, 1d “sd-shell”
core 1p

1s



Shell Model and Configuration
Interaction

To solve we pick a basis, which are tensor products of single
particle states. Often we truncate to a shell iImmediately after a
closed shell nucleus, assuming the core to be inert. Using this we
create a finite many-body basis, in occupation space, leading to
the many body matrix Hamiltonian, H;. Any operator, e.g. a
Casimir, can be obtatined as well.

¢i=]i[c,1|o> W=Zci|¢i>

k=1

pi= QI Q..Q n) Hij= (¥i|H|¥))
n=0or1 Hijc; = Enc;
0i;= (¥i|0|W))

Oijcj = 0, C;



Groups and Algebras

« Dynamical symmetries of a system are analyzed using Group

Theory and Lie (Continuous) Algebras. A group, G, in QM are
basically sets of operators (e.g. matrices) that are closed under
the group operation (e.g. matrix multiplication) and contain an

identity operator.
A-B=C,whereA,B,C €§G

« AlLie algebra, A, is a vector space (include addition) of
operators along with commutation, where certain members
“generators” follows certain commutation relations.

[4,B] = C,where A,B,C € A

[]i,]j] = €ijk Jx, for generators in algebra of rotation group SO(3)



Symmetries and Operators

. Important elements in a Lie Algebra are Casimirs, which
commute with all other elements. For example, J ? a rotation

group Casimir operator, and J,, a group generator, where J is
total angular momentum:

J=L+S and [fz,]zl=0

« R(a,B,v) is arotation a operator, a representation of an
element in the rotation group, also denoted SO(3). Take around

the z axis:

R(a, B,y) = e~ Uza/hg=UyB/hg—i]zv/h _ R(¢p) = e Hzb/h
R(P)Y(a,B,v)=y(a+ ¢,B,v)

*Note: Notational difference here, but J=I in graphs pulled from our paper.



Symmetries and Conservation

. If there is a dynamical symmetry the Casimir will commute with
the Hamiltonian, resulting in simultaneous eigenvectors.

|17 = 0, [H,,1 = 0 giving
Hv; = &v; _jzvj =jG+ Dv; Jv; = my;

. The operators will decompose into diagonal or block diagonal
form with closed subspaces called irreducible representations,
labelled by a quantum number (here j and size 2j+1). For
example, the Wigner D-matrix, a representation of a rotation:

D%, 0 0 0 0 0
0 @11_1 @110 91;11 O O
. j . 1 1 1
R@py)lim) = ) D®Dylm) o, |0 Db Do Dby 00
mms mmr =1 0 B34 Dio Dig 0 0
0 0 0 0 D3, DI, -
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Strength Functions

« The BIGSTICK code* has a built in function that uses Lanczos
algorithm to quickly calculate operator matrix elements or
strengths.

« We used it to decompose eigenstates of the nuclear

Hamiltonian for a Casimir C into the irreducible representations,
C,,, of the group.

1) = ) c(Ca) IC) CCI = KCalpp)I?

n

*Johnson et. al., Computer Physics Communications 184, p 2761 (2013)



Dynamical Symmetry

. If a dynamical symmetry we get an eigenstate of a Casimir, (left). Otherwise
we get fragmentation (right).
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Quasi-Dynamical Symmetry

* |f the fragmented distributions persists (perhaps in a rotational
band), this is a signature of quasi-dynamical symmetry*
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*D. J. Rowe, Nucl. Phys. A 745 47



Symmetry Groups Analyzed

Casimir Operators (Some groups have multiple):
» Rotation Group for Orbital Motion
a2

Rotation Group for Spin
. G2

Elliot SU(3) Fermion Collective Motion Model
* (@0 +30Y

SU(4) Wigner Spin-Isospin
" §2 4 T2 4 5272

Q, T are Quadrupole and Iso-spin operators, respectively

41t (12
O = J;@M%Z)me, ®)




Results for Chromium L and S of 48Cr
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Results for Chromium SU(3) of 48Cr
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Results for Chromium SU(4) of “48Cr
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Results (Summary)

In Chromium 48 we see two different bands crossing,
similar results for 49, 50, could explain backbending

Yrast state J=10 in Chromium 48 not in either band
Both bands show quasi-dynamical symmetry

Lower yrast band shows stronger coherence in SU(3)
compared to the upper band



Current and Future Directions

« Analyzing symmetries of lighter nuclides and ab initio
Interactions

« Testing other symmetries, like isospin (proton versus neutron
decompositions)
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