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Overview

• Application: Back-bending in Band Structure of  
Chromium 48

• Method: Group Decomposition
Advantages

 New bases that can reduce matrix dimension

 Find most important parts of the wavefunction for truncation

 Another method to detect structures like rotational bands

• Results: Rotation Group – L and S separately, SU(3), 
SU(4)



Nuclear Spectra of 48Cr

 On the right our calculated spectra, we identify two bands, red and blue, along the yrast states 

(lowest energy for each I). Linear implies rotational on this scale; do we have two rotational 

bands crossing? This has been explored before*.
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Experimental data (left): Cameron, Phys. Rev. C, 49 (1994), p. 1347

*For example Gao, Horoi, et. al. Phys. Rev. C 83, 057303 (2011)



Spectra of 49Cr and50Cr
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Backbending for Chromium Isotopes

Eɣ = E(I) – E(I-2)

• Is backbending in these isotopes explained by band crossing?



The Nuclear Shell Model

 Hamiltonian

 The shell model allows us a prescription to calculate nuclear 
structure. Chromium 48, 49, 50 lie in the pf shell just above the sd-
shell which amounts to an inert Calcium 40 core. We used the 
GXPF1 interaction*:

𝐻 = ෍

𝑖
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෍
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core



To solve we pick a basis, which are tensor products of single 
particle states. Often we truncate to a shell immediately after a 
closed shell nucleus, assuming the core to be inert. Using this we 
create a finite many-body basis, in occupation space, leading to 
the many body matrix Hamiltonian, Hij. Any operator, e.g. a 
Casimir, can be obtatined as well.

Shell Model and Configuration 
Interaction

Ψ =෍
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𝐻i𝑗𝑐𝑗 = 𝐸𝑛𝑐𝑖
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 Dynamical symmetries of a system are analyzed using Group 
Theory and Lie (Continuous) Algebras. A group, 𝒢, in QM are 
basically sets of operators (e.g. matrices) that are closed under 
the group operation (e.g. matrix multiplication) and contain an 
identity operator. 

 A Lie algebra, 𝒜, is a vector space (include addition) of 
operators along with commutation, where certain members 
“generators” follows certain commutation relations.

Groups and Algebras

𝐴 ⋅ 𝐵 = 𝐶,𝑤ℎ𝑒𝑟𝑒 𝐴, 𝐵, 𝐶 ∈ 𝒢

𝐴, 𝐵 = 𝐶,𝑤ℎ𝑒𝑟𝑒 𝐴, 𝐵, 𝐶 ∈ 𝒜

𝐽𝑖 , 𝐽𝑗 = 𝜖𝑖𝑗𝑘 𝐽𝐾 , 𝑓𝑜𝑟 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟𝑠 𝑖𝑛 𝑎𝑙𝑔𝑒𝑏𝑟𝑎 𝑜𝑓 𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛 𝑔𝑟𝑜𝑢𝑝 𝑆𝑂(3)



Symmetries and Operators

 Important elements in a Lie Algebra are Casimirs, which 

commute with all other elements. For example, Ԧ𝐽 2 a rotation 

group Casimir operator, and 𝐽𝑧, a group generator, where Ԧ𝐽 is 
total angular momentum:

 𝑅 𝛼, 𝛽, 𝛾 is a rotation a operator, a representation of an 
element in the rotation group, also denoted SO(3). Take around 
the z axis:

Ԧ𝐽 = 𝐿 + Ԧ𝑆 and Ԧ𝐽 2, 𝐽𝑧 = 0

𝑅 𝛼, 𝛽, 𝛾 = 𝑒−𝑖𝐽𝑧𝛼/ℏ𝑒−𝑖𝐽𝑦𝛽/ℏ𝑒−𝑖𝐽𝑧𝛾/ℏ ⟶ 𝑅 𝜙 = 𝑒−𝑖𝐽𝑧𝜙/ℏ

𝑅 𝜙 𝜓(𝛼, 𝛽, 𝛾)= 𝜓(𝛼 + 𝜙, 𝛽, 𝛾)

*Note: Notational difference here, but J=I in graphs pulled from our paper.



Symmetries and Conservation

 If there is a dynamical symmetry the Casimir will commute with 
the Hamiltonian, resulting in simultaneous eigenvectors.

 The operators will decompose into diagonal or block diagonal 
form with closed subspaces called irreducible representations, 
labelled by a quantum number (here j and size 2j+1). For 
example, the Wigner D-matrix, a representation of a rotation:

𝐻, Ԧ𝐽 2 = 0, 𝐻, 𝐽𝑧 = 0 giving

𝐻𝜈𝑗 = 𝜀𝑗𝜈𝑗 𝐽 2𝜈𝑗 = 𝑗(𝑗 + 1)𝜈𝑗 𝐽𝑧𝜈𝑗 = 𝑚𝜈𝑗

𝑅 𝛼, 𝛽, 𝛾 | ۧ𝑗𝑚 = ෍

𝑚𝑚′

𝔇(𝑅)𝑚𝑚′
(𝑗)

| ۧ𝑗𝑚′
𝔇𝑚𝑚′
𝑗

=

𝔇00
0 0 0 0 0 0 ⋯

0 𝔇−1−1
1 𝔇−1 0

1 𝔇−1 1
1 0 0 ⋯

0 𝔇 0−1
1 𝔇 0 0

1 𝔇 0 1
1 0 0 ⋯

0 𝔇 1−1
1 𝔇 1 0

1 𝔇 1 1
1 0 0 ⋯

0 0 0 0 𝔇−2−2
2 𝔇−2−1

2 ⋯

0 0 0 0 𝔇−1−2
2 𝔇−1−1

2 ⋯
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱



Strength Functions

 The BIGSTICK code* has a built in function that uses Lanczos
algorithm to quickly calculate operator matrix elements or 
strengths.

 We used it to decompose eigenstates of the nuclear 
Hamiltonian for a Casimir 𝒞 into the irreducible representations, 
𝒞𝑛, of the group.

c(𝒞𝑛)
2 = 𝒞𝑛 𝜓1

2ۧ|𝜓1 =෍

𝑛

𝑐(𝒞𝑛) ۧ|𝒞𝑛

*Johnson et. al., Computer Physics Communications 184, p 2761 (2013)



Dynamical Symmetry

 If a dynamical symmetry we get an eigenstate of a Casimir, (left). Otherwise 
we get fragmentation (right).
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Quasi-Dynamical Symmetry

• If the fragmented distributions persists (perhaps in a rotational 
band), this is a signature of quasi-dynamical symmetry*

*D. J. Rowe, Nucl. Phys. A 745 47



Casimir Operators (Some groups have multiple):

• Rotation Group for Orbital Motion

 𝐿2

• Rotation Group for Spin

 Ԧ𝑆2

• Elliot SU(3) Fermion Collective Motion Model


1

4
(𝑄 ⋅ 𝑄 + 3𝐿2)

• SU(4) Wigner Spin-Isospin

 Ԧ𝑆2 + 𝑇2 + Ԧ𝑆2𝑇2

• 𝒬, T are Quadrupole and Iso-spin operators, respectively

Symmetry Groups Analyzed

𝒬𝑚 =
4𝜋

5

𝑟2

𝑏2
+ 𝑏2𝑝2 𝑌2𝑚(𝜃, 𝜙)



Results for Chromium L and S of 48Cr
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Results for Chromium SU(3) of 48Cr

SU(3) Casimir Eigenvalue

F
ra

ct
io

n
 o

f 
W

av
ef

u
n

ct
io

n

0

0.1

0.2

0

0.1

0

0.1

0

0.1

0 100 200 300
0

0.1

0 100 200 300 400

I=0

I=2

I=4

I=6

I=8

I=10

I=18

I=12

I=14

I=16



Results for Chromium SU(4) of 48Cr
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Results (Summary)

 In Chromium 48 we see two different bands crossing, 

similar results for 49, 50, could explain backbending

 Yrast state J=10 in Chromium 48 not in either band

 Both bands show quasi-dynamical symmetry

 Lower yrast band shows stronger coherence in SU(3) 

compared to the upper band



Current and Future Directions

 Analyzing symmetries of lighter nuclides and ab initio 
interactions

 Testing other symmetries, like isospin (proton versus neutron 
decompositions)
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