Structure Of Be-9-Lambda With $\alpha\alpha\Lambda$ Three-Body Model

Jehee Lee

Tokyo Institute of Technology / RIKEN

28Th Indian-Summer School Of Physics, Ab Initio Methods In Nuclear Physics Aug.29- Sept.2, 2016, Prague, Czech Republic

Hypernuclei

- Hypernuclei = Nuclei + Hyperon
- Hyperon is baryon with one or more strangeness quarks.

In 1952, M. Danysz and J. Pniewski first discovered it.

K + (nucleus) $\rightarrow \pi$ + (hypernucleus)

Hypernuclei $J^P=1/2^+$ Baryon octet in SU(3) Σ (0) Σ (0) Σ (1) (2) (3)(3

Name	Quark content	Mass [MeV]	$I(J^P)$	S	commonly decay to
Λ^0	uds	1115.683	$0(\frac{1}{2}^+)$	-1	$p^+ + \pi^- \text{ or } n^0 + \pi^0$
Σ^0	uds	1192.642	$1(\frac{1}{2}^+)$	-1	$\Lambda^0 + \gamma$

WHY DO WE STUDY HYPERNUCLEAR PHYSICS?

- Information on the hyperon-nucleon(YN) interaction is limited.
- By studying hypernuclear, we can understand hyperonnucleon (YN) and hyperon-hyperon (YY) interactions.

- There is lack of experimental data on Λ hypenuclei.
- There are various experimental programs at J-PARC to measure properties of hypernuclei (E22).

- It is one way to calculate few-body problems.
- This method is introduced by M.Kamimura in 1988.

Advantages...

- The Gaussian basis function is suitable for the calculation of the matrix elements.
- It can calculate bound state of the energy very accurately.
- Also, it can calculate it with short computing time.
- It can describe the wave function very precisely.

M. Kamimura, Phys. Rev. A 38, 2, (1988) E. Hiyama, Y. Kino, M. Kamimura, Prog. Part, Nucl, Phys. 51, 223, (2003)

- We assume that objects are hadrons such as baryons and mesons.
- Our aim is calculating of Schrödinger equation accurately.

$\hat{H}\Psi = E\Psi$

$$\Psi_{lm}(\vec{r}) = \sum_{n=1}^{n_{max}} c_n \phi_{nlm}(\vec{r}) \qquad \Rightarrow \text{Wave function}$$
$$\phi_{nlm}(\vec{r}) = N_{nl} r^l e^{-\nu_n r^2} Y_{lm}(\hat{r}) \qquad \Rightarrow \text{Gaussian basis function}$$

In the Gaussian basis function,

$$\phi_{nlm}(\vec{r}) = N_{nl}r^l e^{-\nu_n r^2} Y_{lm}(\hat{r})$$

 N_{nl} is the normalization constant from $\langle \phi_{nlm} | \phi_{nlm} \rangle = 1$

The Gaussian size parameter v_n

$$\nu_n = \left(\frac{1}{r_n}\right)^2$$
$$r_n = r_1 a^{n-1}$$

Free parameters: *n*, *r*₁, *a*

By employing the Rayleigh-Ritz variational method, we can get the accuracy solutions of the Schrödinger equation.

$$\sum_{n'=1}^{n_{max}} \left[(T_{nn'} + V_{nn'}) - EN_{nn'} \right] \underbrace{c_{n'l}}_{\text{Coefficient}} = 0$$
Coefficient
Eigen energy

${}^{9}_{\Lambda}$ Be with $\alpha\alpha\Lambda$ Model

We consider ${}^{9}\Lambda$ Be employing the $\alpha\alpha\Lambda$ 3-body model.

→ The cluster-model aspects composing the light P-shell hypernuclei.

α cluster model

• Considering average potential of ΛN potential $\frac{1}{4} \sum_{i}^{4} V_{\Lambda N}(i)$.

$\alpha \alpha \Lambda$ Model

	Mass [MeV]	Spin
$\alpha = 2p + 2n$	3755.68	0
Λ	1115	1/2

- Spin-spin part of the Λ N interaction vanishes.
- Tensor term dose not work.

\rightarrow Due to the α -cluster model.

Spin-orbit term can be negligible in the ground state.
 Due to the 1/2 spin of Λ particle

\Rightarrow Spin-independent of the $\Lambda \alpha$ interaction.

$\alpha\alpha\Lambda$ Model

- We introduce Jacobi coordinate.
- We can write down the potential energy simply.
- It is easy to calculate the matrix elements.

$\alpha\alpha\Lambda \text{ Model}$

Wave functions

$$\phi_{nlm}(\vec{r}) = N_{nl}r^l e^{-\nu_n r^2} Y_{lm}(\hat{r})$$

$$\varphi_{NLM}(\vec{R}) = N_{NL}R^L e^{-\lambda_N R^2} Y_{LM}(\hat{R})$$

$$r_n = r_1 a_r^{n-1} (n = 1, \dots, n_{\max})$$

$$R_N = R_1 A_R^{N-1} (N = 1, \dots, N_{\max})$$

Free parameters: n, r_1, a, N, R_1, A or $n, r_1, r_{max}, N, R_1, R_{max}$

$\alpha \Lambda$ Model

- In the channel 3.
- We calculate $\alpha \wedge$ model and $\alpha \alpha$ model, respectively.

Potential energy

$$V_{\Lambda\alpha} = 4\sum_{i} V_D^i \left(\frac{8\nu_n}{8\nu_n + 3\eta_i}\right)^{3/2} \exp\left[-\frac{8\nu_n\eta_i}{8\nu_n + 3\eta_i}r^2\right]$$

$$egin{aligned} &
u_D^i = rac{(
u_{0,even} +
u_{0,odd})}{2}, &
u_N = rac{1}{2b_N^2}, &
\eta_i = rac{1}{eta_i^2} \ &
b_N = 1.358 \ \mathrm{fm}, &
u_{\Lambda N} = -38.19 \ \mathrm{MeV}, &
eta_1 = eta_{\Lambda N} = 1.034 \ \mathrm{fm}. \end{aligned}$$

E. Hiyama, M. Kamimura, T. Motoba, T. Yamada and Y. Yamamoto, Prog. Theor. Phys. 97, 881 (1997).T. Motoba, H. Bando, K. Ikeda, and T. Yamada, Prog. Theor. Phys. (1985).S. Ali, A.R. Bodmer, Nucl. Phys. 80, 99 (1966).

$\alpha \Lambda \text{ MODEL}$

By applying the GEM, we can obtain the eigenvalue.

$n_{ m max}$	r_1 [fm]	$r_{\rm max}$ [fm]	B [MeV]	$\sqrt{\langle r^2 \rangle_{\Lambda - \alpha}}$ [fm]
15	0.1	10	-3.119	2.75
	$B^{ m e}_{\Lambda}$	^{xp} = 3.12 N	ЛeV	

$\alpha \alpha$ Model

- We calculate $\alpha \alpha$ model as a two-body problem.
- In this system, there is not only Ali-Bodmer potential with two range gaussian but also coulomb potential from protons.

Potential energy

$$V_{\alpha\alpha} = v_{\alpha\alpha}^{1} e^{-\nu_{\alpha\alpha}^{1} r^{2}} + v_{\alpha\alpha}^{2} e^{-\nu_{\alpha\alpha}^{2} r^{2}}$$
$$V_{c} = \frac{4e^{2}}{r} = \frac{4e^{2}}{r} \operatorname{erf}\left(\frac{\sqrt{3}r}{2R_{a}}\right) \qquad \boxed{v_{\alpha\alpha}^{1} = -150 \text{ MeV}, \quad \nu_{\alpha\alpha}^{1} = 0.25 \text{ fm}^{-1}}$$
$$v_{\alpha\alpha}^{2} = 1050 \text{ MeV}, \quad \nu_{\alpha\alpha}^{2} = 0.64 \text{ fm}^{-1}$$

E. Hiyama, M. Kamimura, T. Motoba, T. Yamada and Y. Yamamoto, Prog. Theor. Phys. 97, 881 (1997).T. Motoba, H. Bando, K. Ikeda, and T. Yamada, Prog. Theor. Phys. (1985).S. Ali, A.R. Bodmer, Nucl. Phys. 80, 99 (1966).

$\alpha \alpha \text{ MODEL}$

$n_{ m max}$	r_1 [fm]	$r_{\rm max}$ [fm]	B [MeV]	$\sqrt{\langle r^2 \rangle_{\alpha - \alpha}}$ [fm]
15	0.95	7.4	-5.55×10^{-2}	5.0306
		F 0 10-2		
		5.6×10^{-2}	MeV.	

$\alpha\alpha\Lambda \text{ Model}$

• We calculate this system only for one channel.

n _{MAX}	r ₁ [fm]	a	B [MeV]	
15	0.1	1.52		
N _{MAX}	R ₁ [fm]	А	7.0	
15	0.2	1.13		

SUMMARY AND OUTLOOK

- I try to understand the concept of the Gaussian Expansion Method.
- I check that the GEM works very well by reproducing the twobody problems.
- I expand into three-body problems, alpha-alpha-Lambda model.

Moreover, I will investigate a structure of ⁴_ΛH and ⁴_ΛHe, by taking into account the NNNΛ single channel and the NNNΛ +NNNΣ coupled channel.

THANK YOU