Structure of light hypernuclei in the framework of Fermionic Molecular Dynamics

Martin Schäfer, Jiří Mareš Nuclear Physics Institute, Řež, Czech Republic

The 28th Indian-Summer School of Physics Ab Inition Methods in Nuclear Physics Prague, Czech Republic

Introduction

Main goal

Study of light hypernuclei

- information about the ΛN (BB) interaction
- modification of the nuclear core
- cluster vs. shell nuclear structure
- Charge Symmetry Breaking (CSB) effects
- $\Lambda N \Sigma N$ mixing
- 3-body YNN forces (neutron star structure)

The present work

- study of light hypernuclei within Fermionic Molecular Dynamics
- calculations of the ground and excited states of s- and p-shell A hypernuclei
- $\bullet~V_{\Lambda N}$ and V_{NN} potential model dependence
- cluster structure

Fermionic Molecular Dynamics

(H. Feldmeier, Nucl. Phys. A 515 (1990) 147) (T. Neff, H. Feldmeier, Nucl. Phys. A 738 (2004) 367)

system of interacting fermions described by an antisymmetrized many-body state $|Q\rangle$

Antisymmetrization

• many-body wave function approximated by a Slater determinant

spatial part of a single-particle state represented by Gaussian wave packets

$$\langle ec{x} \mid \boldsymbol{q}_k
angle = \sum_i \exp\left(-rac{(ec{x} - ec{m{b}}_{k,i})^2}{2 m{a}_{k,i}}
ight) \otimes \left| \chi^{\uparrow}_{k,i}, \chi^{\downarrow}_{k,i}
ight
angle \otimes |t_k
angle$$

complex width a_{k,i}, complex b_{k,i}, complex χ[↑]_{k,i} and χ[↓]_{k,i} spin parameters (12 real parameters for each Gaussian)

FMD model

Minimization

Hamiltonian

$$\hat{H} = \hat{T}_N + \hat{T}_\Lambda + \hat{V}_{NN} + \hat{V}_C + \hat{V}_{\Lambda N} - \hat{T}_{
m cm}$$

Binding energy

$$E_{\mathrm{B}} = \min_{q_{1},...,q_{n}} rac{\langle Q | \hat{H} | Q
angle}{\langle Q | Q
angle}$$

under conditions

 $<\hat{\mathbf{X}}_{
m cm}>^2=0,~<\hat{\mathbf{P}}_{
m cm}>^2=0,~Re(a_k)>0$

• single-particle state parameters $q_k = \{a_k, \vec{b}_k, \chi_k^{\uparrow}, \chi_k^{\downarrow}\}$

Result

- minimization yields an intrinsic state which is not parity and total angular momentum eigenstate J^π
- broken symmetries have to be restored

Projection techniques (T. Neff, H. Feldmeier, Eur. Phys. J 156 (2008) 69)

Projections

Parity projection

$$\hat{P}^{\pi}=\frac{1}{2}(\hat{1}+\pi\hat{\Pi})$$

Total angular momentum projection

$$\hat{P}^{J}_{MK} = rac{2J+1}{8\pi^2}\int d\Omega D^{J\,\star}_{MK}(\Omega)\hat{R}(\Omega)$$

Eigenstates

• total angular momentum and parity eigenstates are projected out of the minimized intrinsic state

$$\ket{Q;J^{\pi}MK}=\hat{P}_{MK}^{J}\hat{P}^{\pi}\ket{Q}$$

K-mixing

Orthogonal eigenstates

$$|Q; J^{\pi}M\kappa\rangle = \sum_{\kappa} |Q; J^{\pi}M\kappa\rangle C_{\kappa}^{J^{\pi}\kappa}$$

Generalized eigenvalue problem

$$\hat{H} |Q; J^{\pi} M \kappa \rangle = \boldsymbol{E}^{J^{\pi} \kappa} |Q; J^{\pi} M \kappa \rangle$$

• diagonalization of the \hat{H} in a subspace spanned by the projected states $|Q; J^{\pi}M\kappa\rangle$

$$\sum_{K'} H_{K,K'}^{J^{\pi}} C_{K}^{J^{\pi}\kappa} = E^{J^{\pi}\kappa} \sum_{K''} N_{K,K''}^{J^{\pi}\kappa} C_{K}^{J^{\pi}\kappa}$$
$$H_{K,K'}^{J^{\pi}} = \langle Q | \hat{H} \hat{P}_{KK'}^{J} \hat{P}^{\pi} | Q \rangle$$
$$N_{KK'}^{J^{\pi}} = \langle Q | \hat{P}_{KK'}^{J} \hat{P}^{\pi} | Q \rangle$$

V_{NN} and $V_{\Lambda N}$ potential input

NN two-body potential

AV18 reduced

(D. Weber, H. Feldmeier, H. Hergert, T. Neff, Phys. Rev. C 89 (2014) 034002)

• minimal set of operators fitted to nucleon-nucleon matrix elements of AV18 UCOM transformed potential; realistic effective interaction

(T. Neff, H. Feldmeier, Nucl. Phys. A 713 (2003) 311)

ΛN two-body potential

- G-matrix transformed YNG (Jülich JA, JB, Nijmegen ND, NF, NS) (Y.Yamamoto et. al, PTP Suppl. 117 (1994) 361)
- YNG ESC08c (M. Isaka et. al, Phys. Rev. C 89 (2014) 024310); ALS and SLS terms

$$V_{\Lambda N}(r) = \sum_{i}^{3} (a_i + b_i k_F + c_i k_F^2) \exp\left\{-\frac{r^2}{\beta_i^2}\right\}$$

Results

Nuclear chart

Nuclear chart

 $\rm VAP^{\pi}$ - variation after parity projection $\rm VAP^{\pi} + \rm PAV^{J^{\pi}}$ - variation after parity projection + projection on J^{π} quantum numbers after variation

 $V_{\Lambda N}$ potential model dependence

Substantial difference between A separation energies as well as $|B_{\Lambda}(0^+) - B_{\Lambda}(1^+)|$ for various $V_{\Lambda N}$

 $V_{\Lambda N}$ potential model dependence

Substantial difference between A separation energies as well as $|B_{\Lambda}(0^+) - B_{\Lambda}(1^+)|$ for various $V_{\Lambda N}$

Fermi momentum k_F dependence in $V_{\Lambda N}$

• value of $k_{\rm F}$ reflects the nuclear medium surrounding the Λ hyperon

 $k_{\rm F}=0.8~{\rm fm}^{-1}$ (Y.Yamamoto et al, PTP Suppl. 117 (1994) 361), $k_{\rm F}=0.763~{\rm fm}^{-1}$ ($^3{\rm He}$ rms radius approximation), and $k_{\rm F}=0.85~{\rm fm}^{-1}$ (test value)

Strong Fermi momentum dependence in the $V_{\Lambda N}$ part (k_F acts as a scaling factor)

Results p

p-shell hypernucleus $^{7}_{\Lambda}$ Li

Energy levels in ⁶Li

Inconsistency between calculated and experimentally measured total binding energy of the 1^+ ground state – attributed to the insufficient $\rm VAP^{\pi}$ minimization scheme

Energy levels in ${}^{7}_{\Lambda}$ Li - preliminary

Considerable inconsistency between calculated and experimentally measured excitation spectra – may be attributed to the wrong choice of the Fermi momentum $k_{\rm F}$ parameter

Results ⁸Be

Energy levels in ⁸Be

Inconsistency between calculated and experimentally measured total binding energy of the 1^+ ground state – attributed to the insufficient $\rm VAP^{\pi}$ minimization scheme

Conclusions

In this work :

- $\bullet\,$ realistic effective V_{NN} interaction included
 - calculations of s- and p-shell nuclei up to $^{16}{\rm O}$ using ${\rm VAP}^{\pi}$ minimization scheme
 - VAP^{π} does not yield sufficient binding of ground states of calculated nuclei
- $\bullet\,$ YNG ESC08c $\mathrm{V}_{\Lambda\mathrm{N}}$ interaction with SLS and ALS terms included
- $\bullet\,$ substantial difference between various $V_{\Lambda N}$ potential models
- $\bullet\$ strong k_F dependence

 $(k_{\rm F} \text{ acts as a scaling parameter of YNG } V_{\Lambda N} \text{ potentials})$

Next steps :

- $\bullet~{\rm VAP^{J^{\pi}}}$ minimization scheme, multiconfiguration, constraints on physical quantities
- $\bullet\,$ selfconsistent calculation of the $k_{\rm F}$ parameter in each iteration step (Thomas-Fermi + ADA approximation)
- more sophisticated interactions ($V_{\Lambda N}$ potentials with $\Lambda-\Sigma$ mixing, chiral V_{NN} and $V_{\Lambda N}$ potentials)

Backup

Variational parameters

Single-particle wave function

$$\langle ec{x} \mid oldsymbol{q}_k
angle = \exp\left(-rac{(ec{x}-ec{b}_k)^2}{2oldsymbol{a}_k}
ight) \otimes \left|\chi_k^{\uparrow},\chi_k^{\downarrow}
ight
angle \otimes |t
angle$$

Spatial part

Complex width

• $a_k = \operatorname{Re}(a_k) + \operatorname{iIm}(a_k)$

Complex vector parameter \vec{b}_k

position and velocity

•
$$\vec{b}_k = (b_{k1}, b_{k2}, b_{k3})$$

• 8 real parameters

Position, momentum, and the spread

Spin part parameters

the most general form ensures a rotation of an arbitrary angle

$$\begin{vmatrix} \chi_k^{\uparrow}, \chi_k^{\downarrow} \end{vmatrix} = \begin{pmatrix} \operatorname{Re}(\chi_k^{\uparrow}) + \operatorname{iIm}(\chi_k^{\uparrow}) \\ \operatorname{Re}(\chi_k^{\downarrow}) + \operatorname{iIm}(\chi_k^{\downarrow}) \end{pmatrix}$$

4 real parameters

$$ec{r}=rac{ ext{Re}(a) ext{Re}(ec{b})+ ext{Im}(a) ext{Im}(ec{b})}{ ext{Re}(a)}$$
 $ec{p}=rac{ ext{Im}(ec{b})}{ ext{Re}(a)}$ $(\Delta r)^2=3rac{ ext{Re}(a)^2+ ext{Im}(a)^2}{2 ext{Re}(a)}$