Dr. Vladimir Lotoreichik
Department of Theoretical Physics
Nuclear Physics Institute
Academy of Sciences of the Czech Republic

Jussi Behrndt, Pavel Exner, Markus Holzmann and Vladimir Lotoreichik
On the spectral properties of Dirac operators with electrostatic δ-shell interactions
arXiv.
Pavel Exner, Vladimir Lotoreichik, and Miloš Tater
Spectral and resonance properties of Smilansky Hamiltonian
physical paper, arXiv.
David Krejcirik and Vladimir Lotoreichik
Optimisation of the lowest Robin eigenvalue in the exterior of a compact set
arXiv.
David Krejcirik, Vladimir Lotoreichik, and Thomas Ourmières-Bonafos
Spectral transitions for Aharonov-Bohm Laplacians on conical layers
arXiv.
Vladimir Lotoreichik
Spectral isoperimetric inequalities for δ-interactions on open arcs and for the Robin Laplacian on planes with slits
arXiv.
Vladimir Lotoreichik and Jonathan Rohleder
Eigenvalue inequalities for the Laplacian with mixed boundary conditions
arXiv.
Jussi Behrndt, Pavel Exner, Markus Holzmann and Vladimir Lotoreichik
Approximation of Schrödinger operators with δ-interactions supported on hypersurfaces
to appear in Math. Nachr.,
arXiv.
Jussi Behrndt, Rupert L. Frank, Christian Kühn, Vladimir Lotoreichik and Jonathan Rohleder
Spectral theory for Schrödinger operators with δ-interactions supported on curves in ℝ³
to appear in Ann. Henri Poincaré,
arXiv.
Jussi Behrndt, Matthias Langer, and Vladimir Lotoreichik
Trace formulae for Schrödinger operators with singular interactions
to appear in EMS Special Issue.
arXiv.
Jussi Behrndt, Matthias Langer, Vladimir Lotoreichik, and Jonathan Rohleder
Quasi boundary triples and semibounded self-adjoint extensions
to appear in Proc. Roy. Soc. Edinburgh Sect. A.
arXiv.
Pavel Exner and Vladimir Lotoreichik
A spectral isoperimetric inequality for cones
to appear in Lett. Math. Phys.
arXiv.
Pavel Exner, Vladimir Lotoreichik, and Miloš Tater
On resonances and bound states of Smilansky Hamiltonian
Nanosystems: Physics, Chemistry, Mathematics 7 (2016), 789–802.
arXiv.
Vladimir Lotoreichik and Petr Siegl
Spectra of definite type in waveguide models
to appear in Proc. Amer. Math. Soc.
arXiv.
Michal Jex and Vladimir Lotoreichik
On absence of bound states for weakly attractive δ'-interactions
supported on non-closed curves in ℝ²
J. Math. Phys. 57 (2016), 022101. arXiv.
Vladimir Lotoreichik and Thomas Ourmières-Bonafos
On the bound states of Schrödinger operators with δ-interactions on conical surfaces
Comm. Partial Differential Equations 41 (2016), 999–1028.
arXiv.
Jussi Behrndt, Gerd Grubb, Matthias Langer, and Vladimir Lotoreichik
Spectral asymptotics for resolvent differences of elliptic operators with δ and δ'-interactions on hypersurfaces
J. Spectr. Theory. 5 (2015), 697–729. arXiv.
Vladimir Lotoreichik, Hagen Neidhardt, and Igor Yu. Popov
Point contacts and boundary triples
Mathematical Results in Quantum Mechanics, Proceedings of the QMath12 Conference, P. Exner, W. König, and
H. Neidhardt (eds), World Scientific, Singapore, 2015, pp. 283--293.
arXiv.
Vladimir Lotoreichik and Jonathan Rohlelder
An eigenvalue inequality for Schrödinger operators with δ and δ′-interactions supported on hypersurfaces
Oper. Theory Adv. Appl. 247 (2015), 173–184. arXiv.
Jussi Behrndt, Pavel Exner, and Vladimir Lotoreichik
Schrödinger operators with δ-interactions supported on conical surfaces
J. Phys. A: Math. Theor. 47 (2014), 355202 (16pp).
arXiv. (Open Access).
Jussi Behrndt, Pavel Exner, and Vladimir Lotoreichik
Schrödinger operators with δ and δ′-interactions on Lipschitz surfaces and chromatic numbers of associated partitions
Rev. Math. Phys. 26 (2014), 1450015 (43pp).
arXiv.
Vladimir Lotoreichik
Lower bounds on the norms of extension operators for Lipschitz domains
Operators and Matrices 8 (2014), 573–592.
arXiv.
Sylwia Kondej and Vladimir Lotoreichik
Weakly coupled bound state of 2-D Schrödinger operator with potential-measure
J. Math. Anal. Appl. 420 (2014), 1416–1438.
arXiv. (Open Access).
Jussi Behrndt, Matthias Langer, and Vladimir Lotoreichik
Trace formulae and singular values of resolvent power differences of self-adjoint elliptic operators
J. London. Math. Soc. (2) 88 (2013), 319–337.
arXiv.
Jussi Behrndt, Matthias Langer, and Vladimir Lotoreichik
Spectral estimates for resolvent differences of self-adjoint elliptic operators
Integral Equations and Operator Theory 77 (2013), 1–37.
arXiv.
Jussi Behrndt, Matthias Langer, and Vladimir Lotoreichik
Schrödinger operators with δ and δ′-potentials supported on hypersurfaces
Ann. Henri Poincaré 14 (2013), 385–423.
arXiv.
Vladimir Lotoreichik and Jonathan Rohleder
Schatten-von Neumann estimates for resolvent differences of Robin Laplacians on a half-space
Oper. Theory Adv. Appl. 221 (2012), 471–486.
arXiv.
Vladimir Lotoreichik
Singular continuous spectrum of half-line Schrödinger operators with point interactions on a sparse set
Opuscula Math. 31 (2011), 615–628.
(Open Access).
Jussi Behrndt, Matthias Langer, Igor Lobanov, Vladimir Lotoreichik and Igor Yu. Popov
A remark on Schatten-von Neumann properties of resolvent differences of generalized Robin Laplacians on bounded domains
J. Math. Anal. Appl. 371 (2010), 750–758.
arXiv.
Igor Lobanov, Vladimir Lotoreichik, and Igor Yu. Popov
Lower bound on the spectrum of the two-dimensional
Schrödinger operator with a delta-perturbation on a curve
Theor. Math. Phys. 162 (2010), 332–340.
Jussi Behrndt, Matthias Langer, and Vladimir Lotoreichik,
Boundary triples for Schrödinger operators with singular interactions on hypersurfaces,
Nanosystems: Phys. Chem. Math. 7 (2016), 290–302.
Jussi Behrndt, Markus Holzmann, and Vladimir Lotoreichik
Convergence of 2D-Schrödinger operators with local scaled
short-range interactions to a Hamiltonian with infinitely many delta-point interactions
Proc. Appl. Math. Mech. 14 (2014), 1005-1006. (Open Access).
Vladimir Lotoreichik
Note on 2D Schrödinger operators with δ-interactions on angles and crossing lines
Nanosystems: Phys. Chem. Math. 4 (2013), 1–7.
arXiv. (Open Access).
Jussi Behrndt, Pavel Exner, and Vladimir Lotoreichik
Essential spectrum of Schrödinger operators with δ-interactions
on the union of compact Lipschitz hypersurfaces
Proc. Appl. Math. Mech. (2013), 523–524. (Open Access).