Mohammed Berkani, Operator Theory Team, Department of Mathematics, Science Faculty, University Mohammed I, Boulevard Mohammed VI, B.P. 524, 60000 Oujda, Morocco, e-mail: berkanimo@aim.com
Abstract: In this paper, we give a new approach to the study of Weyl-type theorems. Precisely, we introduce the concepts of spectral valued and spectral partitioning functions. Using two natural order relations on the set of spectral valued functions, we reduce the question of relationship between Weyl-type theorems to the study of the set difference between the parts of the spectrum that are involved. This study solves completely the question of relationship between two spectral valued functions, comparable for one or the other order relation. Then several known results about Weyl-type theorems become corollaries of the results obtained.
Keywords: spectral valued function; partitioning; spectrum; Weyl-type theorem
Classification (MSC 2010): 47A53, 47A10, 47A11
DOI: 10.21136/MB.2016.0046-14
Full text available as PDF.
References:
[1] P. Aiena, P. Peña: Variations on Weyl's theorem. J. Math. Anal. Appl. 324 (2006), 566-579. DOI 10.1016/j.jmaa.2005.11.027 | MR 2262492 | Zbl 1101.47001
[2] M. Amouch, H. Zguitti: On the equivalence of Browder's and generalized Browder's theorem. Glasg. Math. J. 48 (2006), 179-185. DOI 10.1017/S0017089505002971 | MR 2224938 | Zbl 1097.47012
[3] B. A. Barnes: Riesz points and Weyl's theorem. Integral Equations Oper. Theory 34 (1999), 187-196. DOI 10.1007/BF01236471 | MR 1694707 | Zbl 0948.47002
[4] M. Berkani: On a class of quasi-Fredholm operators. Integral Equations Oper. Theory 34 (1999), 244-249. DOI 10.1007/BF01236475 | MR 1694711 | Zbl 0939.47010
[5] M. Berkani: $B$-Weyl spectrum and poles of the resolvent. J. Math. Anal. Appl. 272 (2002), 596-603. DOI 10.1016/S0022-247X(02)00179-8 | MR 1930862 | Zbl 1043.47004
[6] M. Berkani: Index of $B$-Fredholm operators and generalization of a Weyl theorem. Proc. Am. Math. Soc. 130 (2002), 1717-1723. DOI 10.1090/S0002-9939-01-06291-8 | MR 1887019 | Zbl 0996.47015
[7] M. Berkani: On the equivalence of Weyl theorem and generalized Weyl theorem. Acta Math. Sin., Engl. Ser. 23 (2007), 103-110. DOI 10.1007/s10114-005-0720-4 | MR 2275483 | Zbl 1116.47015
[8] M. Berkani, J. J. Koliha: Weyl type theorems for bounded linear operators. Acta Sci. Math. 69 (2003), 359-376. MR 1991673 | Zbl 1050.47014
[9] M. Berkani, M. Sarih: On semi B-Fredholm operators. Glasg. Math. J. 43 (2001), 457-465. DOI 10.1017/S0017089501030075 | MR 1878588 | Zbl 0995.47008
[10] M. Berkani, H. Zariouh: Extended Weyl type theorems. Math. Bohem. 134 (2009), 369-378. MR 2597232 | Zbl 1211.47011
[11] M. Berkani, H. Zariouh: New extended Weyl type theorems. Mat. Vesn. 62 (2010), 145-154. MR 2639143 | Zbl 1258.47020
[12] X. H. Cao: A-Browder's theorem and generalized $a$-Weyl's theorem. Acta Math. Sin., Engl. Ser. 23 (2007), 951-960. DOI 10.1007/s10114-005-0870-4 | MR 2307839 | Zbl 1153.47009
[13] R. E. Curto, Y. M. Han: Generalized Browder's and Weyl's theorems for Banach space operators. J. Math. Anal. Appl. 336 (2007), 1424-1442. DOI 10.1016/j.jmaa.2007.03.060 | MR 2353025 | Zbl 1131.47003
[14] D. S. Djordjević: Operators obeying $a$-Weyl's theorem. Publ. Math. 55 (1999), 283-298. MR 1721837 | Zbl 0938.47008
[15] S. V. Djordjević, Y. M. Han: Browder's theorems and spectral continuity. Glasg. Math. J. 42 (2000), 479-486. DOI 10.1017/S0017089500030147 | MR 1793814 | Zbl 0979.47004
[16] B. P. Duggal: Polaroid operators and generalized Browder-Weyl theorems. Math. Proc. R. Ir. Acad. 108A (2008), 149-163. DOI 10.3318/PRIA.2008.108.2.149 | MR 2475808 | Zbl 1180.47006
[17] H. G. Heuser: Functional Analysis. John Wiley & Sons Chichester (1982). MR 0640429 | Zbl 0465.47001
[18] V. Rakočević: Operators obeying $a$-Weyl's theorem. Rev. Roum. Math. Pures Appl. 34 (1989), 915-919. MR 1030982 | Zbl 0686.47005
[19] H. Weyl: Über beschränkte quadratische Formen, deren Differenz vollstetig ist. Rend. Circ. Mat. Palermo 27. German (1909), 373-392, 402. DOI 10.1007/BF03019655 | Zbl 40.0395.01