MATHEMATICA BOHEMICA, Vol. 142, No. 1, pp. 27-46, 2017

Antiassociative groupoids

Milton Braitt, David Hobby, Donald Silberger

Received February 4, 2015.   First published October 31, 2016.

Milton Braitt, Universidade Federal de Santa Catarina, R. Eng. Agronômico Andrei Cristian Ferreira, Trindade, Florianópolis, Santa Catarina 88040-900, Brazil, e-mail: m.braitt@ufsc.br; David Hobby, Donald Silberger, State University of New York, 1 Hawk Drive, New Paltz, NY 12561, USA, e-mail: hobbyd@newpaltz.edu, silbergd@newpaltz.edu

Abstract: Given a groupoid $\langle G, \star\rangle$, and $k \geq3$, we say that $G$ is antiassociative if an only if for all $x_1, x_2, x_3 \in G$, $(x_1 \star x_2) \star x_3$ and $x_1 \star(x_2 \star x_3)$ are never equal. Generalizing this, $\langle G, \star\rangle$ is $k$-antiassociative if and only if for all $x_1, x_2, \ldots, x_k \in G$, any two distinct expressions made by putting parentheses in $x_1 \star x_2 \star x_3 \star\cdots\star x_k$ are never equal. We prove that for every $k \geq3$, there exist finite groupoids that are $k$-antiassociative. We then generalize this, investigating when other pairs of groupoid terms can be made never equal.

Keywords: groupoid; unification

Classification (MSC 2010): 20N02, 08A99, 68Q99, 68T15

DOI: 10.21136/MB.2017.0006-15

Full text available as PDF.


References:
  [1] F. Baader, W. Snyder: Unification theory. Handbook of Automated Reasoning A. Robinson et al. North-Holland/Elsevier, Amsterdam, MIT Press Cambridge 445-533 (2001). DOI 10.1016/B978-044450813-3/50010-2 | Zbl 1011.68126
  [2] M. S. Braitt, D. Hobby, D. Silberger: Completely dissociative groupoids. Math. Bohem. 137 (2012), 79-97. MR 2978447 | Zbl 1249.20075
  [3] M. S. Braitt, D. Silberger: Subassociative groupoids. Quasigroups Relat. Syst. 14 (2006), 11-26. MR 2268823 | Zbl 1123.20059
  [4] S. Burris, H. P. Sankappanavar: A Course in Universal Algebra. Graduate Texts in Mathematics 78 Springer, New York (1981). MR 0648287 | Zbl 0478.08001
  [5] A. Drápal, T. Kepka: Sets of associative triples. Eur. J. Comb. 6 (1985), 227-231. DOI 10.1016/S0195-6698(85)80032-9 | MR 0818596 | Zbl 0612.05003
  [6] J. Herbrand: Recherches sur la théorie de la démonstration. Travaux de la Société des Sciences et des Lettres de Varsovie 33 128 pages (1930), French. MR 3532972 | Zbl 56.0824.02
  [7] G. P. Huet: Résolution d'équations dans des langages d'ordre $1,2,\dots,\omega$. Thèse d'État, Université de Paris VII (1976), French.
  [8] J. Ježek, T. Kepka: Medial groupoids. Rozpr. Cesk. Akad. Ved, Rada Mat. Prir. Ved 93 (1983), 93 pages. MR 0734873 | Zbl 0527.20044
  [9] D. E. Knuth: The Art of Computer Programming. Vol. 1: Fundamental Algorithms. Addison-Wesley Series in Computer Science and Information Processing Addison-Wesley, London (1968). MR 0286317 | Zbl 0191.17903
  [10] J. A. Robinson: A machine-oriented logic based on the resolution principle. J. Assoc. Comput. Mach. 12 (1965), 23-41. DOI 10.1145/321250.321253 | MR 0170494 | Zbl 0139.12303
  [11] R. P. Stanley: Enumerative Combinatorics. Vol. 2. Cambridge Studies in Advanced Mathematics 62 Cambridge University Press, Cambridge (1999). DOI 10.1017/CBO9780511609589 | MR 1676282 | Zbl 0928.05001


Access to the full text of journal articles on this site is restricted to the subscribers of Myris Trade. To activate your access, please contact Myris Trade at myris@myris.cz.

[Previous Article] [Next Article] [Contents of This Number] [Contents of Mathematica Bohemica] [Full text of the older issues of Mathematica Bohemica at DML-CZ]