MATHEMATICA BOHEMICA, Vol. 120, No. 2, pp. 209-217, 1995

Modularity and distributivity of the lattice of $\Sigma$-closed subsets of an algebraic structure

Ivan Chajda, Petr Emanovsky

Ivan Chajda, katedra algebry a geometrie, Prir. fak. UP Olomouc, Tomkova 38, 779 00 Olomouc; Petr Emanovsky, katedra matematiky, Ped. fak. UP Olomouc, Zizkovo nam. 5, 771 40 Olomouc

Abstract: Let $\Cal A =(A,F,R)$ be an algebraic structure of type $\tau$ and $\Sigma$ a set of open formulas of the first order language $L(\tau)$. The set $C_\Sigma(\Cal A)$ of all subsets of $A$ closed under $\Sigma$ forms the so called lattice of $\Sigma$-closed subsets of $\Cal A$. We prove various sufficient conditions under which the lattice $C_\Sigma(\Cal A)$ is modular or distributive.

Keywords: algebraic structure, closure system, $\Sigma$-closed subset, modular lattice, distributive lattice, convex subset

Classification (MSC 1991): 08A05, 04A05


Full text available as PDF (smallest), as compressed PostScript (.ps.gz) or as raw PostScript (.ps).

Access to the full text of journal articles on this site is restricted to the subscribers of Myris Trade. To activate your access, please contact Myris Trade at myris@myris.cz.


[Previous Article] [Next Article] [Contents of This Number] [Contents of Mathematica Bohemica]
[Full text of the older issues of Mathematica Bohemica at DML-CZ]