Mathematica Bohemica, online first, 20 pp.

Existence of infinitely many weak solutions for some quasilinear $\vec{p}(x)$-elliptic Neumann problems

Ahmed Ahmed, Taghi Ahmedatt, Hassane Hjiaj, Abdelfattah Touzani

Received July 14, 2015.   First published January 2, 2017.

Ahmed Ahmed, Taghi Ahmedatt, Abdelfattah Touzani, Department of Mathematics, Laboratory LAMA, Faculty of Sciences Dhar El Mahraz, University Sidi Mohamed Ben Abdellah, BP 1796 Atlas, Fez, Morocco, e-mail: ahmedmath2001@gmail.com, taghi-med@hotmail.fr, atouzani07@gmail.com; Hassane Hjiaj, Department of Mathematics, Faculty of Sciences, Tetouan University Abdelmalek Essaadi, Quartier M'haneche II, Avenue Palestine, BP 2121, Tetouan 93000, Morocco, e-mail: hjiajhassane@yahoo.fr

Abstract: We consider the following quasilinear Neumann boundary-value problem of the type $ - \displaystyle\sum_{i=1}^N\frac{\partial}{\partial x_i}a_i\Big(x,\frac{\partial u}{\partial x_i}\Big) + b(x)|u|^{p_0(x)-2}u = f(x,u)+ g(x,u) &\text{in} \Omega, \quad\dfrac{\partial u}{\partial\gamma} = 0 &\text{on} \partial\Omega. $ We prove the existence of infinitely many weak solutions for our equation in the anisotropic variable exponent Sobolev spaces and we give some examples.

Keywords: Neumann problem; quasilinear elliptic equation; weak solution; variational principle; anisotropic variable exponent Sobolev space

Classification (MSC 2010): 35J20, 35J62

DOI: 10.21136/MB.2017.0037-15

Full text available as PDF.


References:
  [1] G. Anello, G. Cordaro: Existence of solutions of the Neumann problem for a class of equations involving the $p$-Laplacian via a variational principle of Ricceri. Arch. Math. 79 (2002), 274-287. DOI 10.1007/s00013-002-8314-1 | MR 1944952 | Zbl 1091.35025
  [2] E. Azroul, A. Barbara, M. B. Benboubker, H. Hjiaj: Entropy solutions for nonhomogeneous anisotropic $\Delta_{\vec p(\cdot)}$ problems. Appl. Math. 41 (2014), 149-163. DOI 10.4064/am41-2-3 | MR 3281367 | Zbl 1316.35107
  [3] M. Bendahmane, M. Chrif, S. El Manouni: An approximation result in generalized anisotropic Sobolev spaces and applications. Z. Anal. Anwend. 30 (2011), 341-353. DOI 10.4171/ZAA/1438 | MR 2819499 | Zbl 1231.35065
  [4] M.-M. Boureanu, V. D. Rădulescu: Anisotropic Neumann problems in Sobolev spaces with variable exponent. Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 75 (2012), 4471-4482. DOI 10.1016/j.na.2011.09.033 | MR 2927115 | Zbl 1262.35090
  [5] R. Di Nardo, F. Feo, O. Guibé: Uniqueness result for nonlinear anisotropic elliptic equations. Adv. Differ. Equ. 18 (2013), 433-458. MR 3086461 | Zbl 1272.35092
  [6] L. Diening, P. Harjulehto, P. Hästö, M. Růžička: Lebesgue and Sobolev Spaces with Variable Exponents. Lecture Notes in Mathematics 2017. Springer, Berlin (2011). DOI 10.1007/978-3-642-18363-8 | MR 2790542 | Zbl 1222.46002
  [7] X. Fan, C. Ji: Existence of infinitely many solutions for a Neumann problem involving the $p(x)$-Laplacian. J. Math. Anal. Appl. 334 (2007), 248-260. DOI 10.1016/j.jmaa.2006.12.055 | MR 2332553 | Zbl 1157.35040
  [8] O. Guibé: Uniqueness of the renormalized solution to a class of nonlinear elliptic equations. On the Notions of Solution to Nonlinear Elliptic Problems: Results and Developments (A. Alvino et al., eds.). Quaderni di Matematica 23. Caserta (2008), 255-282. MR 2762168 | Zbl 1216.35036
  [9] P. Harjulehto, P. Hästö: Sobolev inequalities with variable exponent attaining the values $1$ and $n$. Publ. Mat., Barc. 52 (2008), 347-363. DOI 10.5565/PUBLMAT_52208_05 | MR 2436729 | Zbl 1163.46022
  [10] B. Kone, S. Ouaro, S. Traore: Weak solutions for anisotropic nonlinear elliptic equations with variable exponents. Electron. J. Differ. Equ. (electronic only) 2009 (2009), paper No. 144, 11 pages. MR 2565886 | Zbl 1182.35092
  [11] O. Kováčik, J. Rákosník: On spaces $L^{p(x)}$ and $W^{k,p(x)}$. Czech. Math. J. 41 (1991), 592-618. MR 1134951 | Zbl 0784.46029
  [12] M. Mihăilescu, G. Moroşanu: Existence and multiplicity of solutions for an anisotropic elliptic problem involving variable exponent growth conditions. Appl. Anal. 89 (2010), 257-271. DOI 10.1080/00036810802713826 | MR 2598814 | Zbl 1187.35074
  [13] B. Ricceri: A general variational principle and some of its applications. J. Comput. Appl. Math. 113 (2000), 401-410. DOI 10.1016/S0377-0427(99)00269-1 | MR 1735837 | Zbl 0946.49001
  [14] M. Růžička: Electrorheological Fluids: Modeling and Mathematical Theory. Lecture Notes in Mathematics 1748. Springer, Berlin (2000). DOI 10.1007/BFb0104029 | MR 1810360 | Zbl 0962.76001
  [15] L. Zhao, P. Zhao, X. Xie: Existence and multiplicity of solutions for divergence type elliptic equations. Electron. J. Differ. Equ. (electronic only) 2011 (2011), paper No. 43, 9 pages. MR 2788662 \vskip4pt | Zbl 1213.35227


Access to the full text of journal articles on this site is restricted to the subscribers. For access please contact editorial office at mathboh@math.cas.cz indicating DOI.
[List of online first articles] [Contents of Mathematica Bohemica] [Full text of the older issues of Mathematica Bohemica at DML-CZ]