Mathematica Bohemica, online first, 21 pp.

Oscillations of nonlinear difference equations with deviating arguments

George E. Chatzarakis, Julio G. Dix

Received May 14, 2016.   First published May 24, 2017.

George E. Chatzarakis, Department of Electrical Engineering and Department of Electronic Engineering, School of Pedagogical and Technological Education (ASPETE) 14121, Heraklio, Athens, Greece, e-mail: geaxatz@otenet.gr, gea.xatz@aspete.gr; Julio G. Dix, Department of Mathematics, Texas State University, MCS583, Pickard St., San Marcos, TX78666, USA, e-mail: jd01@txstate.edu

Abstract: This paper is concerned with the oscillatory behavior of first-order nonlinear difference equations with variable deviating arguments. The corresponding difference equations of both retarded and advanced type are studied. Examples illustrating the results are also given.

Keywords: infinite sum condition; retarded argument; advanced argument; oscillatory solution; nonoscillatory solution

Classification (MSC 2010): 39A10, 39A21

DOI: 10.21136/MB.2017.0055-16

Full text available as PDF.


References:
  [1] L. Berezansky, E. Braverman: On existence of positive solutions for linear difference equations with several delays. Adv. Dyn. Syst. Appl. 1 (2006), 29-47. MR 2287633 | Zbl 1124.39002
  [2] G. E. Chatzarakis, R. Koplatadze, I. P. Stavroulakis: Optimal oscillation criteria for first order difference equations with delay argument. Pac. J. Math. 235 (2008), 15-33. DOI 10.2140/pjm.2008.235.15 | MR 2379767 | Zbl 1153.39010
  [3] G. E. Chatzarakis, S. Pinelas, I. P. Stavroulakis: Oscillations of difference equations with several deviated arguments. Aequationes Math. 88 (2014), 105-123. DOI 10.1007/s00010-013-0238-2 | MR 3250787 | Zbl 1306.39007
  [4] G. E. Chatzarakis, I. P. Stavroulakis: Oscillations of first order linear delay difference equations. Aust. J. Math. Anal. Appl. (electronic only) 3 (2006), Article ID 14, 11 pages. MR 2223018 | Zbl 1096.39003
  [5] J. P. Dix, J. G. Dix: Oscillations of solutions to nonlinear first-order delay differential equations. Involve 9 (2016), 465-482. DOI 10.2140/involve.2016.9.465 | MR 3509339 | Zbl 06590119
  [6] L. H. Erbe, Q. Kong, B. G. Zhang: Oscillation Theory for Functional-Differential Equations. Pure and Applied Mathematics 190. Marcel Dekker, New York (1994). MR 1309905 | Zbl 0821.34067
  [7] L. H. Erbe, B. G. Zhang: Oscillation of discrete analogues of delay equations. Differ. Integral Equ. 2 (1989), 300-309. MR 0983682 | Zbl 0723.39004
  [8] G. Ladas: Explicit conditions for the oscillation of difference equations. J. Math. Anal. Appl. 153 (1990), 276-287. DOI 10.1016/0022-247X(90)90278-N | MR 1080131 | Zbl 0718.39002
  [9] G. Ladas, C. G. Philos, Y. G. Sficas: Sharp conditions for the oscillation of delay difference equations. J. Appl. Math. Simulation 2 (1989), 101-111. DOI 10.1155/S1048953389000080 | MR 1010549 | Zbl 0685.39004
  [10] G. S. Ladde, V. Lakshmikantham, B. G. Zhang: Oscillation Theory of Differential Equations with Deviating Arguments. Pure and Applied Mathematics 110. Marcel Dekker, New York (1987). MR 1017244 | Zbl 0622.34071
  [11] B. Li: Oscillation of first order delay differential equations. Proc. Am. Math. Soc. 124 (1996), 3729-3737. DOI 10.1090/S0002-9939-96-03674-X | MR 1363175 | Zbl 0865.34057
  [12] X. Li, D. Zhu: Oscillation of advanced difference equations with variable coefficients. Ann. Differ. Equations 18 (2002), 254-263. MR 1940383 | Zbl 1010.39001
  [13] X. N. Luo, Y. Zhou, C. F. Li: Oscillation of a nonlinear difference equation with several delays. Math. Bohem. 128 (2003), 309-317. MR 2012607 | Zbl 1055.39015
  [14] X. H. Tang, J. S. Yu: Oscillation of delay difference equation. Comput. Math. Appl. 37 (1999), 11-20. DOI 10.1016/S0898-1221(99)00083-8 | MR 1688201 | Zbl 0937.39012
  [15] X. H. Tang, R. Y. Zhang: New oscillation criteria for delay difference equations. Comput. Math. Appl. 42 (2001), 1319-1330. DOI 10.1016/S0898-1221(01)00243-7 | MR 1861531 | Zbl 1002.39022
  [16] X. Wang: Oscillation of delay difference equations with several delays. J. Math. Anal. Appl. 286 (2003), 664-674. DOI 10.1016/S0022-247X(03)00508-0 | MR 2008855 | Zbl 1033.39017
  [17] W. Yan, Q. Meng, J. Yan: Oscillation criteria for difference equation of variable delays. Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal. 13A (2006), Part 2, suppl., 641-647. MR 2219618
  [18] B. G. Zhang, Y. Zhou: Oscillations of difference equations with several delays. Comput. Math. Appl. 44 (2002), 817-821. DOI 10.1016/S0898-1221(02)00193-1 | MR 1925823 | Zbl 1035.39010


Access to the full text of journal articles on this site is restricted to the subscribers. For access please contact editorial office at mathboh@math.cas.cz indicating DOI.
[List of online first articles] [Contents of Mathematica Bohemica] [Full text of the older issues of Mathematica Bohemica at DML-CZ]