Consequence relations and closure operators

» AAL is the study of logics understood as consequence relations.

An introduction to Abstract Algebraic Logic Definition

Part | A consequence relation on a set A is a relation - C P(A) x As.t.
for all X U Y U {x} C A,

R. If x € X, then X I x.
M. If XFxand X C Y, then Y I x.

Tommaso Moraschini

Institute of Computer Science of the Czech Academy of Sciences C.fXFxand YF y for all y € X, then Y F x.
A closure operator on A is a map C: P(A) — P(A) s.t. for all
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June 29, 2017 X,Y € P(A),
R. X C C(X).

M. If X C Y, then C(X) C C(Y).
C. CC(X) = C(X).
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Consequence relations and closure operators Logics as substitution invariant consequence relations

» Consequence relations and closure operators are two faces of Convention

dne >ame coin: _ _ From now on we work within a fixed (but arbitrary) algebraic
» If F is a consequence relation on A, then define

G-: P(A) = P(A)

language. In particular,

Fm = term algebra built up with countably many variables.

setting, for every X C A, J
G (X)={xeA: XFx}. Definition
The map G is a closure operator. A logic is a consequence relation = C P(Fm) x Fm, which is
» If C is a closure operator on A, then define substitution-invariant in the sense that for every substitution
ch'P(A)XA a:Fm—)Fm,

if 't ¢, then o' - 0.

setting, for every X U {x} C A,

X ke x<=xe C(X). > The idea is that logics are consequence relations whose
inferences are valid in virtue of their form (as opposed to their

Then ¢ is a consequence relation.
content).

» These transformations are indeed inverse one to the other.
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Examples: substructural logics Examples: modal logics

Example
Example _
» Let K be a variety of residuated lattices (with involution). - (63 Fle a ates arell Nl ligmes 117 = (U i), i S22
Then set I'H ¢« forevery W € F,v: Var — P(W) and w € W,
I'tk ¢ <= for every A€ K and hom v: Fm — A, if v,w IFy forall y € I, then v, w Ik ¢.
if 1 < v(y) for all v € I, then 1 < v(¢). I' -8 ¢ <= for every W € F and v: Var — P(W),
if viwlk~yforallyelI"and we W,
» The relation ¢ is a logic in our sense, the substructural logic i 07 - 0 o el o & 1
naturally associated to K: 7
» H and & tively the local and global modal
if K = Heyting algebras, then k= intuitionistic logic an are respectively the local and global moda

consequences of the system K.
if K = MV-algebra, then k= tukasiwicz logic

» They are different, since

if K = De Morgan monoids, then Fx= relenvance logic R;.

x ¥! Ox while x F& Ox.
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Matrices Matrices as models of logics

» Logics may have different kind of semantics, e.g. relational,

Definition
topological, game-theoretic, categorical and... matrix-based.

Let - be a logic. A matrix (A, F) is a model of a logic - when

Definiti
e |on. — : . if I' - ¢, then for every hom v: Fm — A
1. A (logical) matrix is a pair (A, F) where A is an algebra and )
FCA if v[I'] C F, then v(p) € F.

2. Every class of matrices M induces a logic as follows: Then we set Mod(F) == {(A, F) : (A, F) is a model of +}.

I'tm ¢ < for every (A, F) € M and hom v: Fm — A T — e ———
if v[I'] C F, then v(p) € F.

Every logic |- coincides with the logic Fpyjoq(+) induced by its
Example models Mod(}-).

> If K'is a variety of residuated lattices, then - is the logic » Drawback: Mod(F) is a very artificial class of matrices, since
induced by the following class of matrices:

(A, A) € Mod(-) for every algebra A.
{(A,11): A€ K}




» We need a process to tame the matrices in Mod(+):

Definition
Definition Let - be a logic. The class of reduced models of I is
C A.
Let A be an algebra and F C A Mod™ (1) =1 Mod(I)*
1. A congruence f € ConA is compatible with F when %
=I{(A,F)™ : (A, F) € Mod(-)}
if a€ F and (a,b) € 6, then b e F. ={(A,F) € Mod() : 27F = 1da}
%k o . k
2. The largest such congruence (it exists!) is called the Leibniz Alg™(F) ={A:3F C As.t. (A F) € Mod™(F)}. |
congruence of F (over A), and is denoted by £24F.
3. The reduction of (A, F) is (A, F)* = (A/R2AF, F/QAF). Completeness (2nd version)
’ Every logic | coincides with the logic FMod* () induced by its
Proposition reduced models Mod™(1).
Every class of matrices M induces the same logic of M*.
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Reduced models: examples Leibniz congruence again

» Reduced models have been defined thanks to the Leibniz
congruence.

» In most cases, reduced models (as opposed to arbitrary
models) of a logic are its intended matrix semantics.

Definition

Let A be an algebra. A map p: A — A is a unary polynomial

function of A if there is a term ¢(x, y) and elements ¢ € A such

Mod*(l—K) = {(A,11): AcK}. that for every a € A,

Example: substructural logics
» If K is a variety of residuated lattices (with involution), then

p(a) = ¢*(a,©).

Example: modal logics
» Let MA the variety of modal algebras, then Theorem

Mod*(H8) = {(A, {1}) : A € MA} Let A be an algebra, F C A, and a,b € A.

Mod*(F') = {(A,F) : Ae MA and F is a lattice filter, (a, b) € NAF < for every unary pol. function p: A — A,
which includes a single open filter, i.e. {1}}. p(a) € F if and only if p(b) € F.
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Equational consequences

Convention

Eq = set of equations in countably many variables.

Definition
Let K be a class of algebras and © U {a = ¢} C Eg.
© Fk ¢ = 1) <= for every A € K and hom v: Fm — A,
if v(a) = v(pB) for every a = 3 € ©,
then v(p) = v(v).

The relation Fi is the equational consequence relative to K.

» Remark: Fk is not Birkhoff consequence of equational logic.

Generalized quasi-equations

Theorem
1. A class of algebras K is axiomatizable by generalized
quasi-equations if and only if it is closed under I, S, P and U,
where

U(W) = {A: B € W for all countably generated B € S(A)}.

2. For a generalized quasi-variety K TFAE:
» K is axiomatizable by quasi-equations.
» K is closed under B,.
» Ek is finitary.

Definition
A class of algebras is a (generalized) quasi-variety if is
axiomatizable by (generalized) quasi-equations.
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Generalized quasi-equations

Definition
1. A generalized quasi-equation is a formula
d)::/\a,-zﬁ,-—)cpzq/)
i€l
written in at most countably many variables.
2. Let K be a class of algebras, then
KE NaimBi o orip={aimfiicl}rcomy
icl
K I=V>?<(/\a,- ~ B) = g~ ¢)
i€l

3. A quasi-equation is a generalized quasi-equation whose
antecendent is finite.

Structural transformers

Definition
A structural transformer of formulas into equations is a map

7: P(Fm) — P(Eq)
which commutes with unions and substitutions, i.e.

()= J 7(7) and 7(oT) = o7
yeI

» If 7: P(Fm) — P(Eq) is a structural transformer, then
E(x) = 7(x) is only in variable x, and for every I' C Fm,

(1) = | E().

» Structural transformers p: P(Eq) — P(Fm) of equations into
formulas are defined similarly.
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Algebraizable logics Algebraizable logics

Definition
Definition A logic I is algebraizable if there exist a generalized quasi-variety K
A logic | is algebraizable if there exist a generalized quasi-variety K and structural transformers
and structural transformers
7: P(Fm) <— P(Eq): p
: P(Fm) +— P(Eq):
7 P(Fm) (Eq): p such that
such that
I'tp<—=1(I)Ex T(p) (ALG1)
I'Fyp<=1(I')Fx T(p) (ALG1) x=y =k Tp(x=y) (ALG3)
pO)Fplp=y) = OFkp=1 (ALG2)
» Remark: Conditions (ALG2) and (ALG4) are redundant.
x~y ==y To(x x y) (ALG3) (ALG2) and (ALGA)
x Ak p7(x) (ALG4) Theorem
‘ If - is algebraizable, then the class K is uniquely determined and is
called the equivalent algebraic semantics of .
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Algebraizable logics: examples Non-Algebraizable logics: examples
Example: substructural logics Proposition
If K is a variety of residuated lattices, then g is algebraizable with Algebr.aizable logics have theorems, i.e. if b is algebraizable, then
equivalent algebraic semantics K via: there is ¢ such that () - . |
T([)={1<~v:y€eTl} Example: non-algebraizable logics
pP(©) = {(a\B) A (B\a) : a = p € O}. > All logics without theorems, e.g.
» Exercise: Prove that the global modal consequence 8 is {A, V}-fragment of classical logic
algebraizable with equivalent algebraic semantics the variety of Belnap-Dunn logic (without constants)
modal algebras. Kleene 3-valued logics (without constants)
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Algebraizable logics: syntactic characterization

» We need to investigate the definability of Leibniz congruence:

Theorem (definability of Leibniz congruence)
Let - be a logic and A(x, y) be a set of formulas. TFAE:
1. For every model (A, F) of -,

(a,b) € RAF «— A*(a,b) C F.

2. The following inferences are valid in

0= Ax,x) (Ref)
x, A(x,y)Fy (MP)
U A, yi) F AF(R), £(7)) (Rep)

i<n

for all connectives f of |-.

Algebraizable logics: syntactic characterization

Corollary

1. The equiv. alg. semantics of an alg. logic I is Alg™(F).

2. Algebriazability is preserved by extensions (not necessarily
axiomatic).

Theorem

If - is an algebraizable logic with equivalent algebraic semantics K,
then there is a dual isomorphism between the complete lattice of
extensions of - and subgeneralized quasi-varieties of K.

Example

The typical correspondence between axiomatic extensions and
subvarieties (e.g. normal modal logics, superintuitionistic logics
etc.) is a special instance of this phenomenon.
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Theorem (syntactic characterization of algebraizability)

A logic I is algebraizable if and only if there are a set of formulas
A(x,y) and a set of equations E(x) such that for all connectives f,

0 F A(x,x) (Ref)

X Alx,y) Fy (MP)
U A ) F AR A7) (Rep)
) AE(x) 4k x (ALG3)

In this case,

(A,F) € Mod™(F) «=F ={ac A: AEF E(a)} and
AE E(I') — E(y) for every I' - ¢
AEEA(x=y) > x=y.

» Generalized quasi-varieties need not be closed under H.

Definition
Let K be a generalized quasi-variety and A and algebra. A
congruence 6 € ConA is a K-congruence if A/0 € K.

ConkA = {6 € ConA: 0 is a K-congruence}.

» ConkA is a complete lattice, since K is closed under subdirect
products (and contains the trivial algebra).

Proposition

If K is a generalized quasi-variety, then Conk Fm coincides with the
set Th(Fk) of closed sets of C-,.

Algebraizable logics: syntactic characterization

R4 /1

Algebraizable logics: semantic characterization
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Algebraizable logics: semantic characterization Algebraizable logics: semantic characterization

Definition Theorem (semantic characterization of algebraizability)

Let F be a logic and A and algebra. A set F C A is a deductive Let - be a logic and K a generalized quasi-variety. TFAE:

iy @i [ om 2, B 402 17) @ bied() 1. F is algebraizable with equivalent algebraic semantics K.

FirA={F CA: (A F) € Mod(F)}. 2. For every algebra A there is a lattice isomorphism
®A: Fir A — ConkA that commutes with endomorphisms o
in the sense that ®Ac—1F = 0~ 1®AF for every F € FiL A.

3. There is a lattice isomorphism ®: Th(F) — Th(Fk) that
Proposition commutes with substitutions o in the sense that
S0 = o7 1®T for every I' € Th(F).

> FirAis a complete lattice.

If - is a logic, then Fi Fm coincides with the set Th(l-) of closed
sets of C-. Moreover, A can be always taken to be £24: Fir A — ConkA.
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Algebraizable logics: semantic characterization

Example: semantic meaning of algebraizability

» Thus algebraizability abstracts the idea of a correspondence

between congruences and special subsets of algebras (e.g.
filters/ideals):

Boolean algebras «— lattice filters
Heyting algebras <— lattice filters
residuated lattices <— lattice filters containing 1 and
closed under fusion
modal algebras <— open lattice filters
groups <— normal subgroups
rings <— two-sided ideals.

» The semantic description of algebraizability is also readily
falsifiable, e.g. Fjc is not algebraizable! 29/1



