Mathematica Bohemica, online first, 12 pp.

Existence and multiplicity of solutions for a fractional $p$-Laplacian problem of Kirchhoff type via Krasnoselskii's genus

Ghania Benhamida, Toufik Moussaoui

Received January 28, 2017.   First published August 14, 2017.

Ghania Benhamida, Laboratoire d'Equations aux Dérivées partielles non linéaires et Histoire des Mathématiques, Department of Mathematics, Ecole Normale Supérieure de Kouba, Algiers, Algeria, e-mail: benhamidag@yahoo.fr; Toufik Moussaoui, Laboratory of Fixed Point Theory and Applications, Department of Mathematics, Ecole Normale Supérieure de Kouba, Algiers, Algeria, e-mail: moussaoui@ens-kouba.dz

Abstract: We use the genus theory to prove the existence and multiplicity of solutions for the fractional $p$-Kirchhoff problem $\begin{cases} \displaystyle-\biggl[M \biggl(\int_Q\frac{\vert u(x)-u(y)\vert^p}{\vert x-y \vert^{N+ps}} {\rm d}x {\rm d}y\biggr)\biggr]^{p-1} (-\Delta)_p^su=\lambda h(x,u) \quad\text{in}\ \Omega, \\ u=0 \quad\text{on}\ \mathbb{R}^N \setminus\Omega, \end{cases} $ where $\Omega$ is an open bounded smooth domain of $\mathbb{R}^N$, $p>1$, $N>ps$ with $s\in(0,1)$ fixed, $Q = \mathbb{R}^{2N}\setminus(C\Omega\times C\Omega)$, $\lambda> 0$ is a numerical parameter, $M$ and $h$ are continuous functions.

Keywords: existence results; genus theory; fractional $p$-Kirchhoff problem

Classification (MSC 2010): 35A15, 34A08, 35B38

DOI: 10.21136/MB.2017.0010-17

Full text available as PDF.


References:
[1] G. Autuori, F. Colasuonno, P. Pucci: On the existence of stationary solutions for higher order $p$-Kirchhoff problems. Commun. Contemp. Math. 16 (2014), Article ID 1450002, 43 pages. DOI 10.1142/S0219199714500023 | MR 3253900 | Zbl 1325.35129
[2] L. Caffarelli: Nonlocal equations, drifts and games. Nonlinear Partial Differential Equations. Abel Symposia, vol. 7, (H. Holden et al., eds.). Springer, Heidelberg (2012), 37-52. DOI 10.1007/978-3-642-25361-4_3 | MR 3289358 | Zbl 1266.35060
[3] A. Castro: Metodos variacionales y analisis functional no linear. X Colóquio Colombiano de Matematicas. Monograph published by the Colombian Math. Society, Paipa (1980) (In Spain.).
[4] J. Chen, B. Cheng, X. Tang: New existence of multiple solutions for nonhomogeneous Schrödinger-Kirchhoff problems involving the fractional $p$-Laplacian with sign-changing potential. Rev. Real Acad. Cien. Exact., Fís. Nat., Serie A. Mat. (2016), 1-24. DOI 10.1007/s13398-016-0372-5
[5] W. Chen, S. Deng: Existence of solutions for a Kirchhoff type problem involving the fractional $p$-Laplace operator. Electron. J. Qual. Theory Differ. Equ. 2015 (2015), Article ID 87, 8 pages. DOI 10.14232/ejqtde.2015.1.87 | MR 3434217 | Zbl 1349.35088
[6] K. Cheng, Q. Gao: Sign-changing solutions for the stationary Kirchhoff problems involving the fractional Laplacian in $\mathbb{R^N}$. Avaible at https://arxiv.org/abs/1701.03862v1.
[7] D. C. Clarke: A variant of the Lusternik-Schnirelman theory. Math. J., Indiana Univ. 22 (1972), 65-74. DOI 10.1512/iumj.1972.22.22008 | MR 0296777 | Zbl 0228.58006
[8] F. Colasuonno, P. Pucci: Multiplicity of solutions for $p(x)$-polyharmonic elliptic Kirchhoff equations. Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 74 (2011), 5962-5974. DOI 10.1016/j.na.2011.05.073 | MR 2833367 | Zbl 1232.35052
[9] F. J. S. A. Corrêa, G. M. Figueiredo: On an elliptic equation of $p$-Kirchhoff-type via variational methods. Bull. Aust. Math. Soc. 74 (2006), 263-277. DOI 10.1017/S000497270003570X | MR 2260494 | Zbl 1108.45005
[10] F. J. S. A. Corrêa, G. M. Figueiredo: On a $p$-Kirchhoff equation via Krasnoselskii's genus. Appl. Math. Lett. 22 (2009), 819-822. DOI 10.1016/j.aml.2008.06.042 | MR 2523587 | Zbl 1171.35371
[11] E. Di Nezza, G. Palatucci, E. Valdinoci: Hitchhiker's guide to the fractional Sobolev spaces. Bull. Sci. Math. 136 (2012), 521-573. DOI 10.1016/j.bulsci.2011.12.004 | MR 2944369 | Zbl 1252.46023
[12] M. Dreher: The Kirchhoff equation for the $p$-Laplacian. Rend. Semin. Mat. Univ. Politec. Torino 64 (2006), 217-238. MR 2272915 | Zbl 1178.35006
[13] S. Goyal, K. Sreenadh: Nehari manifold for non-local elliptic operator with concave-convex nonlinearities and sign-changing weight functions. Proc. Indian Acad. Sci., Math. Sci. 125 (2015), 545-558. DOI 10.1007/s12044-015-0244-5 | MR 3432207 | Zbl 1332.35375
[14] O. Kavian: Introduction à la Théorie des Points Critiques et Applications aux Problèmes Elliptiques. Mathématiques et Applications. Springer, Paris (1993). MR 1276944 | Zbl 0797.58005
[15] M. A. Krasnoselsk'ii: Topological Methods in the Theory of Nonlinear Integral Equations. International Series of Monographs on Pure and Applied Mathematics 45. Pergamon Press, Oxford; MacMillan, New York (1964). MR 0159197 | Zbl 0111.30303
[16] G. Molica Bisci, V. D. Radulescu, R. Servadei: Variational Methods for Nonlocal Fractional Problems. Encyclopedia of Mathematics and its Applications 162. Cambridge University Press, Cambridge (2016). DOI 10.1017/CBO9781316282397 | MR 3445279 | Zbl 1356.49003
[17] A. Ourraoui: On a $p$-Kirchhoff problem involving a critical nonlinearity. C. R. Math., Acad. Sci. Paris 352 (2014), 295-298. DOI 10.1016/j.crma.2014.01.015 | MR 3186916 | Zbl 1298.35096
[18] I. Peral: Multiplicity of solutions for the $p$-Laplacian. Second School of Nonlinear Functional Analysis and Applications to Differential Equations, ICTP, Trieste (1997).
[19] P. H. Rabinowitz: Minimax Methods in Critical Point Theory with Applications to Differential Equations. CBMS Regional Conference Series in Mathematics 65. AMS, Providence (1984). DOI 10.1090/cbms/065 | MR 0845785 | Zbl 0609.58002
[20] R. Servadei, E. Valdinoci: Mountain pass solutions for non-local elliptic operators. J. Math. Anal. Appl. 389 (2012), 887-898. DOI 10.1016/j.jmaa.2011.12.032 | MR 2879266 | Zbl 1234.35291
[21] R. Servadei, E. Valdinoci: The Brezis-Nirenberg result for the fractional Laplacian. Trans. Am. Math. Soc. 367 (2015), 67-102. DOI 10.1090/S0002-9947-2014-05884-4 | MR 3271254 | Zbl 1323.35202
[22] L. Silvestre: Regularity of the obstacle problem for a fractional power of the Laplace operator. Commun. Pure Appl. Math. 60 (2007), 67-112. DOI 10.1002/cpa.20153 | MR 2270163 | Zbl 1141.49035
[23] L. Wang, B. Zhang: Infinitely many solutions for Schrodinger-Kirchhoff type equations involving the fractional $p$-Laplacian and critical exponent. Electron. J. Differ. Equ. 2016 (2016), Paper No. 339, 18 pages. MR 3604784 | Zbl 1353.35307
[24] L. Zhang, Y. Chen: Infinitely many solutions for sublinear indefinite nonlocal elliptic equations perturbed from symmetry. Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 151 (2017), 126-144. DOI 10.1016/j.na.2016.12.001 | MR 3596674 | Zbl 06675023


Access to the full text of journal articles on this site is restricted to the subscribers. For access please contact editorial office at mathboh@math.cas.cz indicating DOI.
[List of online first articles] [Contents of Mathematica Bohemica] [Full text of the older issues of Mathematica Bohemica at DML-CZ]