Mathematica Bohemica, online first, 9 pp.

Relatively pseudocomplemented posets

Ivan Chajda, Helmut Länger

Received March 4, 2016.   First published May 29, 2017.

Ivan Chajda, Palacký University Olomouc, Faculty of Science, Department of Algebra and Geometry, 17. listopadu 12, 771 46 Olomouc, Czech Republic, e-mail: ivan.chajda@upol.cz; Helmut Länger, TU Wien, Fakultät für Mathematik und Geoinformation, Institut für Diskrete Mathematik und Geometrie, Wiedner Hauptstrasse 8-10, 1040 Wien, Austria, e-mail: helmut.laenger@tuwien.ac.at

Abstract: We extend the notion of a relatively pseudocomplemented meet-semilattice to arbitrary posets. We show some properties of the binary operation of relative pseudocomplementation and provide some corresponding characterizations. We show that relatively pseudocomplemented posets satisfying a certain simple identity in two variables are join-semilattices. Finally, we show that every relatively pseudocomplemented poset is distributive and that the converse holds for posets satisfying the ascending chain condition and one more natural condition. Suitable examples are provided.

Keywords: relatively pseudocomplemented poset; join-semilattice; distributive poset

Classification (MSC 2010): 06A11, 06A06, 06D15

DOI: 10.21136/MB.2017.0037-16

Full text available as PDF.


References:
  [1] R. Balbes: On free pseudo-complemented and relatively pseudo-complemented semi-lattices. Fundam. Math. 78 (1973), 119-131. MR 0319832 | Zbl 0277.06001
  [2] I. Chajda: An extension of relative pseudocomplementation to non-distributive lattices. Acta Sci. Math. 69 (2003), 491-496. MR 2034188 | Zbl 1048.06005
  [3] I. Chajda: Relatively pseudocomplemented directoids. Commentat. Math. Univ. Carol. 50 (2009), 349-357. MR 2573409 | Zbl 1212.06004
  [4] I. Chajda: Pseudocomplemented and Stone posets. Acta Univ. Palacki. Olomuc., Fac. Rerum Nat., Math. 51 (2012), 29-34. MR 3060006 | Zbl 1302.06001
  [5] I. Chajda, R. Halaš, J. Kühr: Semilattice Structures. Research and Exposition in Mathematics 30. Heldermann, Lemgo (2007). MR 2326262 | Zbl 1117.06001
  [6] I. Chajda, M. Kolařik, F. Švrček: Properties of relatively pseudocomplemented directoids. Math. Bohem. 136 (2011), 9-23. MR 2807704 | Zbl 1224.06006
  [7] I. Chajda, H. Länger: Directoids. An Algebraic Approach to Ordered Sets. Research and Exposition in Mathematics 32. Heldermann, Lemgo (2011). MR 2850357 | Zbl 1254.06002
  [8] I. Chajda, J. Rachůnek: Forbidden configurations for distributive and modular ordered sets. Order 5 (1989), 407-423. DOI 10.1007/BF00353659 | MR 1010389 | Zbl 0674.06003
  [9] J. Cīrulis: Implication in sectionally pseudocomplemented posets. Acta Sci. Math. 74 (2008), 477-491. MR 2487926 | Zbl 1199.03059
  [10] P. Köhler: Brouwerian semilattices. Trans. AMS 268 (1981), 103-126. DOI 10.2307/1998339 | MR 0628448 | Zbl 0473.06003
  [11] J. Larmerová, J. Rachůnek: Translations of distributive and modular ordered sets. Acta Univ. Palacki. Olomuc., Fac. Rerum Nat., Math. 27 (1988), 13-23. MR 1039879 | Zbl 0693.06003
  [12] W. C. Nemitz: Implicative semi-lattices. Trans. AMS 117 (1965), 128-142. DOI 10.2307/1994200 | MR 0176944 | Zbl 0674.06003
  [13] P. V. Venkatanarasimhan: Pseudo-complements in posets. Proc. AMS 28 (1971), 9-17. DOI 10.2307/2037746 | MR 0272687 | Zbl 0218.06002


Access to the full text of journal articles on this site is restricted to the subscribers. For access please contact editorial office at mathboh@math.cas.cz indicating DOI.
[List of online first articles] [Contents of Mathematica Bohemica] [Full text of the older issues of Mathematica Bohemica at DML-CZ]