Mathematica Bohemica, online first, 14 pp.

Positive periodic solutions of a neutral functional differential equation with multiple delays

Yongxiang Li, Ailan Liu

Received April 11, 2016.   First published May 18, 2017.

Yongxiang Li, Ailan Liu, Department of Mathematics, Northwest Normal University, 967 Anning East Road, Lanzhou 730070, People's Republic of China, e-mail: liyxnwnu@163.com, 15339860773@163.com

Abstract: This paper deals with the existence of positive $\omega$-periodic solutions for the neutral functional differential equation with multiple delays $(u(t)-cu(t-\delta))'+a(t) u(t)=f(t, u(t-\tau_1), \cdots, u(t-\tau_n))$. The essential inequality conditions on the existence of positive periodic solutions are obtained. These inequality conditions concern with the relations of $c$ and the coefficient function $a(t)$, and the nonlinearity $f(t, x_1,\cdots, x_n)$. Our discussion is based on the perturbation method of positive operator and fixed point index theory in cones.

Keywords: neutral delay differential equation; positive periodic solution; cone; fixed point index

Classification (MSC 2010): 34K13, 34K40, 47H11

DOI: 10.21136/MB.2017.0050-16

Full text available as PDF.


References:
  [1] K. Deimling: Nonlinear Functional Analysis. Springer, Berlin (1985). DOI 10.1007/978-3-662-00547-7 | MR 0787404 | Zbl 0559.47040
  [2] H. I. Freedman, J. Wu: Periodic solutions of single-species models with periodic delay. SIAM J. Math. Anal. 23 (1992), 689-701. DOI 10.1137/0523035 | MR 1158828 | Zbl 0764.92016
  [3] D. Guo, V. Lakshmikantham: Nonlinear Problems in Abstract Cones. Notes and Reports in Mathematics in Science and Engineering 5. Academic Press, Boston (1988). MR 0959889 | Zbl 0661.47045
  [4] J. K. Hale: Theory of Functional Differential Equations. Applied Mathematical Sciences. Vol. 3. Springer, New York (1977). DOI 10.1007/978-1-4612-9892-2 | MR 0508721 | Zbl 0352.34001
  [5] L. Hatvani, T. Krisztin: On the existence of periodic solutions for linear inhomogeneous and quasilinear functional differential equations. J. Differ. Equations 97 (1992), 1-15. DOI 10.1016/0022-0396(92)90080-7 | MR 1161308 | Zbl 0758.34054
  [6] S. Kang, G. Zhang: Existence of nontrivial periodic solutions for first order functional differential equations. Appl. Math. Lett. 18 (2005), 101-107. DOI 10.1016/j.aml.2004.07.018 | MR 2121560 | Zbl 1075.34064
  [7] Y. Kuang: Delay Differential Equations with Applications in Population Dynamics. Mathematics in Science and Engineering 191. Academic Press, Boston (1993). MR 1218880 | Zbl 0777.34002
  [8] Y. Luo, W. Wang, J. Shen: Existence of positive periodic solutions for two kinds of neutral functional differential equations. Appl. Math. Lett. 21 (2008), 581-587. DOI 10.1016/j.aml.2007.07.009 | MR 2412382 | Zbl 1149.34040
  [9] J. Mallet-Paret, R. D. Nussbaum: Global continuation and asymptotic behavior for periodic solutions of a differential-delay equation. Ann. Math. Pure Appl. (4) 145 (1986), 33-128. DOI 10.1007/BF01790539 | MR 0886709 | Zbl 0617.34071
  [10] E. Serra: Periodic solutions for some nonlinear differential-equations of neutral type. Nonlinear Anal., Theory Methods Appl. 17 (1991), 139-151. DOI 10.1016/0362-546X(91)90217-O | MR 1118073 | Zbl 0735.34066
  [11] A. Wan, D. Jiang: Existence of positive periodic solutions for functional differential equations. Kyushu J. Math. 56 (2002), 193-202. DOI 10.2206/kyushujm.56.193 | MR 1898353 | Zbl 1012.34068
  [12] A. Wan, D. Jiang, X. Xu: A new existence theory for positive periodic solutions to functional differential equations. Comput. Math. Appl. 47 (2004), 1257-1262. DOI 10.1016/S0898-1221(04)90120-4 | MR 2070981 | Zbl 1073.34082


Access to the full text of journal articles on this site is restricted to the subscribers. For access please contact editorial office at mathboh@math.cas.cz indicating DOI.
[List of online first articles] [Contents of Mathematica Bohemica] [Full text of the older issues of Mathematica Bohemica at DML-CZ]