MATHEMATICA BOHEMICA, Vol. 141, No. 3, pp. 315-325, 2016

Complete Riemannian manifolds admitting a pair of Einstein-Weyl structures

Amalendu Ghosh

Received October 25, 2014.   First published June 16, 2016.

Amalendu Ghosh, Department of Mathematics, Chandernagore College, Strand Road, Chandannagar, District Hooghly, 712 136, West Bengal, India, e-mail: aghosh_70@yahoo.com

Abstract: We prove that a connected Riemannian manifold admitting a pair of non-trivial Einstein-Weyl structures $(g, \pm\omega)$ with constant scalar curvature is either Einstein, or the dual field of $\omega$ is Killing. Next, let $(M^n, g)$ be a complete and connected Riemannian manifold of dimension at least $3$ admitting a pair of Einstein-Weyl structures $(g, \pm\omega)$. Then the Einstein-Weyl vector field $E$ (dual to the $1$-form $\omega$) generates an infinitesimal harmonic transformation if and only if $E$ is Killing.

Keywords: Weyl manifold; Einstein-Weyl structure; infinitesimal harmonic transformation

Classification (MSC 2010): 53C25, 53C15, 53C20

DOI: 10.21136/MB.2016.0072-14

Full text available as PDF.


References:
  [1] A. L. Besse: Einstein Manifolds. Ergebnisse der Mathematik und ihrer Grenzgebiete (3) 10 Springer, Berlin (1987), German. DOI 10.1007/978-3-540-74311-8 | MR 0867684 | Zbl 0613.53001
  [2] D. E. Blair: Riemannian Geometry of Contact and Symplectic Manifolds. Progress in Mathematics 203 Birkhäuser, Boston (2010). DOI 10.1007/978-0-8176-4959-3 | MR 2682326 | Zbl 05771354
  [3] C. P. Boyer, K. Galicki: Sasakian Geometry. Oxford Mathematical Monographs Oxford University Press, Oxford (2008). MR 2382957 | Zbl 1155.53002
  [4] C. P. Boyer, K. Galicki, P. Matzeu: On $\eta$-Einstein Sasakian geometry. Comm. Math. Phys. 262 (2006), 177-208. DOI 10.1007/s00220-005-1459-6 | MR 2200887 | Zbl 1103.53022
  [5] P. Gauduchon: Weil-Einstein structures, twistor spaces and manifolds of type {$S^1\times S^3$}. J. Reine Angew. Math. 469 (1995), 1-50 French. DOI 10.1515/crll.1995.469.1 | MR 1363825 | Zbl 0858.53039
  [6] P. Gauduchon: La 1-forme de torsion d'une variété hermitienne compacte. Math. Ann. 267 (1984), 495-518 French. DOI 10.1007/BF01455968 | MR 0742896 | Zbl 0523.53059
  [7] A. Ghosh: Certain infinitesimal transformations on contact metric manifolds. J. Geom. 106 (2015), 137-152. DOI 10.1007/s00022-014-0240-4 | MR 3320884 | Zbl 1319.53091
  [8] A. Ghosh: Einstein-Weyl structures on contact metric manifolds. Ann. Global Anal. Geom. 35 (2009), 431-441. DOI 10.1007/s10455-008-9145-5 | MR 2506245 | Zbl 1180.53031
  [9] T. Higa: Weyl manifolds and Einstein-Weyl manifolds. Comment. Math. Univ. St. Pauli 42 (1993), 143-160. MR 1241295 | Zbl 0811.53045
  [10] S. Ishihara: On infinitesimal concircular transformations. Kodai Math. Semin. Rep. 12 (1960), 45-56. DOI 10.2996/kmj/1138844260 | MR 0121744 | Zbl 0101.14203
  [11] F. Narita: Einstein-Weyl structures on almost contact metric manifolds. Tsukuba J. Math. 22 (1998), 87-98. MR 1637656 | Zbl 0995.53035
  [12] O. Nouhaud: Déformations infinitésimales harmoniques remarquables. C. R. Acad. Sci. Paris Sér. A 275 (1972), 1103-1105 French. MR 0464090 | Zbl 0243.53023
  [13] M. Okumura: Some remarks on space with a certain contact structure. Tohoku Math. J. (2) 14 (1962), 135-145. DOI 10.2748/tmj/1178244168 | MR 0143148 | Zbl 0119.37701
  [14] H. Pedersen, A. Swann: Einstein-Weyl geometry, the Bach tensor and conformal scalar curvature. J. Reine Angew. Math. 441 (1993), 99-113. DOI 10.1515/crll.1993.440.99 | MR 1228613 | Zbl 0776.53027
  [15] H. Pedersen, A. Swann: Riemannian submersions, four-manifolds and Einstein-Weyl geometry. Proc. Lond. Math. Soc. (3) 66 (1993), 381-399. DOI 10.1112/plms/s3-66.2.381 | MR 1199072 | Zbl 0742.53014
  [16] D. Perrone: Contact metric manifolds whose characteristic vector field is a harmonic vector field. Differ. Geom. Appl. 20 (2004), 367-378. DOI 10.1016/j.difgeo.2003.12.007 | MR 2053920 | Zbl 1061.53028
  [17] S. E. Stepanov, I. G. Shandra: Geometry of infinitesimal harmonic transformations. Ann. Global Anal. Geom. 24 (2003), 291-299. DOI 10.1023/A:1024753028255 | MR 1996772 | Zbl 1035.53090
  [18] S. E. Stepanov, I. I. Tsyganok, J. Mikeš: From infinitesimal harmonic transformations to Ricci solitons. Math. Bohem. 138 (2013), 25-36. MR 3076218 | Zbl 1274.53096
  [19] S. Tanno: The topology of contact Riemannian manifolds. Ill. J. Math. 12 (1968), 700-717. MR 0234486 | Zbl 0165.24703
  [20] K. P. Tod: Compact 3-dimensional Einstein-Weyl structures. J. Lond. Math. Soc. (2) 45 (1992), 341-351. DOI 10.1112/jlms/s2-45.2.341 | MR 1171560 | Zbl 0761.53026
  [21] K. Yano: Integral Formulas in Riemannian Geometry. Pure and Applied Mathematics, No. 1 Marcel Dekker, New York (1970). MR 0284950 | Zbl 0213.23801


Access to the full text of journal articles on this site is restricted to the subscribers of Myris Trade. To activate your access, please contact Myris Trade at myris@myris.cz.
[Previous Article] [Next Article] [Contents of This Number] [Contents of Mathematica Bohemica] [Full text of the older issues of Mathematica Bohemica at DML-CZ]