MATHEMATICA BOHEMICA, Vol. 141, No. 3, pp. 363-384, 2016

On the strongly ambiguous classes of some biquadratic number fields

Abdelmalek Azizi, Abdelkader Zekhnini, Mohammed Taous

Received February 23, 2014.   First published June 20, 2016.

Abdelmalek Azizi, Department of Mathematics, Sciences Faculty, Mohammed First University, Boulevard Mohammed IV, B.P. 524, Oujda, 60000, Morocco, e-mail: abdelmalekazizi@yahoo.fr; Abdelkader Zekhnini, Department of Mathematics, Pluridisciplinary Faculty of Nador, Mohammed First University, B.P. 300, Selouane, Nador, 62700, Morocco, e-mail: zekha1@yahoo.fr; Mohammed Taous, Department of Mathematics, Sciences and Techniques Faculty, Moulay Ismail University, B.P. 509, Boutalamine, Errachidia, 52000, Morocco, e-mail: taousm@hotmail.com

Abstract: We study the capitulation of $2$-ideal classes of an infinite family of imaginary bicyclic biquadratic number fields consisting of fields $\Bbbk=\Bbb Q(\sqrt{2pq}, i)$, where $ i=\sqrt{-1}$ and $p\equiv-q\equiv1 \pmod4$ are different primes. For each of the three quadratic extensions $\Bbb K/\Bbbk$ inside the absolute genus field $\Bbbk^{(*)}$ of $\Bbbk$, we determine a fundamental system of units and then compute the capitulation kernel of $\Bbb K/\Bbbk$. The generators of the groups $ Am_s(\Bbbk/F)$ and $ Am(\Bbbk/F)$ are also determined from which we deduce that $\Bbbk^{(*)}$ is smaller than the relative genus field $(\Bbbk/\Bbb Q( i))^*$. Then we prove that each strongly ambiguous class of $\Bbbk/\Bbb Q( i)$ capitulates already in $\Bbbk^{(*)}$, which gives an example generalizing a theorem of Furuya (1977).

Keywords: absolute genus field; relative genus field; fundamental system of units; 2-class group; capitulation; quadratic field; biquadratic field; multiquadratic CM-field

Classification (MSC 2010): 11R11, 11R16, 11R20, 11R27, 11R29, 11R37

DOI: 10.21136/MB.2016.0022-14

Full text available as PDF.


References:
  [1] A. Azizi: On the capitulation of the 2-class group of $\Bbbk=\Bbb Q(\sqrt2pq, i)$ where $p\equiv-q\equiv1\bmod4$. Acta Arith. 94 French (2000), 383-399. MR 1779950 | Zbl 0953.11033
  [2] A. Azizi: Units of certain imaginary abelian number fields over $\Bbb Q$. Ann. Sci. Math. Qué. 23 French (1999), 15-21. MR 1721726 | Zbl 1041.11072
  [3] A. Azizi, M. Taous: Determination of the fields $\Bbbk=\Bbb Q(\sqrt d,\sqrt{-1})$ given the 2-class groups are of type $(2,4)$ or $(2,2,2)$. Rend. Ist. Mat. Univ. Trieste 40 French (2008), 93-116. MR 2583453 | Zbl 1215.11107
  [4] A. Azizi, A. Zekhnini, M. Taous: On the strongly ambiguous classes of $\Bbbk/\Bbb Q( i)$ where $\Bbbk=\Bbb Q(\sqrt{2p_1p_2}, i)$. Asian-Eur. J. Math. 7 (2014), Article ID 1450021, 26 pages. DOI 10.1142/S1793557114500211 | MR 3189588 | Zbl 1292.11119
  [5] A. Azizi, A. Zekhnini, M. Taous: Structure of $ Gal(\Bbbk_2^{(2)}/\Bbbk)$ for some fields $\Bbbk=\Bbb Q(\sqrt{2p_1p_2}, i)$ with $ Cl_2(\Bbbk)\simeq(2,2,2)$. Abh. Math. Semin. Univ. Hamb. 84 (2014), 203-231. MR 3267742 | Zbl 06399619
  [6] A. Azizi, A. Zekhnini, M. Taous: On the generators of the $2$-class group of the field $\Bbbk=\Bbb Q(\sqrt{d}, i)$. Int. J. of Pure and Applied Math. 81 (2012), 773-784.
  [7] A. Azizi, A. Zekhnini, M. Taous: On the unramified quadratic and biquadratic extensions of the field $\Bbb Q(\sqrt d, i)$. Int. J. Algebra 6 (2012), 1169-1173. MR 2974674 | Zbl 1284.11142
  [8] C. Chevalley: Sur la théorie du corps de classes dans les corps finis et les corps locaux. J. Fac. Sci., Univ. Tokyo, Sect. (1) 2 French (1933), 365-476. Zbl 0008.05301
  [9] H. Furuya: Principal ideal theorems in the genus field for absolutely Abelian extensions. J. Number Theory 9 (1977), 4-15. DOI 10.1016/0022-314X(77)90045-2 | MR 0429820 | Zbl 0347.12006
  [10] G. Gras: Class Field Theory: From Theory to Practice. Springer Monographs in Mathematics Springer, Berlin (2003). MR 1941965 | Zbl 1019.11032
  [11] H. Hasse: On the class number of abelian number fields. Mathematische Lehrbücher und Monographien I Akademie, Berlin German (1952). MR 0049239 | Zbl 0046.26003
  [12] F.-P. Heider, B. Schmithals: Zur Kapitulation der Idealklassen in unverzweigten primzyklischen Erweiterungen. J. Reine Angew. Math. 336 German (1982), 1-25. MR 0671319 | Zbl 0505.12016
  [13] M. Hirabayashi, K.-I. Yoshino: Unit indices of imaginary abelian number fields of type $(2,2,2)$. J. Number Theory 34 (1990), 346-361. DOI 10.1016/0022-314X(90)90141-D | MR 1049510 | Zbl 0705.11065
  [14] T. Kubota: Über den bizyklischen biquadratischen Zahlkörper. Nagoya Math. J. 10 German (1956), 65-85. MR 0083009 | Zbl 0074.03001
  [15] F. Lemmermeyer: The ambiguous class number formula revisited. J. Ramanujan Math. Soc. 28 (2013), 415-421. MR 3158989
  [16] S. Louboutin: Hasse unit indices of dihedral octic CM-fields. Math. Nachr. 215 (2000), 107-113. DOI 10.1002/1522-2616(200007)215:1<107::AID-MANA107>3.0.CO;2-A | MR 1768197 | Zbl 0972.11105
  [17] T. M. McCall, C. J. Parry, R. Ranalli: Imaginary bicyclic biquadratic fields with cyclic 2-class group. J. Number Theory 53 (1995), 88-99. DOI 10.1006/jnth.1995.1079 | MR 1344833 | Zbl 0831.11059
  [18] P. J. Sime: On the ideal class group of real biquadratic fields. Trans. Am. Math. Soc. 347 (1995), 4855-4876. DOI 10.2307/2155066 | MR 1333398 | Zbl 0847.11060
  [19] F. Terada: A principal ideal theorem in the genus field. Tohoku Math. J. (2) 23 (1971), 697-718. DOI 10.2748/tmj/1178242555 | MR 0306158 | Zbl 0243.12003
  [20] H. Wada: On the class number and the unit group of certain algebraic number fields. J. Fac. Sci., Univ. Tokyo, Sect. (1) 13 (1966), 201-209. MR 0214565 | Zbl 0158.30103


Access to the full text of journal articles on this site is restricted to the subscribers of Myris Trade. To activate your access, please contact Myris Trade at myris@myris.cz.
[Previous Article] [Next Article] [Contents of This Number] [Contents of Mathematica Bohemica] [Full text of the older issues of Mathematica Bohemica at DML-CZ]