Milton Braitt, Universidade Federal de Santa Catarina, R. Eng. Agronômico Andrei Cristian Ferreira, Trindade, Florianópolis, Santa Catarina 88040-900, Brazil, e-mail: m.braitt@ufsc.br; David Hobby, Donald Silberger, State University of New York, 1 Hawk Drive, New Paltz, NY 12561, USA, e-mail: hobbyd@newpaltz.edu, silbergd@newpaltz.edu
Abstract: Given a groupoid $\langle G, \star\rangle$, and $k \geq3$, we say that $G$ is antiassociative if an only if for all $x_1, x_2, x_3 \in G$, $(x_1 \star x_2) \star x_3$ and $x_1 \star(x_2 \star x_3)$ are never equal. Generalizing this, $\langle G, \star\rangle$ is $k$-antiassociative if and only if for all $x_1, x_2, \ldots, x_k \in G$, any two distinct expressions made by putting parentheses in $x_1 \star x_2 \star x_3 \star\cdots\star x_k$ are never equal. We prove that for every $k \geq3$, there exist finite groupoids that are $k$-antiassociative. We then generalize this, investigating when other pairs of groupoid terms can be made never equal.
Keywords: groupoid; unification
Classification (MSC 2010): 20N02, 08A99, 68Q99, 68T15
DOI: 10.21136/MB.2017.0006-15
Full text available as PDF.
References:
[1] F. Baader, W. Snyder: Unification theory. Handbook of Automated Reasoning A. Robinson et al. North-Holland/Elsevier, Amsterdam, MIT Press Cambridge 445-533 (2001). DOI 10.1016/B978-044450813-3/50010-2 | Zbl 1011.68126
[2] M. S. Braitt, D. Hobby, D. Silberger: Completely dissociative groupoids. Math. Bohem. 137 (2012), 79-97. MR 2978447 | Zbl 1249.20075
[3] M. S. Braitt, D. Silberger: Subassociative groupoids. Quasigroups Relat. Syst. 14 (2006), 11-26. MR 2268823 | Zbl 1123.20059
[4] S. Burris, H. P. Sankappanavar: A Course in Universal Algebra. Graduate Texts in Mathematics 78 Springer, New York (1981). MR 0648287 | Zbl 0478.08001
[5] A. Drápal, T. Kepka: Sets of associative triples. Eur. J. Comb. 6 (1985), 227-231. DOI 10.1016/S0195-6698(85)80032-9 | MR 0818596 | Zbl 0612.05003
[6] J. Herbrand: Recherches sur la théorie de la démonstration. Travaux de la Société des Sciences et des Lettres de Varsovie 33 128 pages (1930), French. MR 3532972 | Zbl 56.0824.02
[7] G. P. Huet: Résolution d'équations dans des langages d'ordre $1,2,\dots,\omega$. Thèse d'État, Université de Paris VII (1976), French.
[8] J. Ježek, T. Kepka: Medial groupoids. Rozpr. Cesk. Akad. Ved, Rada Mat. Prir. Ved 93 (1983), 93 pages. MR 0734873 | Zbl 0527.20044
[9] D. E. Knuth: The Art of Computer Programming. Vol. 1: Fundamental Algorithms. Addison-Wesley Series in Computer Science and Information Processing Addison-Wesley, London (1968). MR 0286317 | Zbl 0191.17903
[10] J. A. Robinson: A machine-oriented logic based on the resolution principle. J. Assoc. Comput. Mach. 12 (1965), 23-41. DOI 10.1145/321250.321253 | MR 0170494 | Zbl 0139.12303
[11] R. P. Stanley: Enumerative Combinatorics. Vol. 2. Cambridge Studies in Advanced Mathematics 62 Cambridge University Press, Cambridge (1999). DOI 10.1017/CBO9780511609589 | MR 1676282 | Zbl 0928.05001