Mathematica Bohemica, online first, 13 pp.

Geometric properties of Wright function

Sudhananda Maharana, Jugal K. Prajapat, Deepak Bansal

Received August 30, 2016.   First published August 8, 2017.

Sudhananda Maharana, Jugal K. Prajapat, Department of Mathematics, Central University of Rajasthan, Bandarsindri, Kishangarh-305817, Dist.-Ajmer, Rajasthan, India, e-mail: snmmath@gmail.com, jkprajapat@gmail.com; Deepak Bansal, Department of Mathematics, College of Engineering and Technology, Karni Industrial Area, Pugal Road, Bikaner-334004, Rajasthan, India, e-mail: deepakbansal_79@yahoo.com

Abstract: In the present paper, we investigate certain geometric properties and inequalities for the Wright function and mention a few important consequences of our main results. A nonlinear differential equation involving the Wright function is also investigated.

Keywords: analytic function; univalent function; starlike function; strongly starlike function; convex function; close-to-convex function; Wright function; Bessel function; subordination of functions

Classification (MSC 2010): 30C45, 33C10

DOI: 10.21136/MB.2017.0077-16

Full text available as PDF.


References:
[1] D. Bansal, J. K. Prajapat: Certain geometric properties of the Mittag-Leffler functions. Complex Var. Elliptic Equ. 61 (2016), 338-350. DOI 10.1080/17476933.2015.1079628 | MR 3454110 | Zbl 1336.33039
[2] Á. Baricz, P. A. Kupán, R. Szász: The radius of starlikeness of normalized Bessel functions of the first kind. Proc. Am. Math. Soc. 142 (2014), 2019-2025. DOI 10.1090/S0002-9939-2014-11902-2 | MR 3182021 | Zbl 1291.30062
[3] Á. Baricz, S. Ponnusamy: Starlikeness and convexity of generalized Bessel functions. Integral Transforms Spec. Funct. 21 (2010), 641-653. DOI 10.1080/10652460903516736 | MR 2743533 | Zbl 1205.30010
[4] Á. Baricz, R. Szász: The radius of convexity of normalized Bessel functions of the first kind. Anal. Appl. Singap. 12 (2014), 485-509. DOI 10.1142/S0219530514500316 | MR 3252850 | Zbl 1302.33003
[5] L. Brickman, T. H. MacGregor, D. R. Wilken: Convex hulls of some classical families of univalent functions. Trans. Am. Math. Soc. 156 (1971), 91-107. DOI 10.2307/1995600 | MR 0274734 | Zbl 0227.30013
[6] L. de Branges: A proof of the Bieberbach conjecture. Acta Math. 154 (1985), 137-152. DOI 10.1007/BF02392821 | MR 0772434 | Zbl 0573.30014
[7] P. L. Duren: Univalent Functions. Grundlehren der Mathematischen Wissenschaften 259. Springer, New York (1983). MR 0708494 | Zbl 0514.30001
[8] L. Fejér: Untersuchungen über Potenzreihen mit mehrfach monotoner Koeffizientenfolge. Acta Litt. Sci. Szeged 8 (1937), 89-115. Zbl 0016.10803
[9] A. W. Goodman: Univalent Functions. Vol. I. Mariner Publishing, Tampa (1983). MR 0704183 | Zbl 1041.30500
[10] R. Gorenflo, Y. Luchko, F. Mainardi: Analytic properties and applications of the Wright functions. Fract. Cal. Appl. Anal. 2 (1999), 383-414. MR 1752379 | Zbl 1027.33006
[11] D. J. Hallenbeck, S. Ruscheweyh: Subordination by convex functions. Proc. Am. Math. Soc. 52 (1975), 191-195. DOI 10.2307/2040127 | MR 0374403 | Zbl 0311.30010
[12] V. Kiryakova: Generalized Fractional Calculus and Applications. Pitman Research Notes in Mathematics Series 301. Longman Scientific & Technical, Harlow; John Wiley & Sons, New York (1994). MR 1265940 | Zbl 0882.26003
[13] F. Mainardi: The fundamental solutions for the fractional diffusion-wave equation. Appl. Math. Lett. 9 (1996), 23-28. DOI 10.1016/0893-9659(96)00089-4 | MR 1419811 | Zbl 0879.35036
[14] S. S. Miller, P. T. Mocanu: Univalence of Gaussian and confluent hypergeometric functions. Proc. Am. Math. Soc. 110 (1990), 333-342. DOI 10.2307/2048075 | MR 1017006 | Zbl 0707.30012
[15] S. S. Miller, P. T. Mocanu: Differential Subordinations. Theory and Applications. Pure and Applied Mathematics 225. A Series of Monographs and Textbooks. Marcel Dekker, New York (2000). MR 1760285 | Zbl 0954.34003
[16] S. R. Mondal, A. Swaminathan: Geometric properties of generalized Bessel functions. Bull. Malays. Math. Sci. Soc. (2) 35 (2012), 179-194. MR 2865131 | Zbl 1232.30013
[17] N. Mustafa: Geometric properties of normalized Wright functions. Math. Comput. Appl. 21 (2016), Paper No. 14, 10 pages. DOI 10.3390/mca21020014 | MR 3520354
[18] S. Ozaki: On the theory of multivalent functions II. Sci. Rep. Tokyo Bunrika Daigaku. Sect. A 4 (1941), 45-87. MR 0048577 | Zbl 0063.06075
[19] K. Piejko, J. Sokół: On the convolution and subordination of convex functions. Appl. Math. Lett. 25 (2012), 448-453. DOI 10.1016/j.aml.2011.09.034 | MR 2856004 | Zbl 1250.30016
[20] S. Ponnusamy: The Hardy spaces of hypergeometric functions. Complex Variables, Theory Appl. 29 (1996), 83-96. MR 1382005 | Zbl 0845.30036
[21] S. Ponnusamy: Close-to-convexity properties of Gaussian hypergeometric functions. J. Comput. Appl. Math. 88 (1998), 327-337. DOI 10.1016/S0377-0427(97)00221-5 | MR 1613250 | Zbl 0901.30007
[22] J. K. Prajapat: Certain geometric properties of normalized Bessel functions. Appl. Math. Lett. 24 (2011), 2133-2139. DOI 10.1016/j.aml.2011.06.014 | MR 2826152 | Zbl 1231.33004
[23] J. K. Prajapat: Certain geometric properties of the Wright function. Integral Transforms Spec. Funct. 26 (2015), 203-212. DOI 10.1080/10652469.2014.983502 | MR 3293039 | Zbl 1306.30006
[24] S. Ruscheweyh, V. Singh: On the order of starlikeness of hypergeometric functions. J. Math. Anal. Appl. 113 (1986), 1-11. DOI 10.1016/0022-247X(86)90329-X | MR 0826655 | Zbl 0598.30021
[25] R. Szász, P. A. Kupán: About the univalence of the Bessel functions. Stud. Univ. Babeş-Bolyai Math. 54 (2009), 127-132. MR 2486953 | Zbl 1240.30078
[26] N. Tuneski: On some simple sufficient conditions for univalence. Math. Bohem. 126 (2001), 229-236. MR 1826485 | Zbl 0986.30012
[27] H. S. Wilf: Subordinating factor sequences for convex maps of the unit circle. Proc. Am. Math. Soc. 12 (1961), 689-693. DOI 10.2307/2034857 | MR 0125214 | Zbl 0100.07201
[28] E. M. Wright: On the coefficients of power series having exponential singularities. J. London Math. Soc. 8 (1933), 71-80. DOI 10.1112/jlms/s1-8.1.71 | MR 1574787 | Zbl 0006.19704
[29] N. Yağmur: Hardy space of Lommel functions. Bull. Korean Math. Soc. 52 (2015), 1035-1046. MR 3353311 | Zbl 1318.30038
[30] N. Yağmur, H. Orhan: Starlikeness and convexity of generalized Struve functions. Abstr. Appl. Anal. 2013 (2013), Article ID 954513, 6 pages. DOI 10.1155/2013/954513 | MR 3035216 | Zbl 1272.30033
[31] N. Yağmur, H. Orhan: Hardy space of generalized Struve functions. Complex Var. Elliptic Equ. 59 (2014), 929-936. DOI 10.1080/17476933.2013.799148 | MR 3195920 | Zbl 1290.30066


Access to the full text of journal articles on this site is restricted to the subscribers. For access please contact editorial office at mathboh@math.cas.cz indicating DOI.
[List of online first articles] [Contents of Mathematica Bohemica] [Full text of the older issues of Mathematica Bohemica at DML-CZ]