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Abstract 

Fragile X syndrome (FXS) is the most frequently inherited form of intellectual 

disability and prevalent single-gene cause of autism. A priority of FXS research is to 

determine the molecular mechanisms underlying the cognitive and social functioning 

impairments in humans and the FXS mouse model. Glutamate ionotropic 

alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptors 

(AMPARs) mediate a majority of fast excitatory neurotransmission in the central 

nervous system and are critically important for nearly all aspects of brain function, 

including neuronal development, synaptic plasticity, and learning and memory. Both 

preclinical and clinical studies have indicated that expression, trafficking, and 

functions of AMPARs are altered and result in altered synapse development and 

plasticity, cognitive impairment, and poor mental health in FXS. In this review, we 

discuss the contribution of AMPARs to disorders of FXS by highlighting recent 

research advances with a specific focus on change in AMPARs expression, trafficking, 

and dependent synaptic plasticity. Since changes in synaptic strength underlie the 

basis of learning, development, and disease, we suggest that the current knowledge 

base of AMPARs has reached a unique point to permit a comprehensive re-evaluation 

of their roles in FXS.  

 

Key Words: Fragile X syndrome; Intellectual disability; AMPA receptors; Synaptic 

plasticity; Learning and memory 
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Introduction 

Fragile X syndrome (FXS) is one of the most common forms of intellectual 

disability and monogenic cause of autism spectrum disorders (ASD) (Harris et al. 

2008, Rogers et al. 2001). In most cases, this disorder results from the transcriptional 

silencing of the fragile X mental retardation 1 (fmr1) gene on chromosome Xq 27.3, 

due to an excessive expansion of a CGG repeat found in the 5′-untranslated region 

(O’Donnell et al. 2002; Bagni et al. 2005; Santoro et al. 2012). The fmr1 gene 

product, fragile X mental retardation protein (FMRP), a selective RNA-binding 

protein is absent in FXS (Antar et al. 2006; Bassell et al. 2008; Till et al. 2012). 

FMRP modulates expression of nearly a third of pre- and postsynaptic proteomes 

(Liao et al. 2008; Darnell et al. 2011; Klemmer et al. 2011) and functions at both pre- 

and post-synaptic compartments (Till et al. 2010; Deng et al. 2013; Patel et al. 2013). 

In its absence, the transcripts are over translated in the dendrites and axons, which are 

typically regulated by FMRP (Bassell et al. 2008; Waung et al. 2009; Dierssen et al, 

2006). In particular, one of the primary defects associated with the absence of FMRP 

appears to be excessive synaptic alpha-amino-3-hydroxy-5-methyl-4-isoxazole 

propionic acid (AMPA) receptors (AMPARs) internalization in response to the 

signaling of metabotropic glutamate receptors (mGluR) (O'Donnell et al. 2002; 

Nakamoto et al. 2007; Bear et al. 2004; Huber et al. 2002). Therefore, FXS is 

partially a result of exaggerated internalization of synaptic AMPARs.  

Since AMPARs are important for neuronal development, synaptic plasticity, and 

cognitive function (e.g., learning and memory) (Hamad et al. 2011, Urbanska et al. 
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2008; Malenka et al. 2003), the effects of FMRP on complex pathways that control 

AMPARs insertion and removal from the synaptic membrane could have a large effect 

on synaptic strength and excitability. In this review, we discuss the specific 

contribution of AMPARs to FXS disorders by their effect on multiple levels and 

highlight how defects in AMPAR expression and trafficking are important to Fragile 

X intellectual disability. We suggest that the knowledge base of AMPARs has reached 

a unique point to permit a comprehensive re-evaluation of their role in FXS. 

We performed a desk review of journal publications on FXS and AMPAR, and 

implemented a comprehensive search strategy for different categories using a 

combination of text words and indexing terms (MeSH) in PubMed, China National 

Knowledge Infrastructure, Wanfang databases over the last three decades (1986 – 

2016). To obtain the information relevant to fragile mental retardation protein or fmr1 

and AMPAR and glutamate, we used the keywords “fragile X syndrome” or “fragile 

mental retardation protein” or “fmr 1” or “neurodevelopmental disorders” and 

“AMPAR” or “Glutamate” or “mGluR1” or “mGluR5.” We included only those 

publications written in English language and excluded book reviews, editorials, errata, 

conference proceeding overviews, and abstracts. 

 

1. Genetic basis and cognitive disability in FXS 

Fragile X syndrome was discovered in association with the fragile site of the X 

chromosome in two brothers in 1969 by Lubs and colleagues (Lubs et al.1969). In 

1991, the gene responsible for FXS, fmr1, was identified and scientists developed a 
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specific associated DNA test (Verkerk et al. 2008; Oberle et al.1991; Davids et 

al.1990). The normal allele of the fmr1 gene typically has 5 to 40 CGG repeats in the 

5' untranslated region. The abnormal alleles of dynamic mutations (Figure 1) include 

the full mutation (> 200 CGG repeats), premutation (55-200 CGG repeats), and the 

gray zone mutation (45-54 CGG repeats) (Sutcliffe et al. 1992). Full mutation alleles 

are associated with intellectual disability and behavioral impairments (e.g., impaired 

social interaction and communication) (Verkerk et al. 2008; Oberle et al.1991; Fu et 

al.1991). Carriers of premutation alleles are at risk for adult-onset neurodegenerative 

disorder known as fragile X-associated tremor/ataxia syndrome (Hagerman et al. 

2013), and female carriers are at risk for fragile X-associated primary ovarian 

insufficiency. The latter condition is associated with fertility problems and an earlier 

than normal menopause (Sullivan et al. 2011; Sherman et al. 2014)  

[INSERT FIGURE 1 ABOUT HERE] 

Patients with FXS typically have a significant learning disability with an 

intellectual quotient (IQ) that declines from about 80 at 5 years of age to about 50 

through the pubertal years (Skinner et al. 2005; Loesch et al. 2004) . Cognitive 

difficulties include impaired working and short-term memory, executive function, 

arithmetic, and visuospatial abilities (Kemper et al.1988). Mental health symptoms in 

patients with FXS include anxiety, depression, hyperactivity, impulsivity, and 

aggression (Tsiouris et al. 2004). Because the disorder is X-linked, women are 

generally less affected than men, particularly with regard to cognitive abilities. 

However, women tend to have greater risk for mental health problems relative to the 

general population (De et al.1996; Freund et al. 1993).  

2. AMPARs expression in developmental phases of FXS 
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Functional AMPARs are expressed throughout the brain in various tetrameric 

assemblies of GluA1, GluA2, GluA3, and GluA4 (Beneyto et al. 2004) (Figure 2), 

and play a prominent role in neuronal development. During the neonatal 

developmental period, some synapses are named as silent synapses due to the lack of 

AMPARs at their resting state and instead only contain NMDARs (Nicoll et al.1997, 

Liao et al.1995). From a functional standpoint, synapses of this nature are rendered 

“silent” to glutamate release since NMDARs are tonically blocked by Mg
2+ 

at resting 

membrane potentials. The proportion of AMPAR-deficient synapses is greater in the 

neonatal central nervous system (CNS) than in the adult (Wu et al.1997; Petralia et al. 

1999; Xiao et al. 2004), and the subunit composition and relative abundance of AMPA 

and NMDA receptors are adjusted as crucial steps in the establishment of a 

functionally mature synapse (Bellone et al. 2007). However, the loss of FMRP leads 

to a substantial decrease in the AMPA / NMDA ratio between postnatal days 4 (P4) 

and P7, with the lowest AMPA / NMDA ratio occuring just before closure of the 

normal critical period (Harlow et al. 2010). Therefore, the number of silent synapses 

is increased in the critical period in fmr1 KO neurons. In WT mice, most of these 

silent synapses are unsilenced due to the increased AMPAR subunits expression in the 

cell membrane during the later developmental period, but one study found increased 

silent synapses that persisted later in development with a temporal delay in the 

window for synaptic plasticity in fmr1 KO mice (Harlow et al. 2010). In another fmr1 

KO2 mouse model, there was also a significantly lower AMPA/ NMDA ratio 

compared with WT mice at P14, but not at 6 or 7 weeks (Pilpel et al. 2009). This new 

fmr1 KO2 line is a more versatile fmr1 in vivo KO model by flanking the promoter 

and first exon of fmr1 with lox P sites. The new line expresses no FMRP and lacks 

detectable fmr1 transcripts (Mientjes et al. 2006; Oostra et al.1994). Therefore, the 
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lower AMPA/ NMDA ratio in fmr1 KO2 mice is the direct result of the absence of 

FMRP and fmr1 transcripts. This difference in the AMPA/ NMDA ratio at P14 is 

probably related to an up-regulation of the NMDA receptor component concurrent 

with a down-regulation of the AMPAR component (Pilpel et al. 2009). In line with 

up-regulation of the NMDA component, the induction of NMDA receptor-dependent 

LTP following a low-frequency pairing protocol is increased in fmr1 KO2 mice only 

at this developmental stage (Pilpel et al. 2009). Taken together, the expression of 

AMPARs in various brain regions is decreased during postnatal development in fmr1 

KO mice (Neves et al. 2008, Davidkova et al. 2007; Jin et al. 2004). 

 [INSERT FIGURE 2 ABOUT HERE] 

3. The alteration of AMPARs expression in FXS animal model 

There are multiple important processes involved in AMPARs expression and their 

synaptic function including protein synthesis, proteasomal degradation, alternative 

splicing, and mRNA trafficking. A component in the regulation of AMPAR subunits 

and associated protein complex synthesis is FMRP, which is localized to dendritic 

spines ( Feng et al.1997) and traffics within dendrites and at the synapses after 

stimulation (Antar et al.2004; Muddashetty et al. 2007) (Figure 3).  

[INSERT FIGURE 3 ABOUT HERE] 

Multiple preclinical and primary neuron studies have suggested that the local 

synthesis AMPAR subunits are dysregulated in fmr1 KO mice (Bear et al. 2004; 

Huber et al. 2002; Muddashetty et al. 2007; Soden et al. 2010; Garber et al. 2008). 

Indeed, in fmr1 KO mice, GluA1 is decreased in the cortical synapses (Li et al. 2002), 

hippocampal neurons (Grossman et al. 2010), and synapse membrane (Nakamoto et 



AMPA Receptor in Fragile X Syndrome 

8 

 

al. 2007; Guo et al. 2015; Hu et al. 2008). The FXS mGluR theory posits that FMRP 

loss within the mGluR signaling pathway leads to several downstream consequences 

of mGluR activation and increased internalization of AMPAR subunits (Nakamoto et 

al. 2007; Huber et al. 2007; Chuang et al. 2005). The role of FMRP in excessive 

mGluR-dependent internalization of AMPARs has been demonstrated in normal rat 

neuronal hippocampal cultures using FMRP siRNA (Nakamoto et al. 2007). Similarly, 

the internalization of surface GluA1 is impaired in fmr1 KO prefrontal cortex (PFC) 

and amygdala neurons (Wang et al. 2010; Suvrathan et al. 2010). The changes in 

AMPAR subunit expression are also involved in alterations in AMPAR mRNAs 

trafficking. Interestingly, while their mRNA levels remain unchanged in fmr1 KO 

mice, their subcellular localization is altered. The quantitative analysis of mRNA 

levels in FMRP-specific immunoprecipitations from synaptoneurosomes has 

substantiated the association of FMRP with GluA1 and GluA 2 mRNAs (Muddashetty 

et al. 2007). In addition, studies have also linked Strial-Enriched protein Tyrosine 

Phosphatase (STEP) dysregulation in fmr1 KOs to aberrant endocytosis of AMPARs 

(Huber et al. 2002; Zhang et al. 2008) (Figure 4).  

[INSERT FIGURE 4 ABOUT HERE] 

Our prior work indicated that 7, 8-dihydroxyflavone (7, 8-DHF), an identified 

high affinity tyrosine receptor kinase B (TrkB) agonist, enhances expression of GluA1 

at the synapses in fmr1 KO mice (Tian et al. 2015). Potentially related to 

drug-induced increases in AMPAR subunits at synapses, 7, 8-DHF leads to 

phosphorylation of specific serine sites on subunits Ser818 and Ser813 of GluA1, and 
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Ser880 of GluA2, as well as phosphorylation of TrkB, calcium/calmodulin-dependent 

protein kinase II (CaMKII), and protein kinase C (PKC) (Tian et al. 2015). 

Collectively, FMRP ablation results in glutamatergic signaling maturation 

dysregulation (Bear et al. 2004). Such AMPAR signaling dysregulation at the 

synapses may impair molecular composition control of the postsynaptic density and 

consequently alter synaptic transmission. This alteration in synaptic transmission 

could lead to impairment of neuronal plasticity and produce neurogenesis-associated 

learning deficits that have been observed in fmr1 KO mice and patients with FXS 

(Muddashetty et al. 2007; Wang et al. 2011; Guo et al. 2011). Some chemicals (e.g.,  

7, 8-DHF) induce synapse expression of AMPA GluA1 through increasing 

phosphorylation of AMPAR subunits, which then remedies cognitive dysfunction and 

spine abnormalities in fmr1 KO mice (Tian et al. 2015). 

FMRP has two conserved autosomal paralogs, FXR1P and FXR2P (also known 

as FXR1 and FXR2), and all three RNA-binding proteins are enriched in neurons (Li 

et al. 2014; Darnell et al. 2009). Studies have shown that FMRP and its paralogs have 

the ability to interact with one another, and that FMRP and FXR2P double KO mice 

show greater neurobehavioral abnormalities (e.g., hyperactivity, exaggerated 

locomotor activity, contextual fear conditioning) compared to single-mutant mice 

(Spencer et al. 2014; Spencer et al. 2011). FXR2P reduces Noggin mRNA stability in 

adult neural stem cells (Guo et al. 2011) and binds to GluA1 mRNA to enhance 

stability and protein production (Guo et al. 2011). These results suggest a role for 

FMRP in the regulation of the local synthesis of AMPAR subunits and associated 
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protein complexes.  

 

4．The alteration of AMPARs trafficking in FXS 

AMPAR trafficking is a driving process for synaptic plasticity that underlies 

learning and memory, and involves the dynamic processes of exocytosis, endocytosis, 

endosomal recycling (Pilpel et al. 2009; Wang et al. 2010; Hanley et al. 2014; 

Haering et al. 2014; Chater et al. 2014; Kessels et al. 2009; Perestenko et al. 2003). It 

is well known that FMRP has significant roles in regulating the synaptic delivery of 

GluA1 and AMPAR trafficking (Nakamoto et al. 2007; Hu et al. 2008) (Figure 4). 

Aberrant AMPAR trafficking and consequent synaptic defects are strongly implicated 

in FXS (Nakamoto et al. 2007; Yan et al. 2005; McBride et al. 2005). Also, some of 

the defects are associated with the lack of FMRP as demonstrated in FMRP-absent 

Drosophila and mouse models (Yan et al. 2005, McBride et al. 2005). One alteration 

in AMPAR trafficking is involved in the regulation of small GTPase, Ras, and Rap 

signaling (Isaac et al. 2007; Gu et al. 2007), and many synaptic proteins in the NMDA 

receptor (NMDAR)-Ras-PI3K/PKB signaling interactome (Darnell et al. 2013; 

Ascano et al. 2012; Kielland et al. 2009). FMRP modulates the synaptic trafficking of 

GluA1 through Ras (Soden et al. 2009, Lim et al. 2009). LTP is reduced by 

approximately 50% in fmr1 KO mice due to selective impairment of synaptic 

trafficking of GluA1 and GluA4-containing AMPARs, which results from deficient 

Ras activity (Hu et al. 2008). Enhancing Ras signaling restores GluA1-containing 

AMPARs synaptic delivery and LTP in fmr1 KO mice (Hu et al. 2008). Hence, FMRP 
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deficiency leads to reduced membrane and synaptic delivery of AMPAR subunits and 

reduced AMPA current levels (Hu et al. 2008).  

Many molecules interact with AMPARs and are involved in their trafficking 

(Joyce et al. 2010; Wang et al. 2012). Some of those molecules implicated in FXS 

include tumor necrosis factor alpha (TNFα) (Stellwagen et al. 2006), retinoic acid 

(Soden et al.2010), PICK1 (Anggono et al.2011), activity-regulated cytoskeletal gene 

and protein (Arc/Arg3.1) (Shepherd et al. 2006), and phosphatidylinositide-3 kinase 

(PI3K) signaling (Hou et al. 2008). In addition, proteins regulating AMPAR 

endocytosis such as Arc, microtubule associated protein 1B (MAP1B), STEP, amyloid 

precursor protein (APP) (Figure 5), and termed LTD proteins, are upregulated in 

neuronal dendrites in fmr1 KO mice and stable during mGluR-LTD.  

 [INSERT FIGURE 5 ABOUT HERE] 
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5．The alteration of AMPARs synaptic transmission and plasticity in FXS 

AMPARs mediate synaptic plasticity expression related to cognitive processes 

such as LTP, LTD, and homeostatic plasticity. Defective AMPAR-mediated synaptic 

transmission and plasticity have emerged as a common phenotype in FXS animal 

models (Muddashetty et al. 2007; Li et al. 2002; Darnell et al.2013; Meredith et al. 

2007; Lauterborn et al. 2007; Larson et al.2005; Koekkoek et al.2005). Many studies 

have identified synaptic plasticity deficits that involve LTP in the hippocampus (Li et 

al. 2002; Darnell et al. 2013; Lauterborn et al. 2007; Larson et al. 2005; Wilson et al. 

2007; Desai et al. 2006; Zhao et al. 2005) and other cortical regions such as the 

thalamic afferents to the lateral amygdala (LA) (Wang et al. 2010), and the PFC in 

fmr1 KO mice (Xu et al. 2005; Wang et al. 2008). FMRP deficiency in adult neural 

stem cells leads to reduced neuronal production and maturation, and reduced LTP in 

the cortex (Li et al. 2002). The enhanced internalization of AMPARs or impaired 

synaptic delivery of GluA1 results in a selective loss of GluA1 dependent LTP 

(Darnell et al. 2013; Lauterborn et al. 2007; Xu et al. 2012; Wang et al. 2008; Hou et 

al. 2006). The second form of hippocampal altered synaptic plasticity in fmr1 KO 

mice is hippocampal gp I mGluR LTD, which is triggered by the activation of gp I 

mGluR (Bear et al. 2004; Huber et al. 2002). Indeed, dendritic protein synthesis 

induced by mGluR-dependent LTD, such as MAP1b, CaMKIIα, Arc, and STEP, is 

elevated in slice cultures from fmr1 KO mice and fails to show induction (Darnell et 

al. 2011; Waung et al. 2009; Hou et al. 2006) (Figures 4 and 5). Correspondingly, in 

the fmr1 KO mouse, synaptic plasticity (mGluR-dependent LTD) in the cerebellum is 
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altered (enhanced) and results in learning deficits) (Huber et al. 2006). The third form 

of hippocampal altered synaptic plasticity in fmr1 KO mice is homeostatic plasticity 

dependent on retinoic acid (RA) (Soden et al. 2010). Synaptic activity increases 

synaptic plasticity potential by inducing RA synthesis, which activates postsynaptic 

synthesis of AMPARs in dendrites and promotes synaptic insertion of newly 

synthesized AMPARs. FMRP is essential for this process, and RA-dependent 

dendritic translation of GluA1 is impaired in fmr1 KO mice (Irwin et al. 2000; Braun 

et al. 2000; Comery et al. 1997).  

A study performed in primary hippocampal neuron cultures from fmr1 KO mice 

demonstrated a delay in synapse maturation, but found no differences in miniature 

AMPAR-mediated currents (Braun et al. 2000). Another study in organotypic 

hippocampal slice cultures reported small, but detectable reductions in AMPA 

miniature currents in fmr1 KO cells. The reductions were only detectable when pairs 

of cells, fmr1 KO and WT controls were patched within the same culture slice 

(Pfeiffer et al. 2007). Taken together, these studies demonstrated that the current in 

AMPAR mEPSCs is changed in fmr1 KO mice and that there is impairment in 

GluA1/2 signals. The impaired GluA1/2 signals in fmr1 KO mice highlights the 

possibility that restoration of normal GluA1-dependent synaptic plasticity may 

reverse prominent learning deficits associated with FXS. This possibility is further 

supported by the findings that 7, 8-DHF induces synapse expression of AMPA GluA1 

and ameliorates cognitive and spine abnormalities in fmr1 KO mice (Tian et al. 2015). 

Given the proposed hypofunction associated with AMPARs, it has been 
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suggested that the synthetic compounds AMPAkines, which are positive allosteric 

modulators, may be beneficial for clinical therapeutics. Ampakines allow glutamate to 

have a prolonged effect on AMPARs and strengthen memory retention on multiple 

tasks in many different species (Lynch et al. 2006). To date, the AMPAkine CX-516 

has progressed into Phase II clinical trials to assess its value in treating FXS 

(Berry-Kravis et al. 2006; Danysz et al. 2002). Although the study reported no 

adverse side-effects associated with CX-516, the AMPAkine compound relative to 

placebo provided little improvement in behavioral tests (Berry-Kravis et al. 2006).  

 

6. Conclusions 

Over the past two decades, efforts have been made to elucidate the molecular and 

cellular events that underlie synaptic dysfunction in FXS. Findings from multiple 

studies have implicated AMPARs dysfunction in FXS. AMPAR alterations in FXS 

animal models are usually manifested as changes in the expression and trafficking of 

receptors. Other parallel mechanisms associated with FXS include AMPAR 

phosphorylation/dephosphorylation, alterations in the trafficking of AMPAR mRNAs, 

and synthesis/degradation of the receptor proteins. These hypothesized mechanisms of 

FXS are supported through human genetic studies, clinical trials, postmortem brain 

studies, animal models, and in vitro cell cultures. Findings from such studies 

substantiate the need to monitor and manipulate synaptic AMPAR trafficking and 

restore AMPAR levels in order to improve cognitive function and normalize other 

impairments in FXS preclinical models. This new avenue of study could lead to 
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improved understanding of the mechanisms underlying FXS and development of new 

clinical therapeutic applications.  
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Figure 1. The Genetic Basis of fmr1 Gene Mutation in FXS. 

 

Figure 1. The abnormal alleles of dynamic mutations include the full mutation (> 200 

CGG repeats), premutation (55-200 CGG repeats) and the gray zone mutation (45-54 

CGG repeats). 
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Figure 2. The assemblies of AMPAR subunits  

 

 

Figure 2. AMPA receptors (AMPARs) are heteromeric assemblies of four core 

subunits, GluA1, GluA2, GluA3, and GluA4. They mediate most fast excitatory 

neurotransmission. The different combinations are not completely variable. In CA1 

neurons, for instance, mostly express GluA1/GluA2 and GluA2/GluA3 are 

heteromers, while a smaller proportion of GluA1/GluA1 are homomers. 

GluA2/GluA2 and GluA3/GluA3 can’t be formed. 
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Figure 3. The possible target of FMRP in dendritic spines 

 

Figure 3. The possible targets of FMRP in dendritic spines. FMRP is a RNA binding 

protein that transports, stabilizes, and regulates the translation of hundreds of mRNAs 

at the synapse. It has been suggested that it plays a role in regulation of the local 

synthesis of AMPAR subunits and associated protein complexes, including MMP 9, 

PI3K, PSD95, CaMKII and MAP1B. The symbols used in the figure 3 are listed 

below: Ext=extracellular space; Int= intracellular space; mTOR= mammalian target of 

rapamycin complex 1 or mechanistic target of rapamycin complex 1; 

Mnk1/2=MAPK-interacting kinase 1 and 2 (Mnk1/2); eIF4E= eukaryotic translation 

initiation factor 4E; EIF4EBP1Eukaryotic translation initiation factor 4E-binding 

protein 1; PABP= Poly (A)-binding protein; CYFIP1 = Cytoplasmic 

FMR1-interacting protein 1; mGluRs = metabotropic glutamate receptors; PI3Ks 
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=phosphatidylinositol-3-kinases; MMP-9=Matrix metallopeptidase 9; PSD-95 

=postsynaptic density protein 95; CaMKII = Ca
2+

/calmodulin-dependent protein 

kinase II; MAP1B = Microtubule-associated protein 1B. 
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Figure 4. mGluR Theory of Fragile X Syndrome Pathophysiology 

 

Figure 4. The mGluR theory refer to the pathophysiology in FXS, which proposes that 

loss of FMRP within mGluR signaling pathway leads to excessive expression of 

several downstream consequences of mGluR activation, such as STEP, and increased 

internalization of AMPAR subunits. 
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Figure 5. LTD Proteins Implicated in Fragile X Syndrome 

 

Figure 5. The molecules termed LTD proteins that are implicated in FXS, such as Arc, 

MAP1B, and GRIP are basally upregulated in neuronal dendrites from fmr1 KO mice, 

and induce the internalization of AMPAR subunits. 


