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Summary 
Activation of calmodulin dependent protein kinase (CaMK)II by exercise is beneficial in 
controlling membrane lipids associated with type 2 diabetes and obesity.  Regulation of lipid 
metabolism is crucial in the improvement of type 2 diabetes and obesity associated 
symptoms.  The role of CaMKII in membrane associated lipid metabolism was the focus of 
this study. Five to six weeks old male Wistar rats were used in this study.  GC×GC-TOFMS 
technique was used to determine the levels of polyunsaturated fatty acids (linoleic acid, 
arachidonic acid and 11,14-eicosadienoic acid). Carnitine palmitoyltransferase (Cpt-1) and 
acetyl-CoA carboxylase (Acc-1) genes expression were assessed using quantitative real time 
PCR (qPCR).  From the results, CaMKII activation by exercise increased the levels of 
arachidonic acid and 11, 14-eicosadienoic acid while a decrease in the level of linolenic acid 
was observed in the skeletal muscle. The results indicated that exercise-induced CaMKII 
activation increased CPT-1 expression and decreased ACC-1 expression in rat skeletal 
muscle.   All the observed increases with activation of CaMKII by exercise were aborted 
when KN93, an inhibitor of CaMKII was injected in exercising rats. This study demonstrated 
that CaMKII activation by exercise regulated lipid metabolism. This study suggests that 
CaMKII can be a vital target of therapeutic approach in the management of diseases such as 
type 2 diabetes and obesity that have increased to epidemic proportions recently. 
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Introduction 

Excess and accumulation of various lipid species in the cell has been associated with the 
pathogenesis of metabolic disorders such as type 2 diabetes and obesity (Koves et al. 2005; 
Bruce et al. 2006; Kinfe et al. 2014). Thus, lipids regulation in the cell is crucial in the 
management of these metabolic disorders caused due to excess of lipid species. Obesity is a 
very severe disease that may lead to the development of type 2 diabetes and insulin resistance 
(Gao et al. 2004; Kinfe et al. 2014). The dominant and most promising approach to mitigate 
and deter type 2 diabetes is lifestyle intervention e.g. weight reduction, decreased total and 
saturated fat consumption, and increased physical activity (Knowler et al. 2002; McAuley et 
al. 2002). Regular exercise increases oxidation of fatty acids and glucose transport in skeletal 
muscle (Ren et al. 1996; Holloszy and Booth 1976, Mukwevho and Joseph 2014).  This can 
delay the onset or prevent and even reverse type 2 diabetes.  Exercise mitigate the symptoms 
of diabetes (excess lipids & glucose) through ‘in part’ by (Ojuka et al. 2003; Mukwevho et 
al. 2008; Mukwevho and Joseph 2014) activation of calmodulin dependent protein kinase 
(CaMK)II. This results in increased mitochondrial oxidative capacity and improved glucose 
uptake (Chin 2005; Bruce et al. 2006). CaMKII is a serine/threonine specific protein kinase 
and it activated when cytosolic Ca2+ levels rise. CaMKII is different from other CaM kinases 
owing to its ability to autophosphorylate at Thr286.  Binding of Ca2+/CaM to CaM binding 
domain of CaMK activates enzymes by its structural arrangement in subunits that uncover 
Thr286 in autoinhibitory the domain and catalytic domain (Payne et al. 1988).  
 
Abnormalities in the membrane composition of fatty-acids may be involved in the 
pathogenesis of diabetes and obesity (Borkman et al. 1993). Arachidonic acid (AA), a 20-
carbon polyunsaturated fatty acid (PUFA), is a basic constituent of cell membranes (Meirer et 
al. 2014). Skeletal muscle is chiefly the active site of AA retention, amounting to about 10-
20% of the phospholipid fatty acid content (Smith et al. 2011). Linolenic acid (LA), a major 
dietary PUFA is a metabolic precursor to AA, linked biochemically via two desaturases and 
an elongase (Rett and Whelan 2011). When other omega-6 (n-6) PUFA (including dietary 
AA) are absent, dietary LA is the sole contributor to tissue AA (Rett and Whelan 2011). 
Human adults have been reported to be capable of converting of LA (18:2 n-6) to AA (20:4 
n-6) (Salem et al. 1999). Arachidonic acid is an essential regulator of cellular function 
through its actions on the physical properties of membranes either in its free form or as a 
substrate for eicosanoids  (Phinney 1996). AA plays important roles in regulating lipid 
metabolism (Tian et al. 2014) and its high concentration in the muscle tissue has been 
reported to positively correlate with increased insulin sensitivity in skeletal-muscle 
phospholipids (Borkman et al. 1993). 
 
The mitochondria plays significant role in lipid metabolism. Lipid metabolism is controlled 
by a set of mitochondrial enzymes that operate interchangeably. For example, carnitine 
palmitoyltransferase (CPT)-1 is a rate-limiting enzyme in mitochondrial lipid oxidation by 
regulating transport of long chain fatty acids across mitochondrial membrane.  On the other 
hand, acetyl-CoA carboxylase (ACC)-1 is a mitochondrial enzyme that promotes lipid 
synthesis by providing malonyl CoA substrate for biosynthesis of fatty acids (Tong 2005). It 
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is reported that down-regulation of ACC-1 and up-regulation of CPT-1 may result in 
increased oxidative capacity of the mitochondria by reduction in lipid accumulation and 
obesity in adipocytes and myocytes (Kinfe et al. 2014). Although ACC-I is in extremely low 
levels in the skeletal muscle, it has been suggested to possibly compensate for a lack of ACC-
2 (Olson et al. 2010). O`neil et al. (2015) reported that phosphorylation of ACC-1 and ACC-
2  is not required for maintaining endurance exercise capacity or whole‐body rates of fatty 
acid oxidation during submaximal endurance exercise. Also, Wicks et al. (2014) reported that 
accumulation of lipids in the muscles did not lead insulin insensitivity in a near-complete 
knockdown of gene and activity of muscle-specific CPT-1. However, despite these contrary 
reports, studies have supported the involvement ACC and CPT-1 in lipid metabolism in 
muscles. For example, ACC expression in muscles has been linked to exercise or cellular 
stress which corroborates the link between ACC and fatty acid acid metabolism (Dean et al. 
2000; Hardie and Pan 2002). It has also been supported that muscle-specific over-expression 
of CPT-1 enhances fatty acid oxidation (Bruce et al. 2009). The activation of CaMKII by 
exercise on the regulation of CPT-1 and ACC-1 is still yet to be determined.  The aim of this 
study was to determine the role of exercised-induced CaMKII on the levels of 
polyunsaturated acids and regulation of lipid metabolism enzymes in skeletal muscles of 
experimental rats.  
 

Materials and methods 

Animal handling and exercise protocol 

Five to six weeks old male Wistar rats were used in this study.  All animal procedures were 
approved by Animal ethics committee of the University of Witwatersrand, South Africa.  
Rats were fed with standard rat chow and water ad libitum.  Room temperature was 
maintained at 21–24°C with a 12 hours (hrs) light/dark cycle.  Their welfare and weights 
were checked daily.   

In this study, the total no of rats used were 18 rats. The rats were divided into three groups of 
6 rats each, namely: control (non-exercise), exercise and exercise + KN93. KN93 (N-[2-[N-
(4-Chlorocinnamyl)-N-methylaminomethyl]phenyl]-N-(2-hydroxyethyl)-4-methoxybenzene 
sulfonamide phosphate salt) was dissolved in DMSO and used as CaMKII inhibitor. KN93 
was given to the rats by intraperitoneal injection at a dose of 5mg/kg. Rats were exercised 
according to protocol described by Terada et al. (2001) and Smith et al. (2007). The 
swimming protocol used to exercise the rats is indicated by a flow diagram in Figure 1. From 
day 1 to day 4, rats were housed and familiarised to handling.  Thereafter, from day 5 to day 
8, rats were familiarised to swimming protocol as follows:  On day 5, rats were subjected to 2 
bouts of 17 minutes (min) swimming and 3 min rest in between bouts.  From day 6 to day 8, 
rats were made to perform similar exercise protocol but the number of bouts increased by one 
bout per day.  From days 9 to 14, rats were rested in their cages in order to ensure that 
familiarization protocol did not affect the experiment.   

On day 15, control and exercise group received intraperitoneal injection of 5 mg/kg of 
DMSO and exercise + KN93 group received 5 mg/kg of KN93, 30 min prior to exercise.  
After injection, exercise and exercise + KN93 groups performed 5 bouts of 17 min of 
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swimming with 3 min of rest in between bouts. This procedure was then repeated at a similar 
time for exercise and exercise + KN93 groups on days 16, 17, 18 and 19. In addition, rats 
were fasted night before experiment.  Control group remained caged for entire duration of the 
experiment and fasted at the same time as exercise group.  Rats were then anaesthetized 6 hrs 
post-exercise at day 19 by intraperitoneal injection of sodium pentobarbital (50 mg/kg).  
Muscles were dissected out for analysis, snap frozen in liquid nitrogen and stored at -80ᵒC 
freezer in cryovial until required for use. 

  

Western blot 

Gastrocnemius muscle was homogenised with liquid nitrogen and transferred to 850 µL of 
RIPA buffer (1 M Tris Hcl, 2.5 M NaCl, 0.5 mM EDTA, 10% SDS, 0.1 M Na4P207, 0.5 M 
NaF, 100 µM okadaic acid, 2 M Na3VO4, 25×RCPI and 100% Triton X100).  Thereafter, 
sample was sonicated for 3 sec at 33% maximum sonicator intensity on ice, centrifuged at 
3600 rpm for 5 min at 4°C.  Resultant supernatant was collected and protein concentration 
measured by using Bradford assay method.  Protein extract was then added into reducing 
sample buffer (0.5 M Tris HCl PH 6.8, 2% glycerol, 10% SDS, ±5% mercaptol-ethanol and 
0.01% bromophenol blue),  heated at 95°C for 5 min and proteins were separated by 7.5 % 
gel by SDS PAGE.  Proteins from SDS PAGE then transferred to a PVDF (polyvinyldiene 
diflouride) membrane for 55mA overnight at 4°C.  Membrane then blocked for 1 hr at room 
temperature (RT) with 5% Bovine serum albumin containing 1 × TBS-T (20 mM Tris-base, 
8% NaCl, 1M HCl, 0.1% Tween 20).  Thereafter, membrane was incubated with antibodies 
against CPT-1(Sigma, Anti-Cpt-1 1:1000 dilution in TBST) and ACC-1 (Cell Signalling, 
Anti-ACC-1 1:1000 dilution in TBST) at 4°C overnight. Thereafter, the membrane was 
washed for 3×5 min in TBS-T and incubated with appropriate HRP conjugated secondary 
antibody (Anti-rabbit IgG antibody) for 1 hr at RT.  Membrane was then incubated for 5 min 
with enhanced chemiluminescence solution containing 1 mL of peroxidase and 1 mL 
substrate (Amersham, South Africa).  Proteins were visualized under Chemi Doc system TM 
XRS system (Biorad) and analysed by using image lab software.  Protein expression was 
normalized with alpha tubulin. 

 

GC×GC-TOFMS (Fatty acid analysis) 
In order to assess AA and LA from the muscle in response to exercise, lipids were isolated 
from Gastrocnemius muscle using the modified method of Folch et al. (1957).  One gram of 
ground muscle was homogenised with chloroform: methanol (2: 1) to a final volume of 20 
times the weight of sample (1 g in 20 mL of solvent mixture).  The sample was then vortexed 
and sonicated at 33% maximal speed for 30 min on ice.  After sonication, the sample was kept 
at RT on an orbital shaker for 20 min and was then filtered and washed with 4 mL of water.  
Thereafter, the sample was vortexed for few seconds, centrifuged at low speed (2000 rpm), 
and the upper phase was removed.  The sample was then dried using a rotary evaporator at 
62°C.  The weight of the sample checked, dissolved in chloroform (8 mg/mL), and dried 
again using rotary evaporator.  To identify the fatty acids methyl esters by GC-MS, 
derivatisation was done by using 3 M methanolic HCl; this was added to sample at ratio 1: 2 
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(v/v).  The samples were then heated at 60°C for 1 hr in a water bath.  The derivatised product 
was then left to cool down at RT and 1 mL of distilled water was added for phase separation.  
Lipophilic extractives were then recovered with 1 mL× 2 of n-hexane.  Thereafter, the solvent 
was evaporated by using a rotary evaporator at 69°C and then re-dissolved in 300 µL of 
HPLC grade n- hexane for analysis (Ichihara et al., 1996). Before injection, the samples were 
filtered with 0.2 µm PTFE syringe filter. 
Fatty acid analysis was performed in Pegasus® 4D GC x GC-TOFMS using Stabilwax-DA 
column (30 m, 0.25 mm ID, 25 µm) and helium as a carrier gas.  The temperature of the 
injector was set at 250°C; the column oven temperature was programmed from 35°C (held for 
2 min) to 240°C at a ramp-up rate of 10°C/min and held for 2 min.  The column flow rate was 
1 mL/min. Fatty acids were identified by comparison of the mass spectra with those in 
National Institute of Standards and Technology (NIST) libraries by mass fragmentation. 
 

Quantitative real time PCR (qPCR) 

Total RNA was isolated and purified from approximately 100 mg frozen Gastrocnemius 
muscle using QIAzol lysis reagent  (QIAGEN Sciences, USA) and RNA clean and 
Concentrator-25 (Inqaba Biotech, SA).  Double stranded cDNA was synthesized from 
approximately 3 µg of total RNA using Superscript Reverse Transcriptase III (Invitrogen, 
USA).  Quantitative real time PCR were set up using Sensi Mix SYBER No- ROX one-step 
kit (Bioline, UK) and were cycled according to the Sensi Mix kit instructions in Rotor Gene – 
3000 (QIAGEN Sciences, USA) qPCR machine.  In brief, RNA concentrations were 
estimated by measuring absorbance at 260 nm, and purity was assessed by 260 nm/280 nm 
absorbance ratio.  Total RNA was added to the following oligo dT, random hexamer and 
dNTP and denatured at 65°C for 5 min, incubated on ice and reverse transcribed by adding 
0.1 M DTT, Superscript Reverse Transcriptase III and 5× First strand buffer followed by 
incubated at 25°C for 5 min and 55°C for 60 min.  The reaction was inactivated by heat at 
70°C for 15 min. Real time PCR was performed in triplicate using Rotor gene-3000 Thermo 
cycler PCR machine, Sensi Mix SYBER green PCR reagent and primers (Integrated DNA 
technologies, US) were used to amplify the region of  Cpt-1 and Acc-1.  The primers are, Cpt-
1 forward 5’CGGTTCAAGAATGGCATCATC 3’; Cpt-1 reverse 5’ TCA CAC CCA CCACCA 
CGAT 3’ and Acc-1 forward 5’ TAC AAC GCA GGC ATC AGA AG 3’; Acc-1  reverse 5’ TGT 
GCT GCA GGA AGA TTG AC 3’.  Amplification was occurred in a three-step cycle: 
denaturation at 95°C for 5 seconds (sec), annealing at 62°C for 10 sec and extension at 72°C 
for 15 sec.  Relative mRNA expression were normalized to Actin and GAPDH reference 
genes (Actin forward primer 3’GAC GAG GCC CAG AGC AAG AGA 5’; reverse primer 3’ 
GGG TGT TGA AGG TCT CAA ACA 5’; GAPDH forward primer 3’ GAA CAT CAT CCC 
TGC ATC C 5’ reverse primer 3’ CCT GCT TCA CCA CCT TCT T 5’). Expression ratio was 
calculated according to relative standard method. 
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Statistical analysis 

Results are presented as means ±SD. Statistical analysis was performed by one-way ANOVA 
followed Tukey’s post hoc test. All statistical analyses were performed using GraphPad 
InStat 3 software.  *** indicates P value, P<0.001, ** indicates P value, P<0.01 and * 
indicates P value, P<0.05 

 

Results 

Exercise increased phosphorylation of CaMKII in rat skeletal muscle. 
In order to confirm that exercise phosphorylated CaMKII at Thr286, we assessed it together 
with total CaMKII expression using western blotting.  Figure 2 showed that phospho CaMKII 
protein expression of the exercise group was ~2.9 fold increased compared with the control 
group.  Administration of KN93 prior to exercise prevented exercise-induced increase of 
CaMKII activation.  Expression levels of CaMKII of the exercise + KN93 group was, 
however, reduced to levels relatively similar to those observed in the control group.  Unlike 
phospho CaMKII, expression of total CaMKII did not change in response to exercise.  This 
result confirms exercise-induced CaMKII activation in rat skeletal muscle.  
 
CaMKII activation by exercise decreased linoleic acid levels in rat skeletal muscle. 
Linoleic acid is an omega 6 polyunsaturated fatty acid and is a precursor of AA.  The diet 
provided for the rats contained 10% fat as source of LA and rats were not fed any animal-
based foods.  As shown in Figure 3, levels of LA in the exercise group showed ~3.4 fold 
decrease compared with the control group.  However, LA levels of the exercise + KN93 
group were similar to the levels of the control group. The results show that exercise-induced 
CaMKII activation increased oxidation of LA to their metabolites.  
 
CaMKII activation by exercise increased arachidonic acid and 11, 14 -Eicosadienoic 
acid levels in rat skeletal muscle. 
The levels of AA were assessed by using GC-MS.  As shown in Figure 4, the AA levels of 
the exercise group showed ~5.5 fold increase compared with the non-exercise group.  
Inhibition of CaMKII using KN93 prior to exercise significantly reduced exercise-induced 
increase of AA. The results show that CaMKII was involved in arachidonic acid 
biosynthesis. 
  

Moreover, 11, 14-eicosadienoic acid (ED) was assessed as an intermediate that is involved 
in the synthesis of AA from LA.  As shown in Figure 5, ED levels of the exercise group 
showed ~3.2 fold increase compared with the control group.  Administration of KN93 
before exercise showed a significant decrease compared with the exercise group.  The 
exercise + KN93 group’s ED levels were similar to those of the control group and not 
statistically different from each other. The results indicate that exercise-induced CaMKII 
activation increased ED levels. 
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CaMKII activation by exercise increased CPT-1 gene expression in rat skeletal muscle 
CPT-1 is an enzyme that encodes gene responsible for lipid oxidation. Cpt-1 gene expression 
of the exercise group showed ~7.8 fold increase compared with the control group.  Cpt-1 gene 
expression of the exercise + KN93 group showed significant decrease compared with the 
exercise group.  Cpt-1 gene expression of the exercise + KN93 was similar to the control 
group (Figure 6).  The results show that CaMKII activation increased Cpt-1 gene expression 
in rat skeletal muscle.  
 
CaMKII activation by exercise decreased ACC-1 gene expression in rat skeletal 
muscle 
ACC-1 is an enzyme that encodes genes responsible for lipid biosynthesis.  Acc-1 gene 
expression was analysed by using qPCR.  As shown in Figure 7, Acc-1 gene expression of the 
exercise group showed ~1.9 fold decrease compared with the control group and the exercise 
+ KN93 group showed significant increase compared with the exercise group.  These results 
showed that exercise-induced CaMKII activation decreased Acc-1 gene expression.  These 
results are not surprising since CPT-1 and ACC-1 work antagonistically. 

 

Discussion  

 
KN-93 is a methoxybenzene sulfonyl derivative that competitively inhibits calmodulin 
binding to CaM kinase (Anderson et al. 1998). The effects of KN93 are mediated through 
CaMKII inhibition rather than through inhibiting any other enzyme activated by 
Ca2+/calmodulin (Si and Collins 2008). The data presented in this study showed increased 
levels of AA in response to CaMKII activation.  AA increase has been shown to alleviate the 
features related to type 2 diabetes (Borkman et al. 1993).   Furthermore, it was observed that 
CAMKII activation by exercise reduced the level of LA. This indicates that exercise-induced 
CaMKII activation can increase synthesis of AA from LA and this could be as a result of 
series of desaturation and elongation steps. Moreover, it was also found that CaMKII 
activation by exercise increased the level of ED, which is an intermediate involved in 
biosynthesis of AA. Therefore, exercise-induced CaMKII activation could be beneficial to 
reduce symptoms of type 2 diabetes, such as insulin resistance through modulation of these 
fatty acids.   
 

The activation of transcription factors by more than one signal transduction pathway or 
mechanism by exercise induced gene regulation in the skeletal muscle has been reported 
(Wackerhage et al. 2002). However, our study indicated that CaMKII activation by exercise 
regulated lipid metabolism genes in rat skeletal muscle.  Studies have shown that exercise 
promotes lipid loss by increasing energy expenditure, lipid oxidation and increases the ability 
of skeletal muscle to use lipids (De Glisezinski et al. 2003; Goodpaster et al. 2003; Moro et 
al. 2005). The exact mechanism through which exercise improves lipid metabolism is not 
fully understood.  In this study, we assessed CPT-1 and ACC-1 expression, which are 
responsible for lipid oxidation and synthesis.  CPT-1 catalyses the first step of mitochondrial 
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long chain fatty acid oxidation and inhibited by malonyl CoA in skeletal muscle (Mcgarry et 
al., 1983) and malonyl CoA synthesized by ACC-1 (Hardie 1989; Awan and Saggerson 1993; 
Saha et al. 1995) . 

   
Exercise reduces level of malonyl CoA in skeletal muscle, which may be due to decreased 
activity of ACC (Winder and Hardie 1996).  Therefore, reduction of malyonyl CoA by ACC-
1 can prevent inhibition of CPT-1.    Cpt-1 gene expression of exercise group showed ~7.8 
fold increase compared to control group whereas exercise + KN93 did not show any 
significant change compared to control group.  These results showed that CAMKII activation 
increased CPT-1 expression in rat skeletal muscle.  In addition, ACC-1 expression of exercise 
group showed significant decrease compared to control group. Administration of KN93 
blocked the exercise-induced decrease of ACC-1 expression.  This indicates that exercise-
induced CaMKII activation regulates genes involved in lipid oxidation and synthesis in rat 
skeletal muscle.  The effect of CaMKII activation in the regulation of ACC-1 and CPT-1 may 
influence the proportion of oxidized intramuscular fatty acids as an energy source.  Therefore, 
exercise-induced CaMKII activation can improve lipid metabolism and alleviate symptoms of 
obesity and type 2 diabetes. 
 
 

Conclusion 
This study demonstrated that exercise-induced CaMKII activation increased the synthesis of 
AA from LA and regulated the genes that are responsible for lipid metabolism.  It further 
explains why exercise has always been advocated as a means to alleviate many diseases.  
These results suggest that CaMKII could be an avenue for the design of effective 
therapeutic modalities that can be used in the treatment or management of type 2 diabetes 
and obesity. 

 

Conflict of Interest 

The authors declare no conflict of interest. 

 

Acknowledgement 

Authors wish to acknowledge the National Research Foundation of South Africa for 
providing funding to Prof Emmanuel Mukwevho, Grant no: 76194 and 88062. 

 

 
 
 
 
 
References 



10 
 

 
ANDERSON ME, BRAUN AP, WU Y, LU T, SCHULMAN H, SUNG RJ: KN-93, an 
inhibitor of multifunctional Ca++/calmodulin-dependent protein kinase, decreases early after 
depolarizations in rabbit heart. J Pharmacol Exp Ther 287:  996-1006, 1998. 
 
AWAN MM, SAGGERSON ED: Malonyl-CoA metabolism in cardiac myocytes and its 
relevance to the control of fatty acid oxidation.  Biochem J 295: 61-66, 1993. 
 
BORKMAN M, STORLIEN LH, PAN DA, JENKINS AB, CHISHOLM DJ, CAMPBELL  
LV: The relation between insulin sensitivity and the fatty-acid composition of skeletal 
muscle phospholipids. N Engl J Med 328: 238-244, 1980. 
       
BRUCE CR, THRUSH AB, MERTZ VA, BEZAIRE V, CHABOWSKI A, 
HEIGENHAUSER GJF, DYCK DJ: Endurance training in obese humans  improves glucose 
tolerance and mitochondrial fatty acid oxidation and alters muscle lipid content.  Am J 
Physiol Endocrinol Metab 291: E99, 2006. 
 
CHIN ER: Role of CAMKII in skeletal muscle plasticity.  J Appl Physiol 99: 414-423, 2005. 
 
DE GLISEZINSKI I, MORO C, PILLARD F, MARION-LATARD F, HARANT I, MESTE 
M, BERLAN M, CRAMPES F, RIVIÈRE D: Aerobic training improves exercise-induced 
lipolysis in SCAT and lipid utilization inoverweightmen.  Am J Physiol 285: 984-999, 2003. 
 
DEAN D, DAUGAARD JR, YOUNG ME, SAHA A, VAVVAS D, ASP S, KIENS B, KIM  
KH, WITTERS L, RICHTER EA: RUDERMAN N: Exercise diminishes the activity of  
acetyl-CoA carboxylase in human muscle. Diabetes  49: 1295-1300, 2000. 
 
FOLCH J, LEES M, STANELY GM:  A simple method for the isolation and purification of 
total lipids from animal tissues.  J Biol  226: 497-509, 1957 

 
GAO Z, ZHANG X, ZUBERI A, HWANG D, QUON MJ, LEFEVRE M, YE J:               
Inhibition of insulin sensitivity by free fatty acids requires activation of multiple              
serine kinases in 3T3-L1 adipocytes. Mol Endocrinol 18: 2024, 2004. 
 
GOODPASTER BH, KATSIARAS A, KELLEY DE: Enhanced fat oxidation through 
physical activity is associated with improvements in insulin sensitivity in obesity.              
Diabetes 52: 2191-2197, 2003. 
 
GREENBERG, A.S., COLEMAN, R.A. AND KRAEMER, F.B: The role of lipid droplets in   
metabolic disease  in rodents and humans.  J Clin Invest 121: 2102-2110, 2011.  
 
 
HARDIE DG: Regulation of fatty acid synthesis via phosphorylation of acetyl-CoA  



11 
 

carboxylase.  Prog Lipid Res 28: 117-146, 1989. 
 
HARDIE  DG, PAN DA: Regulation of fatty acid synthesis and oxidation by the AMP-
activated protein kinase. Biochem Soc Trans 30: 1064–1070, 2002. 
 
HENSRUD DD: Dietary treatment and long-term weight loss and maintenance in type 2 
diabetes. Obes Res 9: S348-S353, 2001. 
 
HOLLOSZY JO: Adaptations of skeletal muscle mitochondria to endurance exercise: a  
personal perspective.  Exerc Sport Sci Rev 32: 41-43, 2004. 
 
HOLLOSZY JO, BOOTH FW: Biochemical adaptation to endurance exercise in    
muscle. Ann Rev Physiol 38: 273–291, 1976. 
 
ICHIHARA K, SHIBAHARA A, YAMAMOTO K, NAKAYAMA T:  An improved method 
for  rapid analysis of fatty acids of glycerolipids.  Lipids  31: 535-539, 1996. 
 
KINFE HH, BELAY YH, JOSEPH JS, MUKWEVHO E: Evaluation of the influence of 
thiosemicarbazone-triazole hybrids on genes implicated in lipid oxidation and 
accumulation as potential anti-obesity agents. Bioorg Med Chem Lett 23: 5275-5278,  
2013. 
 
KNOWLER WC, BARRETT-CONNOR E, FOWLER SE, HAMMAN RF, LACHIN JM, 
WALKER EA, NATHAN DM: Reduction in the incidence of type 2 diabetes with lifestyle  
intervention or metformin. N Engl J Med 346: 393-403, 2002. 
 
KOVES T R, LI P, AN J, AKIMOTO T, SLENTZ D, ILKAYEVA O, DOHM GL, YAN Z, 
NEWGARD CB, MUOIO DM: Peroxisome proliferator-activated receptor-gamma co-
activator 1alpha-mediated metabolic remodeling of skeletal myocytes mimics exercise 
training and reverses lipid-induced mitochondrial inefficiency. J Biol Chem 280: 33588-
33598, 2005.  
 
MCAULEY KA, WILLIAMS SM, MANN JI, GOULDING A, CHISHOLM A, WILSON N, 
STORY G, MCLAY RT, HARPER MJ, JONES IE: Intensive lifestyle changes are necessary 
to improve insulin sensitivity: a randomized controlled trial. Diabetes Care 25: 445-452, 
2002. 
 
MCGARRY JD., MILLS, S.E., LONG, C.S., AND FOSTER, D.W: Observations on the 
affinity for carnitine, and M-CoA sensitivity, of carnitinepalmitoyltransferase I in             
animal and  human tissues: demonstration of the presence of malonyl-CoA in non             
hepatictissues of the rat.  Biochem J 214: 21-28, 1983. 
 
 
 



12 
 

MEIRER K, STEINHILBER D, PROSCHAK E:. Inhibitors of the arachidonic acid   
cascade: interfering with multiple pathways. Basic Clin Pharmacol Toxicol 114: 83-91, 
2014. 
 
MORO C, PILLARD F, DE GLISEZINSKI I,  HARANT I, RIVIÈRE D, STICH 
V, LAFONTAN M, CRAMPES F, BERLAN M: Training enhances ANP lipid-             
mobilizing action in adipose tissue of overweight men.  Med Sci Sports Exerc 7: 1126-1132, 
2005. 
 
MUKWEVHO E, JOSEPH JS: Calmodulin dependent protein kinase II activation by   
exercise regulates saturated & unsaturated fatty acids and improves some metabolic   
syndrome markers. Life Sci 111: 53-61, 2014. 
 
MUKWEVHO E, KOHN TA, LANG D,  NYATIA E, SMITH J, OJUKA EO:   
Caffeine induces hyperacetylation of histones at the MEF2 site on the Glut4 promoter and  
increases MEF2A binding to the site via a CaMK-dependent mechanism. Am J Physiol. 
Endocrinol Metab 294: E582-588, 2008.  
 
OJUKA EO, JONES TE, HAN DH, CHEN M, HOLLOSZY JO: Raising Ca2+ in L6  
myotubes mimics effects of exercise on mitochondrial biogenesis in muscle. FASEB J 17:  
675-681, 2003. 
 
OLSON DP, PULINILKUNNIL T, CLINE GW, SHULMAN GI, LOWELL B.B: Gene  
knockout of ACC2 has little effect on body weight, fat mass, or food intake. Proc Natl Acad 
Sci USA. 107(16): 7598-7603, 2010. 
 
O'NEILL HM, LALLY JS, GALIC S, PULINILKUNNIL T, FORD RJ, DYCK JR, VAN 
DENDEREN BJ, KEMP BE, STEINBERG GR: Skeletal muscle ACC2 S212 
phosphorylation is not required for the control of fatty acid oxidation during exercise.  
Physiol Rep 3(7):  pii: e12444, 2015. 
 
PAYNE ME, FONG YL, ONO T, COLBRAN RJ, KEMP BE, SODERLING TR, MEANS 
AR: Calcium/calmodulin-dependent protein kinase II. Characterization of Distinct 
calmodulin binding and inhibitory domains. J Biol Chem 263: 7190-7195, 1988. 
 
PHINNEY SD: Arachidonic acid maldistribution in obesity. Lipids 31: S271-S274, 1996. 
 
REN JM, SEMENKOVIK CF, GAO EA: Exercise induce rapid increase in GLUT 4 
expression, glucose transport capacity and insulin stimulated glycogen storage in              
muscle.  J Biol Chem 269: 14396-14401, 1994. 
RETT BS, WHELAN J: Increasing dietary linoleic acid does not increase tissue arachidonic 
acid content in adults consuming Western-type diets: a systematic review. Nutr Metab 8: 36, 
DOI: 10.1186/1743-7075-8-36, 2011. 
 



13 
 

SAHA AK, KUROWSKI TG, RUDERMAN N: A malonylCoA fuel sensing mechanism in 
muscle: effects of insulin, glucose, and denervation.  Am J Physiol Endocrinol. Metab 269: 
E283-E289, 1995. 
 
SALEM N JR, PAWLOSKY R, WEGHER B, HIBBELN J: In vivo conversion of linoleic  
acid to arachidonic acid in human adults. Prostaglandins Leukot. Essent. Fatty Acids 60: 407 
-410, 1999. 
 
SI J, COLLINS SJ: Activated Ca2+/Calmodulin-dependent protein kinase II; Is a critical 
regulator of myeloid leukemia cell proliferation. Cancer Res 68: 3733-3742, 2008. 
 
SMITH, GI, ATHERTON P, REEDS DN, MOHAMMED BS, RANKIN D, RENNIE MJ.,  
MITTENDORFER B. Omega-3 polyunsaturated fatty acids augment the muscle protein 
anabolic response to hyperinsulinaemia-hyperaminoacidaemia in healthy young and middle-
aged men and women. Clin. Sci. (London, England : 1979)  121: 267-78, 2011.  
 
SMITH, JAH, COLLINS M, GROBLER LA, MAGEE CJ, OJUKA EO: Exercise and  
CaMKII activation both Increase the Binding of MEF2A to the GLUT4 promoter in Skeletal 
Muscle in vivo. Am J Physiol Endocrinol Metab 292: 413–420, 2007. 
 
TERADA S, YOKOZEKI T, KAWANAKA K, OGAWA K, HIGUCHI M, EZAKI  
O, TABATA I: Effects of high-intensity swimming training on GLUT-4 and glucose 
transport  activity in  rat skeletal muscle.  J Appl Physiol 90: 2019-2024, 2001. 
 
TIAN J, JI H, OKU H, ZHOU J: Effects of dietary arachidonic acid (ARA) on lipid 
metabolism and health status of juvenile grass carp, Ctenopharyngodon idellus     
Aquaculture 430: 57-65, 2014. 
 
TONG L: Acetyl-coenzyme A carboxylase: crucial metabolic enzyme and attractive target 
for drug discovery.  Cell Mol Life Sci 62: 1784–1803, 2005. 
 
WACKERHAGE H, WOODS NM: Exercise-induced signal transduction and gene regulation  
in skeletal muscle. J Sports Sci Med 1(4): 103-114, 2002. 
 
WICKS SE, VANDANMAGSAR B, HAYNIE KR, FULLER SE, WARFEL JD.,  
STEPHENS JM, WANG M, HAN X, ZHANG J., NOLAND RC,  MYNATT RL: Impaired 
mitochondrial fat oxidation induces adaptive remodeling of muscle metabolism. Proc Natl 
Acad Sci USA  112: E3300-3309, 2015. 
 
 
WINDER WW, HARDIE DG: Inactivation of acetyl-CoA carboxylase and activation of 
AMP-activated protein kinase in muscle during exercise.  Am J Physiol 270: E299-E304, 
1996. 
 



1 
 

 

 

 

 

Days 1‐4: Rats were

received, housed,

familiarized to

handling and their

healthmonitored.

Days 5‐8: Rats were familiarized with swimming protocol.

Rats were placed in a cylindrical drum filled to a depth of 50

cmwith the tap watermaintained at 35°C.

Day 5: 2×17 min swimwith a 3 min rest in betweenbouts

Day 6: 3×17 min swimwith a 3 min rest in betweenbouts

Day 7: 4×17 min swimwith a 3 min rest in betweenbouts

Day 8: 5×17 min swimwith a 3 min rest in betweenbouts

Following the final exercise session and in between each bouts

rats were gently towel dried and placed in their cages.

Days 9‐14: Rats

were rested in

cages

Days 15‐19: Exercise + KN93 group were injected with

5mg/Kg of KN93 and control and exercise group were

injected with DMSO. The rats were returned to cages for 30

min. Followed by 5×17 min swimwith 3 min rest in between

bouts. This was repeated for once per day for 5 days. The

rats were anaesthetized after 6 hr post exercise and muscle

were dissected out for analysis
 

 

Fig. 1. Diagrammatic flow chart of the swimming protocol used to exercise the rats. 
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         Fig. 2.  Phosphorylation of CaMKII in response to exercise in rat skeletal muscle.  The graph 

showed the protein expression of PCaMKII relative to total CaMKII and western blot of pCaMKII and 

total CaMKII.  The protein size is 36kDa. The P value, control vs exercise P<0.001 (***) exercise + 

KN93 vs  exercise   P<0.01 (**).  
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 Fig. 3. Effects of CaMKII activation on linoleic acid levels in rat skeletal muscle.  Gastrocnemius 

muscles were isolated from rats 6 hr post exercise. It showed the fold changes in control, exercise, 

and exercise+KN93 groups.  P value, P<0.01 (**) and exercise + KN93 vs exercise P<0.05 (*). 
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Fig. 4. Effects of CaMKII activation on arachidonic acid levels in rat skeletal muscle.  Gastrocnemius 

muscles were isolated from rats 6 hr post exercise. It shows the fold changes of control, exercise, 

and exercise+KN93 groups.  The P value, P<0.001 (***) and exercise + KN93 vs exercise P<0.01 (**). 
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     Fig. 5. Effects of CaMKII activation on 11,14‐eicosadienoic acid levels in rat skeletal muscle.  

Gastrocnemius muscles were isolated from rats 6 hr post exercise. It shows the fold changes of 

control, exercise, and exercise+KN93 groups. The  P value, control vs exercise P<0.01 (**) and 

exercise + KN93 vs exercise P<0.01 (**). 
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Fig. 6. Effects of CaMKII activation on Cpt‐1 gene expression in rat skeletal muscle.  Gastrocnemius 

muscles were extracted from the control, exercise, and exercise + KN93 groups 6 hr post exercise.  

Cpt‐1 gene expression of the exercise group showed ~7.8 fold increase compared with the control 

group, whereas the exercise + KN93 group showed ~ 5.5 fold decrease compared with the exercise 

group.  P value, control vs exercise P<0.001 (***) and exercise + KN93 vs exercise P<0.001 (***). 
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Fig. 7. Effects of CaMKII activation on Acc‐1 gene expression in rat skeletal muscle.  Gastrocnemius 

muscles were extracted from the control, exercise, and exercise + KN93 groups 6 hr post exercise.  

Acc‐1 gene expression of the exercise group showed ~1.9 fold decrease compared with the control 

group, whereas the exercise + KN93 group shows significant increase compared with the exercise 

group.  The P value, control vs exercise P<0.05 (*) and exercise + KN93 vs exercise P<0.05 (*). 
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