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SUMMARY 26 

In ischemic/reperfusion (I/R) injured hearts, severe oxidative stress occurs and is 27 

associated with intracellular calcium (Ca
2+

) overload.  Glucagon-Like Peptide 1 (GLP-1) 28 

analogues have been shown to exert cardioprotection in I/R heart.  However, there is little 29 

information regarding the effects of GLP-1 analogue on the intracellular Ca
2+

 regulation in 30 

the presence of oxidative stress.  Therefore, we investigated the effects of GLP-1 analogue, 31 

(liraglutide, 10µM) applied before or after hydrogen peroxide (H2O2, 50µM) treatment on 32 

intracellular Ca
2+

 regulation in isolated cardiomyocytes.  We hypothesized that liraglutide 33 

can attenuate intracellular Ca
2+

 overload in cardiomyocytes under H2O2-induced 34 

cardiomyocyte injury.  Cardiomyocytes were isolated from the hearts of male Wistar rats.  35 

Isolated cardiomyocytes were loaded with Fura-2/AM and fluorescence intensity was 36 

recorded.   Intracellular Ca
2+

 transient decay rate, intracellular Ca
2+

 transient amplitude and 37 

intracellular diastolic Ca
2+

 levels were recorded before and after treatment with liraglutide.  38 

In H2O2 induced severe oxidative stressed cardiomyocytes (which mimic cardiac I/R) injury, 39 

liraglutide given prior to or after H2O2 administration effectively increased both intracellular 40 

Ca
2+

 transient amplitude and intracellular Ca
2+

 transient decay rate, without altering the 41 

intracellular diastolic Ca
2+

 level.  Liraglutide attenuated intracellular Ca
2+

 overload in H2O2-42 

induced cardiomyocyte injury and may be responsible for cardioprotection during cardiac I/R 43 

injury by preserving physiological levels of calcium handling during the systolic and diastolic 44 

phases of myocyte activation. 45 

 46 

Keywords: Liraglutide; Calcium regulation; Cardiomyocyte; Ischemic/Reperfusion; 47 

Cardioprotective48 
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List of abbreviations  49 
Ca

2+  = 
Calcium 50 

GLP-1  = Glucagon-Like Peptide 1 51 

 H2O2  = Hydrogen peroxide 52 

I/R   = Ischemic/reperfusion 53 

NCX   = Sodium-calcium exchanger  54 

NSS   = Normal saline solution  55 

PKC  = Protein kinase C 56 

SERCA = Sarco/endoplasmic reticulum Ca
2+

-ATPase  57 
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MAIN BODY OF THE TEXT 58 

Since the risk of coronary heart disease is increased 2 to 4 times in type-2 diabetic 59 

patients (Beckman et al. 2002), anti-diabetic drugs that are associated with the reduction of 60 

cardiovascular events may have beneficial effects for this group of patients.  Glucagon-Like 61 

Peptide 1 (GLP-1) is an incretin peptide secreting from intestinal L-cells, which has a potent 62 

effect on glycemic control (Amori et al. 2007).  The GLP-1 receptors were expressed in 63 

ventricular myocytes (Ban et al. 2008, Richards et al. 2014).  Liraglutide is one of a long-64 

acting GLP-1 analogue which has potent glucose lowering effects for treatment of 65 

hyperglycemia in type 2 diabetes patients (Amori et al. 2007).  Recent studies demonstrated 66 

that GLP-1 analogues exert potent cardioprotective effects in both clinical trials and animal 67 

models (Amori et al. 2007, Arturi et al. 2016, Chen et al. 2016, Kumarathurai et al. 2016, 68 

Nikolaidis et al. 2005, Sonne et al. 2008).  In animal models, growing evidence demonstrates 69 

the cardioprotective effects of GLP-1 in addition to its glycemic control properties 70 

(Nikolaidis et al. 2005).  GLP-1 analogues have been shown to improve cardiac function in 71 

ischemic/reperfusion (I/R) injury of porcine model via reduced oxidative stress and increased 72 

phosphorylated Akt and Bcl-2 expression (Timmers et al. 2009) and activate cytoprotective 73 

pathways after I/R injury by modulating the expression and activity of cardioprotective genes 74 

including Akt, GSK3beta, PPARbeta-delta, Nrf-2, and HO-1(Noyan-Ashraf et al. 2009).  75 

Recent reports also support these basic studies by demonstrating that GLP-1 analogues have 76 

exerted potent cardioprotective effects in clinical trials by improved left ventricular ejection 77 

fraction, cardiac output, and left ventricular end-diastolic diameter in patients with 78 

myocardial infarction and chronic heart failure (Arturi et al. 2016, Chen et al. 2016, Chen et 79 

al. 2015, Kumarathurai et al. 2016).  During I/R period, severe oxidative stress occurs and 80 

has been shown to be associated with intracellular Ca
2+

 overload, thus facilitating both 81 

electrical and mechanical dysfunction in the heart (Shintani-Ishida et al. 2012).  Therefore, 82 



5 

 

treatment options which prevent intracellular Ca
2+

 overload could potentially be beneficial 83 

for I/R hearts.  Although currently there is only one study reporting the benefit of GLP-1 on 84 

improving intracellular Ca
2+

 homeostasis in Hl-1 cells (Huang et al. 2016) and one study 85 

reporting the neutral effects of liraglutide in cardiac I/R model (Kristensen et al. 2009), there 86 

is no available information regarding the effects of liraglutide on intracellular Ca
2+

 regulation 87 

in the ventricular cardiomyocyte.  Therefore, we investigated the effect of liraglutide on the 88 

intracellular Ca
2+

 transient in isolated rat cardiomyocytes in this study.  Hydrogen peroxide 89 

(H2O2) was used to induce severe oxidative stress similar to that observed during I/R injury.  90 

We hypothesized that liraglutide can attenuate intracellular Ca
2+

 overload in cardiomyocytes 91 

under H2O2-induced cardiomyocyte injury. 92 

This study was approved by the Institutional Animal Care and Use Committee of the 93 

Faculty of Medicine, Chiang Mai University.  All the animals were fed with normal rat chow 94 

and water ad libitum for two weeks prior to experimentation.  Male Wistar rats (8-10-week 95 

old, 250-300 g) were used.  The rats were deeply anesthesized with thiopental (0.5 mg/kg; 96 

Research institute of antibiotics and biotransformations, Roztoky, Czech Republic) after 97 

which the hearts were removed for single ventricular myocyte isolation (Palee et al. 2016, 98 

Palee et al. 2013).  99 

The isolated cardiomyocytes were used in each study protocol for the measurement of 100 

intracellular Ca
2+

 transient.   In the first protocol, cardiomyocytes were divided into 3 groups 101 

(n = 8 cells/rat and 8 rats/group) as shown in Figure 1A.  The real-time Ca
2+

 measurements 102 

were performed at the beginning of the study (baseline).  Then, cardiomyocytes in Group I 103 

were treated with normal saline solution (NSS) for 5.0 minutes as a control group.  Group II’s 104 

cells were treated with NSS for 2.0 minutes and then H2O2 for 3.0 minutes to simulate I/R 105 

injury.  Group III's cells were treated with liraglutide (10 µM) (Novo Nordisk A/S, Denmark) 106 

for 5.0 minutes.  We used liraglutide at a clinically relevant dose; patients receive the 107 
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maximum clinical dose of 1.8 mg once a day (Margulies et al. 2016).  The concentration we 108 

used for an in vitro study in this study was 10 µM of liraglutide which was approximately 109 

similar to the dose used in human (Langlois et al. 2016). 110 

In the second protocol, cardiomyocytes were divided into 4 groups (n = 8 cells/rat and 111 

8 rats/group) as shown in Figure 2A.  The real-time Ca
2+

 measurements were performed at 112 

the beginning of the study (baseline).  Then, cardiomyocytes in Group I were treated with 113 

NSS for 10.0 minutes followed by H2O2 for 3.0 minutes as a control group.  Group II's cells 114 

were treated with NSS for 5.0 minutes followed by liraglutide (10 µM) for 5.0 minutes and 115 

then H2O2 for 3 minutes. Group III’s cardiomyocytes were treated with NSS for 5.0 minute 116 

followed by H2O2 for 3.0 minutes and then NSS for 5.0 minute as another control group.  117 

Group IV were treated with NSS for 5.0 minutes followed by H2O2 for 3.0 minutes and then 118 

liraglutide (10 µM) for 5.0 minutes. The real-time Ca
2+

 measurements were performed after 119 

drug treatment in all groups (Palee et al. 2016). 120 

In this study, we used H2O2 (50 µM) to induce oxidative stress, to simulate the 121 

oxidative stress that is generated by ischemia/reperfusion injury.  H2O2 concentration at 50 122 

µM has been widely used to trigger oxidative stress-induced intracellular Ca
2+

 123 

dyshomeostasis in cardiomyocytes.  H2O2 has been shown to decrease sarco/endoplasmic 124 

reticulum Ca
2+

-ATPase (SERCA) and sodium-calcium exchanger (NCX) activities (Huang et 125 

al. 2014) by inhibiting protein kinase C (PKC) activities, leading to the alteration of the 126 

intracellular Ca
2+

 homeostasis (Goldhaber 1996, Reeves et al. 1986). 127 

Cardiomyocytes were isolated from the hearts of male Wistar rats using a method 128 

described previously (Palee et al. 2016).  In brief, under deep anesthesia, the heart was 129 

immediately removed and placed into a modified Langendroff apparatus.  The hearts were 130 

perfused with modified Krebs solution as previously described (Palee et al. 2016) for 5 131 

minutes, followed by calcium-free solution (100 μM EGTA ) for 4 minutes, Tyrode’s 132 
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solution with collagenase (0.1 mg/ml) for 10 minutes, and modified Krebs solution 133 

containing 100 μM CaCl2 and 1 mg/ml type II collagenase for another 8 minutes.  The 134 

ventricles were removed from the cannula, cut into small pieces and incubated in 10 ml of 135 

collagenase solution gassed with 100% O2 for 7 minutes at 37ºC.  A pipette was used to 136 

pipette the cell suspension up and down in order to dissociate cardiac tissue into single cells.  137 

The cardiomyocytes were separated from undigested ventricular tissues by filtering through 138 

cell strainer, and were settling into a loose pellet.  Then, the supernatant was removed and 139 

replaced with modified Krebs solution containing 1% BSA and 500 μM CaCl2.  This process 140 

was repeated with modified Krebs solution containing 1 mM CaCl2.  After this procedure, the 141 

cardiomyocytes were ready for recording.(Palee et al. 2013) The isolated cardiomyocytes 142 

were placed in a modified Krebs solution containing 1 mM CaCl2.  Intracellular Ca
2+

 143 

transient were measured using the CELL
R
 imaging software (Olympus Soft Imaging 144 

Solutions GmbH, Germany).  The isolated cardiomyocytes were loaded with Fura-2/AM at a 145 

final concentration of 5 µM and fluorescent intensity (excitation wavelengths are 340 nm and 146 

380 nm, and emission wavelength is 510 nm) was recorded during electrical pacing (1 Hz, 10 147 

ms duration, 15 V) (Palee et al. 2016).  The ratio of the emissions wavelengths (510 nm) is 148 

directly related to the amount of intracellular Ca
2+

.  Data are shown as mean ± SD.  149 

Comparisons of variables were performed using the one-way ANOVA followed by LSD 150 

post-hoc test.  P<0.05 was considered statistically significant. 151 

We investigated the effects of liraglutide on intracellular Ca
2+

 handling in isolated rat 152 

cardiac myocytes exposed to hydrogen peroxide solution to provoke oxidative stress.  H2O2 153 

significantly decreased both intracellular Ca
2+

 transient amplitude (Figure 1B) and 154 

intracellular Ca
2+

 transient decay rate (Figure 1C).  However, intracellular diastolic Ca
2+

 155 

levels were not altered (Figure 1D), when compared to the control group (i.e. cardiomyocytes 156 

treated with NSS).  Moreover, liraglutide (10 µM) significantly increased the intracellular 157 
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Ca
2+

 transient amplitude (Figure 1B) and Ca
2+

 transient decay rate (Figure 1C), but did not 158 

alter intracellular diastolic Ca
2+

 levels (Figure 1D), when compared to the control group.  The 159 

representative Ca
2+ 

transient tracings are shown in Figure 1E.  160 

In the simulated I/R injury protocol, our results demonstrated that cardiomyocytes 161 

pretreated with liraglutide significantly increased the intracellular Ca
2+

 transient amplitude 162 

(Figure 2B) and the intracellular Ca
2+ 

transient decay rate (Figure 2C), when compared to the 163 

H2O2 treated group.  However, in all experimental groups, the levels of intracellular diastolic 164 

Ca
2+

 levels
 
did not differ (Figure 2D.  The representative Ca

2+ 
transient tracings are shown in 165 

Figure 2E.  Interestingly, we found that when liraglutide was given after H2O2 application to 166 

cardiomyocytes, it still significantly increased the intracellular Ca
2+

 transient amplitude and 167 

intracellular Ca
2+ 

transient decay rate, when compared to the H2O2 treated group (Figure 2B, 168 

2C).  Similar to the results of pretreatment, liraglutide given after H2O2 application did not 169 

alter the intracellular diastolic Ca
2+

 levels.  170 

Since patients with type-2 diabetes mellitus have a higher risk (2 to 4 fold) for 171 

developing coronary heart disease including myocardial infarction (Beckman et al. 2002), 172 

anti-diabetic drugs with cardioprotection will be beneficial to these patients.  It is known that 173 

fatal arrhythmias and LV dysfunction are often observed following acute myocardial 174 

infarction (Takamatsu 2008).  Importantly, impaired intracellular Ca
2+

 regulation has been 175 

shown to be an important factor responsible for these pathological effects (Takamatsu 2008).  176 

Therefore, treatment options which can attenuate the impairment of intracellular Ca
2+

 177 

homeostasis could provide cardioprotection for the ischemic heart.   In the present 178 

study, our results clearly demonstrated that liraglutide exerted cardioprotective effects against 179 

H2O2-induced cardiomyocyte injury by attenuating intracellular Ca
2+

 overload.   180 

GLP-1 receptor is expressed in the heart and ventricular myocyte and has a high 181 

affinity with a specific GLP-1 receptor agonist liraglutide (Pyke et al. 2014, Saraiva et al. 182 
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2014).  Therefore, in this study the cardioprotective effect of liraglutide is mediated by the 183 

GLP-1 receptor dependent pathway via increased phosphorylation of Akt and GSK3β which 184 

are involved in the reperfusion injury survival kinase (RISK) pathway (Hausenloy et al. 185 

2005).  This finding was supported by previous studies reported the cardioprotective effects 186 

of GLP-1 in animal models (Bose et al. 2005, Bose et al. 2007, Kavianipour et al. 2003, 187 

Nikolaidis et al. 2005).  Liraglutide pre- and post-treatment in cardiac I/R injury has been 188 

shown to provide cardioprotective effects in both animals and clinical studies (Chen et al. 189 

2016, McCormick et al. 2015, Noyan-Ashraf et al. 2009, Salling et al. 2012). 190 

In the present study using H2O2-induced cardiomyocyte injury, our results 191 

demonstrated that intracellular Ca
2+ 

transient amplitude was impaired by H2O2 and both of 192 

liraglutide pre- and post-treatment significantly increased intracellular Ca
2+ 

transient 193 

amplitude.  Our finding consistent with previous studies reported that liraglutide exerts 194 

cardioprotective effects by activating GLP-1 receptors in cardiomyocytes by coupled with the 195 

G-protein/adenyl cyclase complex to increase cyclic adenosine monophosphate (cAMP) 196 

production.  Then, activates protein kinase A (PKA) and Ca
2+

channel phosphorylation, 197 

respectively.  Finally, increase Ca
2+

influx and increasing cardiomyocyte contractility 198 

(Kristensen et al. 2009).  Moreover, cAMP activate sarco/endoplasmic reticulum Ca2+-199 

ATPase (SERCA2a) activity and then increases Ca
2+ 

reuptake into the endoplasmic reticulum 200 

(Younce et al. 2013), leading to cardiomyocyte relaxation.  Moreover, we found that 201 

liraglutide increased intracellular Ca
2+

 transient decay rates.  This finding is consistent with 202 

previous findings which reported that liraglutide increased intracellular cAMP and activated 203 

SERCA2a activity and then increased Ca
2+

 reuptake into the endoplasmic reticulum (Younce 204 

et al. 2013).  This finding also helped to explain the results in a previous report which 205 

showed that a GLP-1 analogue improved diastolic functions in liraglutide-treated mice 206 

(Noyan-Ashraf et al. 2009) and liraglutide also reduced the severity of left ventricular 207 
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dilation in that study (Noyan-Ashraf et al. 2009).  Therefore, the ability of liraglutide to 208 

attenuate the impairment of physiological Ca
2+

 handling in a H2O2-induced cardiomyocyte 209 

injury model by increasing intracellular Ca
2+

 amplitude and decay rates, is a cardioprotective 210 

effect, in addition to its glycemic control, which is responsible for the improvement of 211 

cardiac function observed in previous reports.  In addition, our results showed that liraglutide 212 

did not alter the intracellular diastolic Ca
2+

 level.  Even though there is a high level of 213 

intracellular Ca
2+

 transient amplitude which reflect an increased intracellular Ca
2+

 during 214 

systolic period, there was a high rate of Ca
2+

 elimination which represented by intracellular 215 

Ca
2+

 transient decay rate.  The balance on this intracellular calcium regulation could be 216 

contributed to the unaltered intracellular diastolic calcium level as seen in this study.  217 

Although we did not assess the oxidative stress parameters, previous studies demonstrated 218 

that liraglutide activated of PI3K-Akt-eNOS-NO signaling pathway and inhibited of 219 

oxidative stress  (Inoue et al. 2015, Liu et al. 2016, Noyan-Ashraf et al. 2009). 220 
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 361 

 362 

Figure 1.  A schematic of study protocol I (A) and the effects of liraglutide on intracellular 363 

Ca
2+

 transient amplitude (B), intracellular Ca
2+

 transient decay rate (C), intracellular diastolic 364 

Ca
2+

 levels (D) and the representative images of Ca
2+ 

transient tracing (E).  *p<0.05 vs. NSS, 365 

†p<0.05 vs. H2O2 + NSS. NSS = normal saline solution, H2O2 = hydrogen peroxide, Ca
2+ 

= 366 

intracellular calcium measurement 367 
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 379 

Figure 2.  A schematic of study protocol II (A) and the effects of liraglutide administration 380 

before and after H2O2 application on intracellular Ca
2+

 transient in cardiomyocytes.  381 

Liraglutide significantly increased intracellular Ca
2+ 

transient amplitude (B) and increased 382 

intracellular Ca
2+

 transient decay rate (C), but did not alter intracellular diastolic Ca
2+

 levels 383 

(D), when compared with the H2O2 group and the representative images of Ca
2+ 

transient 384 

tracing (E).   *p<0.05 vs. NSS + H2O2,  †p<0.05 vs. H2O2 + NSS.  NSS=normal saline 385 

solution, H2O2 = hydrogen peroxide, Ca
2+

 = intracellular calcium measurement 386 
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