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Radiation-hydrodynamic model of the wind
I Numerical model calculated in 3D-Eulerian coordinate grid.

I Equation of motion is given by

∂~3

∂t
= −(~3∇)~3 − ∇Φeff +~fL −

1
ρ
∇Pg + 2~3 ∧ ~n .

I Under the assumption of the Sobolev approximation, line force fL could be approximated by:

fL =
σeL∗
4πcr2 kt−α t = σeρ3th

(
d3
dr

)−1

α and k are parameters of the CAK model dependent on the effective temperature of the
star.

I We use the continuity equation in form of

∂ρ

∂t
= ∇ · (ρ~3) .

Astronomical Institute
Academy of Sciences of the Czech Republic

Charles University in Prague
Faculty of Mathematics and Physics

R(M)H Seminar, Mar 31, 2011, Ondřejov
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Roche potential

Φeff (r, ϑ, ϕ) = −
GM∗

D

D (1 − Γ∗)
r

+
q (1 − Γx)[

1 − 2 (r/D) λ + (r/D)2
]1/2 −

( r
D

)
λ +

1
2

(1 + q)
( r

D

)2 (
1 − µ2

)
I Mass rate of the components

of the binary

q = Mx/M∗
I Source luminosity relative to

the Eddington luminosity

Γ =
σeL∗

4πGMc

I Substitutions

λ = cosϕ sinϑ
µ = cosϑ
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Radial approximation

I Supposing the velocity field in form of: ~3 = 3 (r) ~rr
I For partial derivatives hold ∂

∂ϑ = ∂
∂ϕ = 0

I In this case we may use the equation of motion in form of:

3 d3
dr = −

dΨeff

dr + fL − 1
ρ

dPg
dr

I We presume a spherically non-symmetrical case. Therefore the
continuity equation for mass reads

dṀ
dΩ

= ρ3r2

I The streamlines of the wind are strictly radial and the material is
confined within a selected cone.
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HDE 226868 – Cygnus X-1

I RE: 19h 58min 21.6756s
DE: + 35 12’ 5.775”

I Spectral class: O9.7Iab
I Apparent visual magnitude

of the optical component: 8.95 mag
I Absolute visual magnitude

of the optical component: -6.5 mag

Table: Parameters of Cyg X-1

Teff [K] effective temperature 28000 - 31000
log(g) [log (m · s−2)] surface acceleration 3.31 ± 0.07

R1 [R� ] radius of the supergiant 18
L1 [L� ] luminosity 2.3 × 105

Γ1 rate to Ledd 0.26
m1 [M� ] mass of the supergiant 24 ± 5
m2 [M� ] mass of the black hole 8.7 ± 0.8

Porb [days] orbital period 5.599829 ± 0.000016
D [R� ] distance of the components 42 ± 9
i [◦ ] inclination 48 ± 7
d [kpc] distance 2.0 ± 0.1
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Distribution of Stellar Wind Intensity of HDE 226868

Intensity of SW [M� · yr−1 · dΩ−1]
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Stellar Wind Intensity in the Equatorial plane
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0. approximation

I dṀ
dΩ

– directional
distribution of wind
intensity

I 3wind – distribution of
wind velocity along
the radial direction

I dṀ
dΩ

= ρ3r2

I ρ (x, y, z) – spatial
distribution of mass
density

 

 

ρ [kg/m3]
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Evolution to a new Stationary Solution

ρ [kg · m−3]



Streamlines

I Streamlines in the radial
approximation

I Streamlines in a fully 3D
radiation-hydrodynamic simulation
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Streamlines and ρ

ρ [kg/m3]
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Streamlines and ρ
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PPM advection scheme

This code is based on the PPM advection scheme. PPM stands for
piecewise parabolic method presented by Collela & Woodward in 1984.

I Higher-order extension of Godunov’s method of
a type used in van Leer’s MUSCL algorithm.

I The scheme uses parabolae as the basic
interpolation functions.

I ⇒ a more accurate representation of smooth
spatial gradients as well as a steeper
representation of captured discontinuities,
particulary contanct discontinuities
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Conservative Eulerian scheme

Q =


ρ
ρu
ρ3
ρw
ε

 , E =


ρu

ρu2 + p
ρu3
ρuw

(ε + p) u

 , F =


ρ3
ρu3

ρ32 + p
ρ3w

(ε + p) 3

 , G =


ρw
ρuw
ρ3w

ρw2 + p
(ε + p) w



Qt + Ex + Fy + Gz + S = 0

I ε ... total energy density

ε =
1
2
ρ32 + ρe

I e ... specific internal energy
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3 Mach Wind Tunnel with a Step
Initial conditions:

ρint = 1.4

pint = 1.0

Tint = 273.15

uint = 2.8

3int = 0

Physical model:

C = 1/2

γ = 1.4

wind

uw Re�ecting BC

O
ut�ow

 BCIn
�o

w
 B

C

Resolution:
1200 x 300 x 1

4D

D

0.6D
Step

Astronomical Institute
Academy of Sciences of the Czech Republic

Charles University in Prague
Faculty of Mathematics and Physics

R(M)H Seminar, Mar 31, 2011, Ondřejov



Animation of ρ and T evolution
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Evolution of ρ



Evolution of p



Evolution of T



Evolution of 3



Comparison of ρ with the existing models
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Double Mach Reflection of a Strong Shock

Pre-shock :

ρpre = 1.4

ppre = 1.0

Tpre = 273.15

upre = 3pre = 0

Post-shock:

ρpost = 8.0

ppost = 116.5

Tpost = 2273.15

upost = 8.25 × sin 60◦

3post = 8.25 × cos 60◦

Shock wave & Grid:

3s = 10.0

α = 60◦

C = 1/3

γ = 1.4

60°

Post-shock

Pre-shock
Sh

oc
k-

fro
nt

vs

vd = vs/sin60°

Re�ecting BC
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w
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t-dependent BC

Resolution:
1200 x 300 x 1
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Animation of ρ and T evolution
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Evolution of ρ



Evolution of p



Evolution of T



Evolution of 3



Comparison of ρ

new hydrocode
I t = 0.25
I ρmax = 22.48

C&W (1984)
I t = 0.20
I 30 contours
I 1.73→ 20.92

Athena code
I t = 0.25
I ρmax = 22.74



Future development

I Parallelization of calculations

I Extend code for astrophysical applications

I Stellar wind in the vicinity of X-ray binary
I modified Bondi-Hoyle-Lyttelton accretion

I Improvement of the physical model

I Photo-ionization of the circumstellar medium
I Inclusion of a non-radial component of the CAK mechanism
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Discussion

Thank you for your attention
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