Hydrodynamics in X-ray binaries A new hydrocode for wind simulation

Jan Čechura

Faculty of Mathematics and Physics of the Charles University in Prague
Astronomical Institute of the Academy of Sciences of the Czech Republic

X-ray binaries

Radiation-hydrodynamic model of the wind

- Numerical model calculated in 3D-Eulerian coordinate grid.

Radiation-hydrodynamic model of the wind

- Numerical model calculated in 3D-Eulerian coordinate grid.
- Equation of motion is given by

$$
\frac{\partial \vec{v}}{\partial t}=-(\vec{v} \nabla) \vec{v}-\nabla \Phi_{\mathrm{eff}}+\vec{f}_{\mathrm{L}}-\frac{1}{\rho} \nabla P_{\mathrm{g}}+2 \vec{v} \wedge \vec{n} .
$$

Radiation-hydrodynamic model of the wind

- Numerical model calculated in 3D-Eulerian coordinate grid.
- Equation of motion is given by

$$
\frac{\partial \vec{v}}{\partial t}=-(\vec{v} \nabla) \vec{v}-\nabla \Phi_{\mathrm{eff}}+\vec{f}_{\mathrm{L}}-\frac{1}{\rho} \nabla P_{\mathrm{g}}+2 \vec{v} \wedge \vec{n} .
$$

- Under the assumption of the Sobolev approximation, line force f_{L} could be approximated by:

$$
f_{\mathrm{L}}=\frac{\sigma_{\mathrm{e}} L_{*}}{4 \pi c r^{2}} k t^{-\alpha} \quad t=\sigma_{\mathrm{e}} \rho v_{\mathrm{th}}\left(\frac{\mathrm{~d} v}{\mathrm{~d} r}\right)^{-1}
$$

α and k are parameters of the CAK model dependent on the effective temperature of the star.

Radiation-hydrodynamic model of the wind

- Numerical model calculated in 3D-Eulerian coordinate grid.
- Equation of motion is given by

$$
\frac{\partial \vec{v}}{\partial t}=-(\vec{u} \nabla) \vec{v}-\nabla \Phi_{\mathrm{eff}}+\vec{f}_{\mathrm{L}}-\frac{1}{\rho} \nabla P_{\mathrm{g}}+2 \vec{v} \wedge \vec{n} .
$$

- Under the assumption of the Sobolev approximation, line force f_{L} could be approximated by:

$$
f_{\mathrm{L}}=\frac{\sigma_{\mathrm{e}} L_{*}}{4 \pi c r^{2}} k t^{-\alpha} \quad t=\sigma_{\mathrm{e}} \rho v_{\mathrm{th}}\left(\frac{\mathrm{~d} v}{\mathrm{~d} r}\right)^{-1}
$$

α and k are parameters of the CAK model dependent on the effective temperature of the star.

- We use the continuity equation in form of

$$
\frac{\partial \rho}{\partial t}=\nabla \cdot(\rho \vec{v}) .
$$

Roche potential

$\Phi_{\text {eff }}(r, \vartheta, \varphi)=-\frac{G M_{*}}{D}\left\{\frac{D\left(1-\Gamma_{*}\right)}{r}+\frac{q\left(1-\Gamma_{\mathrm{x}}\right)}{\left[1-2(r / D) \lambda+(r / D)^{2}\right]^{1 / 2}}-\left(\frac{r}{D}\right) \lambda+\frac{1}{2}(1+q)\left(\frac{r}{D}\right)^{2}\left(1-\mu^{2}\right)\right\}$

- Mass rate of the components of the binary

$$
q=M_{\mathrm{x}} / M_{*}
$$

- Source luminosity relative to the Eddington luminosity

$$
\Gamma=\frac{\sigma_{c} L_{*}}{4 \pi G M c}
$$

- Substitutions

$$
\begin{aligned}
& \lambda=\cos \varphi \sin \vartheta \\
& \mu=\cos \vartheta
\end{aligned}
$$

Radial approximation

- Supposing the velocity field in form of: $\vec{v}=v(r) \frac{\vec{r}}{r}$
- For partial derivatives hold $\frac{\partial}{\partial \vartheta}=\frac{\partial}{\partial \varphi}=0$

Radial approximation

- Supposing the velocity field in form of: $\vec{v}=v(r) \frac{\vec{r}}{r}$
- For partial derivatives hold $\frac{\partial}{\partial \vartheta}=\frac{\partial}{\partial \varphi}=0$
- In this case we may use the equation of motion in form of:

$$
v \frac{\mathrm{~d} \nu}{\mathrm{~d} r}=-\frac{\mathrm{d} \Psi_{\mathrm{eff}}}{\mathrm{~d} r}+f_{\mathrm{L}}-\frac{1}{\rho} \frac{\mathrm{~d} P_{\mathrm{g}}}{\mathrm{~d} r}
$$

Radial approximation

- Supposing the velocity field in form of: $\vec{v}=v(r) \frac{\vec{r}}{r}$
- For partial derivatives hold $\frac{\partial}{\partial \vartheta}=\frac{\partial}{\partial \varphi}=0$
- In this case we may use the equation of motion in form of:

$$
v \frac{\mathrm{~d} v}{\mathrm{~d} r}=-\frac{\mathrm{d} \Psi_{\mathrm{eff}}}{\mathrm{~d} r}+f_{\mathrm{L}}-\frac{1}{\rho} \frac{\mathrm{~d} P_{\mathrm{g}}}{\mathrm{~d} r}
$$

- We presume a spherically non-symmetrical case. Therefore the continuity equation for mass reads

$$
\frac{\mathrm{d} \dot{M}}{\mathrm{~d} \Omega}=\rho v r^{2}
$$

- The streamlines of the wind are strictly radial and the material is confined within a selected cone.

HDE 226868 - Cygnus X-1

- RE: 19h 58min 21.6756s

DE: + 35 12' 5.775"

- Spectral class: O9.7lab
- Apparent visual magnitude of the optical component: $\mathbf{8 . 9 5} \mathbf{~ m a g}$
- Absolute visual magnitude of the optical component: -6.5 mag

Table: Parameters of Cyg X-1

$T_{\text {eff }}$	$[\mathrm{K}]$	effective temperature	$28000-31000$
$\log (\mathrm{~g})$	$\left[\log \left(m \cdot \mathrm{~s}^{-2}\right)\right]$	surface acceleration	3.31 ± 0.07
R_{1}	$\left[R_{\odot}\right]$	radius of the supergiant	18
L_{1}	$\left[L_{\odot}\right]$	luminosity	2.3×10^{5}
Γ_{1}		rate to $L_{\text {edd }}$	0.26
m_{1}	$\left[M_{\odot}\right]$	mass of the supergiant	24 ± 5
m_{2}	$\left[M_{\odot}\right]$	mass of the black hole	8.7 ± 0.8
$P_{\text {orb }}$	$[d a y s]$	orbital period	5.599829 ± 0.000016
D	$\left[R_{\odot}\right]$	distance of the components	42 ± 9
i	$\left[{ }^{\circ}\right]$	inclination	48 ± 7
d	$[\mathrm{kpc}]$	distance	2.0 ± 0.1

Distribution of Stellar Wind Intensity of HDE 226868

Intensity of SW $\left[M_{\odot} \cdot y r^{-1} \cdot d \Omega^{-1}\right]$

Stellar Wind Intensity in the Equatorial plane

0. approximation

- $\frac{d \dot{M}}{d \Omega}$ - directional distribution of wind intensity
- $v_{\text {wind }}$ - distribution of wind velocity along the radial direction

0. approximation

- $\frac{d \dot{M}}{d \Omega}$ - directional distribution of wind intensity
- $v_{\text {wind }}$ - distribution of wind velocity along the radial direction
$>\frac{\mathrm{d} \dot{M}}{\mathrm{~d} \Omega}=\rho v r^{2}$

0. approximation

- $\frac{d \dot{M}}{d \Omega}$ - directional distribution of wind intensity
- $v_{\text {wind }}$ - distribution of wind velocity along the radial direction

$$
>\frac{d \dot{M}}{d \Omega}=\rho v r^{2}
$$

- $\rho(x, y, z)$ - spatial distribution of mass density

Evolution to a new Stationary Solution

$$
\rho\left[k g \cdot m^{-3}\right]
$$

Streamlines

- Streamlines in the radial approximation
- Streamlines in a fully 3D radiation-hydrodynamic simulation

Streamlines and ρ

Streamlines and ρ

PPM advection scheme

This code is based on the PPM advection scheme. PPM stands for piecewise parabolic method presented by Collela \& Woodward in 1984.

- Higher-order extension of Godunov's method of a type used in van Leer's MUSCL algorithm.
- The scheme uses parabolae as the basic interpolation functions.
$>\Rightarrow$ a more accurate representation of smooth spatial gradients as well as a steeper representation of captured discontinuities, particulary contanct discontinuities

Conservative Eulerian scheme

$$
Q=\left(\begin{array}{c}
\rho \\
\rho u \\
\rho v \\
\rho w \\
\epsilon
\end{array}\right), \quad E=\left(\begin{array}{c}
\rho u \\
\rho u^{2}+p \\
\rho u v \\
\rho u w \\
(\epsilon+p) u
\end{array}\right), \quad F=\left(\begin{array}{c}
\rho v \\
\rho u v \\
\rho v^{2}+p \\
\rho v w \\
(\epsilon+p) v
\end{array}\right), \quad G=\left(\begin{array}{c}
\rho w \\
\rho u w \\
\rho v w \\
\rho w^{2}+p \\
(\epsilon+p) w
\end{array}\right)
$$

- ϵ... total energy density

$$
Q_{t}+E_{x}+F_{y}+G_{z}+S=0
$$

$$
\epsilon=\frac{1}{2} \rho v^{2}+\rho e
$$

- e ... specific internal energy

3 Mach Wind Tunnel with a Step

Initial conditions:

$$
\begin{aligned}
& \rho_{\text {int }}=1.4 \\
& p_{\text {int }}=1.0 \\
& T_{\text {int }}=273.15 \\
& u_{\text {int }}=2.8 \\
& v_{\text {int }}=0
\end{aligned}
$$

Physical model:

$$
\begin{aligned}
& C=1 / 2 \\
& \gamma=1.4
\end{aligned}
$$

Animation of ρ and T evolution

©

Evolution of ρ

Evolution of p

Evolution of T

Evolution of v

Comparison of ρ with the existing models

new hydrocode

- $t=4.0$
- $\rho_{\text {max }}=22.48$

C\&W (1984)

- $t=4.21$
- 30 contours
- $0.26 \rightarrow 6.93$

Flash code

- $t=4.0$
- colorbar $[\log \rho]$

Double Mach Reflection of a Strong Shock

Pre-shock :

$$
\begin{aligned}
& \rho_{\text {pre }}=1.4 \\
& p_{\text {pre }}=1.0 \\
& T_{\text {pre }}=273.15 \\
& u_{\text {pre }}=v_{\text {pre }}=0
\end{aligned}
$$

Post-shock:

$$
\begin{aligned}
\rho_{\text {post }} & =8.0 \\
p_{\text {post }} & =116.5 \\
T_{\text {post }} & =2273.15 \\
u_{\text {post }} & =8.25 \times \sin 60^{\circ} \\
v_{\text {post }} & =8.25 \times \cos 60^{\circ}
\end{aligned}
$$

Shock wave \& Grid:

$$
\begin{aligned}
v_{\mathrm{s}} & =10.0 \\
\alpha & =60^{\circ} \\
C & =1 / 3 \\
\gamma & =1.4
\end{aligned}
$$

Animation of ρ and T evolution

©

Evolution of ρ

Evolution of p

Evolution of T

Evolution of v

Comparison of ρ

new hydrocode

- $t=0.25$
- $\rho_{\text {max }}=22.48$

C\&W (1984)

- $t=0.20$
- 30 contours
- $1.73 \rightarrow 20.92$

Athena code

- $t=0.25$
- $\rho_{\text {max }}=22.74$

Future development

- Parallelization of calculations

Future development

- Parallelization of calculations
- Extend code for astrophysical applications
- Stellar wind in the vicinity of X-ray binary

Future development

- Parallelization of calculations
- Extend code for astrophysical applications
- Stellar wind in the vicinity of X-ray binary
- modified Bondi-Hoyle-Lyttelton accretion

Future development

- Parallelization of calculations
- Extend code for astrophysical applications
- Stellar wind in the vicinity of X-ray binary
- modified Bondi-Hoyle-Lyttelton accretion
- Improvement of the physical model
- Photo-ionization of the circumstellar medium

Future development

- Parallelization of calculations
- Extend code for astrophysical applications
- Stellar wind in the vicinity of X-ray binary
- modified Bondi-Hoyle-Lyttelton accretion
- Improvement of the physical model
- Photo-ionization of the circumstellar medium
- Inclusion of a non-radial component of the CAK mechanism

Thank you for your attention

