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Abstract: A four-valued version of PDL is obtained by defining a DeMor-
gan negation as a negative modality using a special atomic program. Simple
examples indicating applications of the formalism in formal verification of
epistemic programs and epistemic planning are provided. Decidability and
weak completeness are established.
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1 Introduction

Propositional dynamic logic PDL is a well-known formalism for specify-
ing and verifying properties of regular programs (Fischer & Ladner, 1979;
Harel, Kozen, & Tiuryn, 2000). In the Kripke-style semantics for PDL, pro-
grams are represented by state transitions (‘state y is a possible outcome of
executing program « in state x’) where states of the computer are taken to
be complete and consistent possible worlds. Technically speaking, in PDL
states correspond to functions from the set of formulas to the set of classical
truth values {0, 1}: every formula is either false (0) or true (1), but not both.

Several generalisations of this approach have been suggested. In this ar-
ticle we shall focus on the one put forward by Belnap and Dunn (Belnap,
1977a, 1977b; Dunn, 1976). Belnap—Dunn states correspond to functions
from formulas to subsets of {0,1}; and are seen as bodies of information
about the world rather than possible states of the world (possible worlds).
On this view, the four possible truth values (), {0}, {1} and {0,1} corre-
spond to four possible answers to queries about a formula with respect to
a fixed body of information: the body of information does not provide any
information about the formula ((); it provides information that the formula
is false and no information that it is true ({0}); it provides information that
the formula is true and no information that it is false ({1}); it provides con-
flicting information about the formula ({0,1}). The notion of a computer

I This work was supported by the long-term strategic development financing of the Institute
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program operating on Belnap—Dunn states is natural since such programs
can be seen as algorithmic transformations of database-like bodies of infor-
mation, central to areas such as epistemic planning.’

Sedlar (2016) outlines a version of PDL over an extension of the Belnap-
Dunn logic studied by Odintsov and Wansing (2010). This article introduces
a simplification of the approach. It is shown that a version of PDL corre-
sponding to the Belnap—Dunn notion of state can be defined by a very simple
modification of standard PDL. Building on the approach of Fagin, Halpern,
and Vardi (1995), we extend PDL with a modal DeMorgan negation con-
nective ‘~’, interpreted semantically by the Routley star operator (Routley
& Routley, 1972). We construe the Routley star as a serial, symmetric and
functional atomic program. Decidability and weak completeness of the re-
sulting system are established.

We note that (Sedlar, 2016) and the present article can be seen as an ad-
dition to the small but growing literature on non-classical PDL. We should
mention Teheux (2014) who formulates PDL over finitely-valued Luka-
siewicz logics to model the Rényi—Ulam searching game with errors. Baltag
and Smets (2006) present a dynamic logic for reasoning about information
flow in quantum programs and Bergfeld and Sack (2015) discuss a proba-
bilistic logic for quantum programs.

The article is organised as follows. Section 2 outlines the basics of stan-
dard PDL. Section 3 discusses a modal logic with De Morgan negation and
Section 4 extends this logic to PDL with De Morgan negation, NPDL. Sec-
tion 5 outlines potential applications of NPDL. Section 6 provides a brief
summary of the article.

2 Standard PDL

This section outlines standard PDL using complete and consistent possible
worlds as representations of the states programs operate on. For more de-
tails, see (Harel et al., 2000).

The language £ consists of two classes of expressions, namely, programs
(o € P) and formulas (¢ € F'), defined as follows:

az=a|oalalala”|@? pu=pl-p|o— ¢|[a]o

2To give another example of a generalisation of the classical notion of state, if some formu-
las correspond to statements involving imprecise or graded predicates, then functions from the
set of formulas to the real interval [0, 1] are the appropriate formalisation.
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(a € AP, a countable set of atomic programs and p € AF, a countable
set of atomic formulas). Formulas of the form [«]¢ are read ‘It is necessary
that after executing «, ¢ will hold’. The operator ‘;’ is seen as program
composition (‘Execute «, then execute 3°), ‘U’ as non-deterministic choice
(‘Choose either « or 8 nondeterministically and execute it’), ‘x’ as iteration
(‘Execute « a nondeterministically chosen finite number of times’) and ‘7’

as test (“Test whether ¢ is the case; proceed if true, fail if false’). As usual,
def def

onp (¢ = ), ovip E ~(~pA—9) and ()¢ ¥ ~[a]~¢. Models
for this language (‘dynamic models’) are multi-dimensional Kripke models
M = (S, R, V), where every « is assigned a binary relation R(«) on the set
of states S and every ¢ is assigned a subset V' (¢) of S as follows: V (p) is
arbitrary; V' (—¢) is the complement of V' (¢); V(¢ — 9) = (S — V(¢)) U
V(©¥); V([a]o) is the set of z € S such that, for all y, if (z,y) € R(«a),
then y € V(¢) (‘the set of such states x that every successful (terminating,
halting) execution of « in x results in a state that satisfies ¢’); R(«; 3)
(R(a U B)) is the composition (union) of R(«a) and R(f5); R(a*) is the
reflexive transitive closure of R(«); and R(¢?) is the identity relation on
V(#). (Note that x € V({(«)¢) iff there is y such that R(«)zy and y €
V(¢), i.e., {a)¢ means that it is possible that after executing «, ¢ will hold.)
V' could have been defined equivalently as a function from S to functions
from F to {0, 1} (as discussed in the introduction), but we have chosen this
simpler formulation. Sometimes the notation ‘Sy;’, ‘Rjp;” and ‘Vj,’ is used
to make the relevant M explicit.

The following metalogical notions are used, as defined here, throughout
the article. A formula ¢ is valid in model M iff Vj;(¢) = Sy (notation:
M E ¢). A formula ¢ follows from (is entailed by) T" as the set of local
assumptions and A as the set of global assumptions (notation: [A],T" = ¢)
iff

() Var(¥) € Vi (9)

per

for all M such that M | A (ie.,, M | x forall x € A). A formula ¢
follows from I' globally (locally) iff [I'],0 = ¢ ([0],T = ¢). We also use
the notation [I'] = ¢ (I’ = ¢) for global (local) entailment. A formula ¢ is
valid in a class of models C iff M |= ¢ for all M € C; ¢ is valid in PDL iff
it is valid in the class of all dynamic models (notation: = ¢). A formula ¢
is satisfiable iff there is M such that M = —¢.

The language L is able to express a number of standard programming
constructs. For example, if ¢ then « else 3 translates to (¢7; ) U (—¢7; 3)
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and while ¢ do o to (¢7;a)*; —¢?. Correctness of programs (given some
desired functionality) can be seen as a relation between specific inputs and
outputs of terminating executions of the program: given an input specified
by a formula ¢, every terminating (successful) execution of the program
terminates in a state satisfying 1. In this case, we say that a program « is
partially correct with respect to precondition ¢ and postcondition . Partial
correctness assertions are expressible in £ as formulas of the form

¢ — [a]y 6]

Now PDL can be used to check whether specific partial correctness asser-
tions follow from some given global assumptions A (thought of as ‘invari-
ant’ assumptions holding in the initial state and every possible outcome of
every possible computation) and some local assumptions I" (required to hold
only in the initial state of the computation): [A],T' [=° ¢ — [a]t. The key
observation is that, in most practically interesting cases, such questions are
decidable.

Proposition 1 LetT', A C Fy be finite and ¢ € Fr. If {a1,...,a,} is the
set of all atomic programs appearing in some formula in AUT or in ¢, then

ATE¢ <« El@mU...Ua)]A\A= (/\r_>¢)

Proof. Let us write the claim on the right-hand side as = A* — (AT —
@). The right-to-left implication is trivial. If M E A and € Vi (AT),
then obviously x € Vi (A* A AT). So z € Vi (¢) follows from the
assumption.

To establish the converse implication, assume that A* — (AT — ¢)
is not valid. This means that there are some M and x € Sj; such that
x € Viy(A* AAT) and © &€ Vir(¢). Now define M, = (S, R, V) as
follows: S, = {y | (z,y) € R((a1U...Ua,)*)}; Ry(a) = R(a) NS for
all a; V. (p) = V(p) N S, and V. (¢) for complex ¢ are build up recursively
as in the definition of dynamic model. It is plain that M, = A, but M, }~
AT — ¢. (The key fact, easily established by induction on the complexity
of , is that if every atomic program appearing in « is in {a; U ... U a,},
then R(«)zz’ only if R, («)zz/, forall z, 2’ € S,.) O

Theorem 1  The validity problem for PDL (E=° ¢) is decidable (EXP TIME-

complete).

Proof. See (Harel et al., 2000), chapters 6 and 8. O
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Hence, for any finite sets of global assumptions A, local assumptions
I' and any partial correctness assertion ¢ — [a]i), there is an algorithm
running in time exponential to the size of the input and deciding whether
the assertion follows from the assumptions. For infinite A, the situation
gets worse; it is even sufficient to consider the set SI(¢) of substitution
instances of some fixed ¢.

Theorem 2 The question whether [SI(¢)],0 = 1 is undecidable (13-
complete).

Proof. See (Harel et al., 2000), chapter 8.3. O

Because of the ‘infinitary’ iteration operator *, PDL is not compact.?
Hence, there is no hope to provide a strongly complete axiomatization.
However, weak completeness is another story.

Theorem 3 Let H(PDL) be the Hilbert-style system extending any ax-
iomatisation of classical propositional logic in {—,—} by schemas

1. [e](¢ = ) = ([a]¢ = [a]y)
2. [au Bl < (oo A [Bl9)

3. [os Bl¢ ¢ [a][Bl¢

4. [¥?%¢ < (Y —9)

5. [er]g & (¢ A a][ar]@)

6. (¢ A [a7](¢ = [a])) — [a¥]¢

and the Necessitation rule ¢/[a)¢. Let theoremhood in H(PDL) be defined
as usual. Then ¢ is a theorem of H(PDL) iff = ¢.

Proof. See (Harel et al., 2000), chapter 7. O

3Every finite subset of {{a*)¢} U {=¢, (a) ¢, (a; ), ...} is satisfiable but the set itself
is not satisfiable.
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3 Modal logic with De Morgan negation

This section outlines the framework of Fagin et al. (1995). The language L,
is a fragment of £ without program operators ‘;’, ‘U’, “+” and ‘?’, with only a
finite AP,, C AP of cardinality n, extended by a new unary connective ‘~’.
(Informally, members of AP, are seen as agents, but this is not important
for our purposes.) Star models are M = (S, R, *, V'), where S and R are
as before (the range of R is AP,), x is a unary operation of period two (i.e.,

(z*)* = x) on S and V is defined as before with the addition of

Vi~g) ={x 2" ¢ V(d)} 2

Let us denote the set of £, -formulas valid in every star model as NK. It is
plain that ‘~’ does not satisfy many of laws adhered by classical negation
‘=’. For instance, not every formula of the form ~¢V ¢ or (p A ~¢p) — 1 is
in NK, but ~~¢ < ¢ and all of the De Morgan laws are in NK.* Hence, ‘~’
turns out to be what is usually called a De Morgan negation (Dunn, 1993).

Theorem 4 Let H(NK) be a Hilbert-style system that extends any axiom-
atization of classical propositional logic in {—, —} by schemas

1. [o](¢ = ¥) = ([a]é — [a]e)
2. v o

3. M@ AY) & (~d Vi)

4. ~(O V) < (~P A1)

and the Necessitation rule ¢/[a]d. Then ¢ is a theorem of H(NK) iff M |=
¢ for every star model M.

Proof. See (Fagin et al., 1995). It the paper, a slightly different but equiva-
lent axiomatization is used. O

Theorem 5 Membership in NK (the problem of validity in every star model)
is decidable (PSPACE-complete).

Proof. See (Fagin et al., 1995). O

4Standard Kripke models can be seen as a special case where z* = z.
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Note that this framework is, in effect, a fragment of PDL. Syntactically,
the set of programs is limited to AP, 1 = {a1,...,an,b} and ~¢ defined
as [b]—¢. Semantically, R(b) is required to be a total function of period two,
i.e., a relation that is serial ((Vz)(3y)(Rzy)), symmetric (Vzy)(Rxy =
Ryzx)) and functional (Vzyz)((Rzy & Rxz) = y = z)).

4 PDL with De Morgan negation

Now consider the full language £ again. Let us fix an atomic program a €
AP and denote it as ‘x’. Define ~¢ as [x]—¢ (‘It is necessary that after
executing *, ¢ will not hold’). A Routley model is a dynamic model where
R(x) is a total function of period two (serial, symmetric and functional). We
reiterate that, when considering Routley models, we can meaningfully say
y = a* instead of R(x)xy. Formula ¢ is said to be valid in NPDL iff it is
valid in the class of Routley models.

Proposition 2 Any formula of one of the following forms is valid in NPDL:
1 (x)¢ < [+]¢
2. ¢ = [{(x)¢
Proof. If R(x) is functional, then, for every z, there is at most one y such
that R(x)xy. So if x € V({x)¢), then y € V(o) for every y such that
R(x)zy. Hence, (x)¢ — [*]¢ is valid in NPDL. The converse [x]¢ —

(%)@ is valid since R(x) is serial and ¢ — [x](%)¢ is valid because R(x*) is
symmetric (as elementary modal logic has it). O

Corollary 1 Any formula of one of the following forms is valid in NPDL:
1 ¢ — [x[¢
2. Hx)o— o

Proof. The first fact is obvious. To see that the second one holds as well,
observe that

(Vo) (M = & — [K(x)9) VO)(M = =¢ — [+]{x)=¢)

= = (*)—d = =¢)
F e — ¢)

= Ko = ¢)

=

= (V¢)
= (Vo)(M
= (Vo)(M
= (Vo)(M E [x

= (Vo)(M |= [+](x)¢ = ¢)

(
(
(
(
(
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O
Corollary 2 Any formula of one of the following forms is valid in NPDL:
1.~ @
2. ~(oNY) & (~oV )
3. @V Y) & (~P A1)

Proof. (a) boils down to [*](x}p <> ¢; (b) is equivalent to (*)(—¢ V =) >

((x)=@ V (*)—)); and (c) is equivalent to [*](—¢p A1) > ([x]-d A [*]wp%]

If ~¢ is read as ‘¢ is false’, then states in Routley models can be seen
as Belnap—Dunn states. To be more specific, there are four possibilities for
every

o €V (¢)andz* € V(¢),s02 € V(p A ~a);
e x ZV(p)andz* € V(¢),s0x € V(=g A ~¢);
e zcV(p)and z* € V(¢),s0x € V(o A ~¢);

o £ ¢V (p)and z* € V(¢),s0x € V(=g A ~~).

For every Routley model M and z € Sy, let £ be a function from for-
mulas to subsets of {0, 1} defined by setting 1 € fM(¢) iff x € V(¢) and
0 € fM(¢)iff x € V(~¢). The four possibilities specified above corre-
spond to:

o f21(9) = {1},
o f2'(¢) = {0},
e f2(¢) = 0,1} and
o [M(0)=0.
respectively. (Note that defining ~1, ..., ~,, in terms of x4, ..., %, would

enable to simulate 2"-valued states for every finite n.%)
Informally, the present framework treats the Routley star operator (Rout-
ley & Routley, 1972) as a program operating on database-like bodies of

SThanks to Kit Fine for a suggestion along these lines.
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information.® For the sake of simplicity, let us represent these bodies of in-
formation by functions from formulas to subsets of {0, 1}.” For every such
f, define f* by

fr(9) ={£ {01} | f(@) U{&} #{0,1}}

In other words, f* assigns to ¢ those ‘classical’ truth values that can be
consistently added to the ‘classical’ truth values assigned to ¢ by f. Observe
that 0 € f(¢) iff 1 & f*(¢). In general,

Lo miha ouye 0501

Hence, in a sense, the Routley star program corresponds to what has been
called conflation in the literature on bilattices (Arieli & Avron, 1996).

Routley models comply with this interpretation, as witnessed by the fol-
lowing fact.

Proposition 3 Any formula of one of the following forms is valid in NPDL:

(@A [K]) = [(o A [H9)

(@A [H=¢) = [K(=¢ A [H])
3. (o A[H9) = [H(@ A [x]=0)
4. (2P AH9) = [](~0 A [x]0)

Proof. Forall ¢, 1, $A[*]1) (both locally and globally) entails [x][*]p A [x]t)
by Corollary 1, which entails [x](¢) A [x]¢) by elementary modal logic. [

1.
2.

Theorem 6 The NPDL validity problem is decidable.

Theorem 7 Let H(NPDL) be H(PDL) extended by the schemas (x)¢$ <>
[x]¢ and & — [*x|(x)d. Then ¢ is valid in NPDL iff it is a theorem of
H(NPDL).

6Some find the Routley star in need of a convincing informal interpretation. For example,
Dunn (1976) expresses worries whether the Routley star can be seen as something more that
just a purely technical device without a reasonable informal interpretation.

TThis is a simplifying assumption as, of course, there are Routley models M that contain
a pair of states x # y such that f M féw. We can say that sates are characterised by these
functions up to L-equivalence, where  and y are L-equivalentiffx € V(¢) <= y € V(¢)
forall ¢ € Fp.
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The proofs of both of these theorems add little technical novelty to the
standard proofs for PDL. The only thing that requires modification is the
definition of the set used in filtration of the canonical model. In the proof for
PDL, the so-called Fisher—Ladner closure F'L(¢) of a given non-provable ¢
is used. However, it is easy to show that while R (%) in the canonical model
is functional, R(x)¥*(%) in the filtrated model may fail to be a function. The
solution to this problem lies in using a special finite superset F'LR(¢) of
FL(¢), also called the Fisher-Ladner—Routley closure of ¢. The interested
reader is referred to Appendix A.

5 Some examples

This section outlines some simple examples that demonstrate the expres-
sivity (and possible applications) of NPDL. In these examples we use ‘¢
is supported (by z)’ and ‘There is information (in x) that ¢ is true’ inter-
changeably. Instead of calling x a database-like body of information, we
refer to it as a database. We say that ¢ is decided (by z) if ¢ or ~¢ is sup-
ported (by z) and that ¢ is undecided (by x) if ¢ is not decided (by x). We
write ¢ instead of ¢ V ~¢ and ¢~ instead of —(¢T).

Being a ‘special case’ of PDL, NPDL can be used to check correctness of
programs. In the context of NPDL, however, programs are seen as operating
on bodies of information about the world, not the world itself. We may call
these programs epistemic programs.®

Example 1 If states are seen as databases, then perhaps the simplest kinds
of epistemic programs correspond to adding and removing ¢ from the data-
base. Other simple examples are testing whether the database supports or
decides a specific ¢. The test programs are representable as ¢? and (¢™)?,
respectively. Representing addition and removal of information is trickier,
but it can be done as follows. We may assume that, for a specific fixed
¢, two (distinct) atomic programs a, b correspond to adding and removing
¢, respectively. This assumption can be formalised by taking the formulas
—¢ — [a]¢ and ¢ — [b]—¢ as global assumptions. The role of global
assumptions is perhaps best understood in contrast to the test programs. For
instance, if we want to check whether ¢? is partially correct with respect to
precondition ¢ and postcondition ¢ A, then we ask whether ) — [¢7](¢ A
1) is valid in NPDL (the answer is, obviously, ‘yes’). Now assume that we

8This terminology is related to but somewhat different in meaning from the one used by
Baltag and Moss (2004).

10
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want to check whether a; b is partially correct with respect to —¢ as both the
precondition and postcondition. Obviously, =¢ — [a; b]—¢ is not valid in
NPDL, but this is not the intuitively correct answer. However,

[~¢ — [a]¢p, ¢ — [b]—¢] E —¢ — [a;b] ¢
holds.’

Example 2 An interesting special case of a postcondition is ¢™. Formulas
of the form 1) — [«]¢p™ say that every terminating execution of o where the
input is a i-supporting database is a database that decides ¢. Note that,
in a sense, partial correctness claims play an important role in ‘strategic’
assessments of programs. For example, if the goal is to have a database that
decides ¢ and

] v — [ae™ but [I]j= 9 — [BloT,

(where I' is some set of relevant global assumptions) then running o on a
1-database is a better choice than running 3. This is related to epistemic
planning, i. e., the activity of choosing the appropriate course of actions
given specific epistemic goals. Thus, NPDL can be seen as a formalism for
checking the correctness of epistemic plans.

Epistemic planning, a ‘special case’ of automated planning'® (Ghallab
et al., 2004), has recently been formalised using the framework of dynamic
epistemic logic (Bolander & Andersen, 2011). However, this approach has
the disadvantage that checking the correctness of epistemic plans is unde-
cidable even in the single-agent case if ‘knowledge’ is modelled by an epis-
temic logic weaker that S5 (Aucher & Bolander, 2013). Another advantage
of NPDL as a formalism for epistemic planning is that it is able to distin-
guish between different ‘kinds’ of inconsistency. For instance, assume that
p represents some irrelevant piece of information and g represents some
rather important one. It is natural to assume that the presence of conflicting

f x € Var(—¢) and M = —¢ — [a]¢, then R(a)xy only if y € Vas(¢). But then,
ifalso M = ¢ — [b]—¢, then R(b)yz only if z € Vi (—¢). Therefore, if z € Vi (=),
then R(a; b)zz only if z € Vs (—¢). The argument also illustrates why it is not sufficient to
take —¢ — [a]¢ and ¢ — [b]—¢ as local assumptions. If they were local, we could not apply
¢ — [b]-gtoy.

10We note that the ‘plans as programs’ approach, related to the present discussion, is the
prevalent approach in deductive planning and there are applications of PDL in the area, see
(Ghallab, Nau, & Traverso, 2004, Ch. 12) and (Rosenschein, 1981; Stephan & Biundo, 1993).

11
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information about p in a database requires a different kind of action (prob-
ably none) than inconsistency concerning g. Planning formalisms based on
normal modal logic (such as dynamic epistemic logic) recognize only one
inconsistent database — the empty set. Hence, epistemic planning based on
these approaches cannot diversify plans according to the ‘seriousness’ of the
inconsistency involved.

6 Conclusion

This article explored the possibility to adapt PDL to modelling programs
that operate on possibly incomplete and inconsistent bodies of information.
It turns out that there is quite a simple way to do this, namely, defining a
De Morgan negation in terms of a special atomic program %, seen as the
Routley star operation. The only extra assumptions needed pertain to R(x),
which is assumed to be serial, symmetric and functional (function of period
two). The resulting extension of PDL, NPDL, is decidable and has a sound
and weakly complete axiomatisation (any axiomatisation of PDL plus the
obvious axioms defining symmetry, seriality and functionality of R(x)), as
shown by simple modifications of the standard proofs for PDL. Last, but not
least, simple examples of expressivity indicate that NPDL (and similar for-
malisms, e.g., the Belnapian PDL of Sedlar (2016)) might find applications
in epistemic planning and related areas.

A Decidability and completeness of NPDL

This appendix contains (the interesting parts of) proofs of Theorems 6 and
7. The proofs are very close to similar proofs for standard PDL, the only
difference being the assumptions concerning R(%). Of course, these as-
sumptions need to be complied with when constructing the canonical model
and defining filtrations.

We start by proving Theorem 6.

Definition 1 Ler F'L(¢) be the Fisher-Ladner closure of ¢ (Harel et al.,
2000, ch. 6.1). The Fisher-Ladner-Routley closure of ¢, F'LR(¢), is defined
as

FLR(¢) = FL(¢) U{[*]¢ | ¥ € FL(¢) and ¢ # [x]x, for all x}

Hence, FLR(¢) is F'L(¢) extended by []i) for every v € FL(¢) such
that ¢ does not begin with ‘[x]’. It is plain that F'LR(¢) is finite for all ¢

12
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(as FL(¢) is). Our reason for working with F'LR instead of F'L is that we
want the filtrated R(*) to be a function of period two, but this is not the case
if the canonical model is filtered trough F'L(¢). We show later (Lemma 4)
that the problem does not arise when F'L is replaced by F'LR.

Our main task now is to check that F'L R has all the important properties
of F'L. In fact, the original proofs need to be modified only slightly. To be
closer to the original proofs, we assume in this appendix that, as in (Harel et
al., 2000), ‘L’ and ‘—’ are primitive and the rest of the Boolean connectives
are defined using these two in the usual manner.

Lemmal Ifv — x € FLR(), then € FLR($) and x € FLR(3).

Proof. 19 — x € FLR($), % — y € FL(¢) by the definition of FLR.
But then, by Lemma 6.1. of (Harel et al., 2000, ch. 6.1), {¢), x} C FL(¢) C
FLR(¢). O

Lemma 2
1. If [a) € FLR(9), then ) € FLR(®)
2. If [x?)Y € FLR(¢), then x € FLR(¢)
3. If [aU Bl € FLR(®), then [a)ty € FLR(¢) and [8]y € FLR()
4

- If [ Bl € FLR(9), then [o][B]¢ € FLR(¢) and [B]Y € FLR(¢)
5. If [a*]y € FLR(¢), then [o][a*]Y € FLR(¢)

Proof. The only case to check is [x]¢) € (FLR(¢)\ FL(¢)). However, this
case arises only if ¢ € FL(¢), ergo, if ) € FLR(¢). O

In the following lemma, #X denotes the cardinality of set X and |¢|
denotes the length (number of symbols) of ¢, excluding parentheses.

Lemma 3 Forany ¢, #FLR($) < (2 x |¢|)

Proof. By Lemma 6.3. of (Harel et al., 2000, ch. 6.1), #F L(¢) < |¢|. The
worst-case scenario is that no ¢ € F'L(¢) begins with a ‘[x]’. In that case,

LFLR(¢) = 2 x #FL(¢). O

In what follows, a non-standard Routley model is a non-standard dy-
namic model in the sense of (Harel et al., 2000, ch. 6.3), where R(*) is
serial, symmetric and functional. A standard Routley model is just a Rout-
ley model. M ¢ for non-standard M is defined just as in the case of standard
M. Tt is plain that M? is standard even if M is non-standard.

13
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Definition 2 Let M be a (standard or non-standard) Routley model. De-
fine M, the filtration of M trough ¢, as follows:

o o=y yiffforally € FLR(9), (x = ¢ iffy = 1)
o [z]={y|2z=py}

o §¢={z] |z €S}

° Rff = {([z], [y]) | Razy} foralla € AP

o V(p) = {[z] | z € V(p)} forall p € AF

R? for compound programs and =% are defined on S® as in the definition
of Routley models.

Lemma 4 Rf is serial, symmetric and functional.

Proof. Seriality and symmetry are straightforward. Functionality needs a
bit more work. Assume that (a) R?[2][y], RZ[x][2], but (b) y Z, 2. (b)
means that there is ¢ € FLR(¢) such that y = v and z [~ . (a) means
that there are x’, 2"/, 3/, 2’ such that

o o/, 2" €[z],y € y]and 2’ € [2]

e R.2'y and R,z
Together with (b), this means that

e ' |E 1 and, therefore, 2’ |= (x)1, i.e. (Corollary 1), 2’ |= [*]¢

e 2/ £ 1) and, therefore, "/ £ [*]y)

These two claims imply that [x]y) ¢ FLR(¢) even if v € FLR(¢). Now,
either ¢ = []x for some  or not. If not, then v € FL(¢) and, by the
definition of F'LR, [x|t) € FLR(¢), a contradiction. If ) = [x]x for some
X, then we can reason as follows. By symmetry of R,, y’ = ¢ implies 2’ =
x. By Lemma 2, x € FLR(¢) and, hence, 2" |= x. However, ' = [%][*]x
(" [~ [*]v) implies, by Corollary 1, that 2" [~ x. A contradiction. O

Lemma 4 implies that M? is a standard Routley model, even if M happens
to be non-standard.

Lemma 5 (Filtration Lemma) Let M be a (standard or non-standard)
Routley model. Then

14
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1. Forally € FLR(¢), z = iff [x] E=? 1
2. Forall [a]y € FLR(9),

(a) If Raxy, then RY[z][y]
(b) If R¢[z][y] and = |= [a], theny |= 4

Proof. The proof is an exact copy of the proofs of Lemmas 6.4 and 6.6.
(Harel et al., 2000, ch. 6.2 and 6.3). As an inspection of the original proofs
shows, this copy-pasting is possible because of Lemmas 1 and 2. O

Theorem 8 If ¢ is satisfied in a (standard or non-standard) Routley model,
then it is satisfied in some standard Routley model with at most 229D
states.

Proof. Lemma 5 implies that (M, z) |= ¢ for any (standard or non-standard)
M only if (M?,[z]) E=? ¢. M? is a standard Routley model by Lemma 4.
Finally, S® has no more states than the number of truth assignments to for-
mulas in F'LR(¢), which is by Lemma 3 at most 2(2%1#]), O

Theorem 6 follows immediately.

To prove Theorem 7, it is sufficient to establish the following claim; the
theorem then follows by the standard argument (Harel et al., 2000, ch. 7).
The H(NPDL)-canonical model M€ is defined in the usual way; X =° ¢
is defined as ¢ € X.

Lemma 6 M€ is a non-standard Routley model.

Proof. The fact that M€ is non-standard (R°(a*) is a superset of, not nec-
essarily identical to, the reflexive transitive closure of R(«)) is established
as in PDL, as are the facts that R°(«) for compound « and |=° behave as
they should. The only new thing to prove is that R°(x) is serial, symmetric
and functional.

This follows from including the x-axioms by standard modal reasoning.
We formulate only the argument concerning functionality explicitly. As-
sume that REXY and R$XZ but Y # Z. Hence, there is ¢ € Y and
¢ & Z. Consequently, ~¢ € Z, (x)¢p A (x)=¢ € X. Tt follows that
()L € X ((x)x < [#¥]x is an axiom). But RS is serial and, therefore,
1 €Y for some maximal consistent Y. A contradiction. O
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