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The aim of this paper is to enrich Łukasiewicz fuzzy logic (see Hájek, 1993) with a new
operator, known from inquisitive semantics (Ciardelli & Roelofsen, 2011) as inquisitive dis-
junction. This operator allows to form new type of sentences that represent questions. The
resulting system, which we will call The Inuqisitive Extension of Łukasiewicz Fuzzy Logic,
will be a logic of questions based on Łukasiewicz Fuzzy Logic of declarative sentences. The
results are taken from (Punčochář, 201X).

I will start with a brief introduction of an abstract semantic framework for substurctural
logics. It is a modification and extension of the semantics proposed in (Došen, 1989). The
semantic structures of this framework will be called information models. An informational
model is a structure of the type M = 〈S,+, ·, 0, 1, C, V 〉 that satisfies the following condi-
tions: 〈S,+〉 is a join-semilattice, determining an ordering: a ≤ b iff a+ b = b; 0 is the least
element, i.e. 0+a = a; moreover, a · (b+c) = (a ·b)+(a ·c), and (b+c) ·a = (b ·a)+(c ·a);
1 · a = a and 0 · a = 0; C is a binary (compatibility) relation such that: there is no a such that
0Ca, if aCb then bCa, and (a + b)Cc iff aCc or bCc; finally, V is a valuation defined as a
function assigning an ideal (a nonempty downset closed under +) to every atomic formula.

L will denote a language standardly used in substructural logics. L? is the inquisitive
extension of L, i.e. L enriched with one binary connective ? (inquisitive disjunction). For
example, the formula p?q represents the question whether p or q.

Given any information modelM = 〈S,+, ·, 0, 1, C, V 〉, we will define a relation between
the elements of S and formulas of L? by the following semantic clauses:

• a � p iff p ∈ V (a).

• a � ⊥ iff a = 0.

• a � t iff a ≤ 1.

• a � ¬ϕ iff for any b, if bCa then b 2 ϕ.

• a � ϕ→ ψ iff for any b, if b � ϕ, then a · b � ψ.

• a � ϕ ∧ ψ iff a � ϕ and a � ψ.

• a � ϕ⊗ ψ iff for some b, c: b � ϕ, c � ψ, and a ≤ b · c.

• a � ϕ ∨ ψ iff for some b, c: b � ϕ, c � ψ, and a ≤ b+ c.

• a � ϕ?ψ iff a � ϕ or a � ψ.

A formula ϕ of the language L? is valid inM iff 1 � ϕ inM. The set of L-formulas valid in
all information models is a non-distributive modification of the logic known as Full Lambek
enriched with a paraconsistent negation. A suitable corresponding axiomatic system for this
logic (that will be presented during the talk) will be denoted as FL. I will present also an
axiomatization of the set of all L?-formulas valid in class of all information models. The
axiomatic system will be denoted as InqFL (an inquisitive extension of FL).



Let us denote the set of L-formulas that are valid in a class of informational models C as
Log(C). A set of L-formulas λ is called a logic of declarative sentences if there is a class of
informational models C such that λ = Log(C).

Let us denote the set of L?-formulas that are valid in a class of informational models C as
Log?(C) and the class of models of some given set of L-formulas ∆ as Mod(∆).

Let λ be a logic of declarative sentences. The inquisitive extension of λ, denoted as λ?, is
the set of allL?-formulas that are valid in every model of λ. In symbols, λ? = Log?(Mod(λ)).

Theorem 1. If FL plus a set of axioms A axiomatizes λ, then InqFL plus A axiomatizes λ?.

A product of two information models will be defined in a natural way and the following
result will be shown.

Theorem 2. Let C be a class of informational models. If Log(C) = λ and C is closed under
products, then Log?(C) = λ?.

In the next step, I will define a class of information models that will determine the inquis-
itive extension of Łukasiewicz fuzzy logic.

Fuzzy models are structures of the form Mn
E = 〈S,+, ·, 0n, 1n, C, V 〉, where n ≥ 1 is

a natural number, E = 〈e1, . . . , en〉 is an n-tuple of functions from atomic formulas to the
closed interval [0, 1], and it holds:

• S = {〈a1, . . . , an〉; a1, . . . an ∈ [0, 1]},

• 〈a1, . . . , an〉+ 〈b1, . . . , bn〉 = 〈max{a1, b1}, . . . ,max{an, bn}〉,

• 〈a1, . . . , an〉 · 〈b1, . . . , bn〉 = 〈a1 ∗ b1, . . . , an ∗ bn〉, where a ∗ b = max{0, a+ b− 1}.

• 1n = 〈1, . . . , 1〉, where 1 is n-times.

• 0n = 〈0, . . . , 0〉, where 0 is n-times.

• 〈a1, . . . , an〉C〈b1, . . . , bn〉 iff for some i (1 ≤ i ≤ n), 1− bi < ai.

• 〈a1, . . . , an〉 ∈ V (p) iff for all i (1 ≤ i ≤ n), ai ≤ ei(p).

Lemma 1. Every fuzzy model is an informational model.

Lemma 2. The class of fuzzy models is closed under products.

Let Ł represent the set of L-formulas valid in Łukasiewicz fuzzy logic.

Theorem 3. For any L-formula α, α ∈ Ł iff α is valid in every fuzzy model.

Theorem 4. For any L?-formula ϕ, ϕ ∈ Ł? iff ϕ is valid in every fuzzy model.

If time allows I will discuss also the possibility to extend other fuzzy logics with the
inquisitive disjunction.
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