Structure of *p-sd* shell Λ hypernuclei with antisymmetrized molecular dynamics

Masahiro Isaka (RIKEN)

Grand challenges of hypernuclear physics

Interaction: To understand baryon-baryon interaction

- 2 body interaction between baryons (nucleon, hyperon)
 - hyperon-nucleon (YN)
 - hyperon-hyperon (YY)

Structure: To understand many-body system of nucleons and hyperon

- Addition of hyperon(s) shows us new features of nuclear structure Ex.) Structure change by hyperon(s) "impurity effect"

– No Pauli exclusion between N and Y
"Hyperon as an impurity in nuclei"

- YN interaction is different from NN

Recent achievements in (hyper)nuclear physics

Knowledge of ΛN interaction

- Study of light (s, p-shell) Λ hypernuclei
 - Accurate calculations of few-body system ^[1]
 - ΛN effective interactions
 - Increases of experimental information^[2]

Development of theoretical models

Through the study of unstable nuclei

Ex.: Antisymmetrized Molecular Dynamics (AMD)^[3]

- AMD can describe dynamical changes of various structure
- No assumption on clustering and deformation

Recent developments enable us to study structure of Λ hypernuclei

[1] E. Hiyama, NPA **805** (2008), 190c, [2] O. Hashimoto and H. Tamura, PPNP **57** (2006), 564., [3] Y. Kanada-En'yo *et al.*, PTP **93** (1995), 115.

Toward heavier and exotic Λ hypernuclei

Experiments at J-PARC, JLab and Mainz etc.

- Heavier and neutron-rich Λ hypernuclei can be produced
- Various structures will appear in hypernuclei

Taken from O. Hashimoto and H. Tamura, PPNP 57(2006),564.

Topic 1: Triaxial deformation of nuclei

- Many nuclei manifests various quadrupole deformation (parameterized by quadrupole deformation β and γ)
- Most of them are prolate or oblate deformed (axially symmetric)

Topic 1: Triaxial deformation of nuclei

Triaxial deformed nuclei are not many, Mg isotopes are the candidates

Largely deformed

Ex.) ²⁴Mg

• Low-lying 2nd 2⁺ indicates having the triaxial deformation

Our task: to identify triaxial deformation of Mg by using Λ

Topic 2: Structure of neutron-rich nuclei

Ex.) Be isotopes

• Exotic structure exists in the ground state regions

"Parity inversion" in ¹¹Be

Topic 2: Structure of neutron-rich nuclei

Ex.) Be isotopes

- Exotic structure exists in the ground state regions
- Be isotopes have a 2α cluster structure
 - 2α cluster structure is changed depending on the neutron number

What is happen by adding a Λ to these exotic cluster structure ? Our task: to reveal structure changes in n-rich $^{12}{}_{\Lambda}{\rm Be}$

Λ Hypernuclei chart will be extended

"Structure of Λ hypernuclei"

How does a Λ particle modify structures of *p-sd* shell/n-rich nuclei ?

Hypernuclear chart: taken from O. Hashimoto and H. Tamura, PPNP **57**(2006),564.

We extended the AMD to hypernuclei

HyperAMD (Antisymmetrized Molecular Dynamics for hypernuclei)

Hamiltonian

$$\hat{H}=\hat{T}_{_{N}}+\hat{V}_{_{NN}}+\hat{T}_{_{\Lambda}}+\hat{V}_{_{\Lambda N}}-\hat{T}_{_{g}}$$

NN: Gogny D1S

 ΛN : YNG interactions (NF^[1], NSC97f^[2])

Wave function

- Nucleon part : Slater determinant Spatial part of single particle w.f. is described as Gaussian packet
- Single-particle w.f. of Λ hyperon: Superposition of Gaussian packets

• Total w.f.:

$$\psi(\vec{r}) = \sum_{m} c_{m} \varphi_{m}(r_{\Lambda}) \otimes \frac{1}{\sqrt{A!}} \det[\varphi_{i}(\vec{r}_{j})]$$

$$\begin{split} \varphi_N(\vec{r}) &= \frac{1}{\sqrt{A!}} \det[\varphi_i(\vec{r}_j)] \\ \varphi_i(r) &\propto \exp\left[-\sum_{\sigma=x,y,z} v_\sigma (r-Z_i)_\sigma^2\right] \chi_i \eta_i \quad \chi_i = \alpha_i \chi_\uparrow + \beta_i \chi_\downarrow \\ \varphi_\Lambda(r) &= \sum_m c_m \varphi_m(r) \\ \varphi_m(r) &\propto \exp\left[-\sum_{\sigma=x,y,z} \mu v_\sigma (r-z_m)_\sigma^2\right] \chi_m \qquad \chi_m = a_m \chi_\uparrow + b_m \chi_\downarrow \end{split}$$

[1] Y. Yamamoto, et al., PTP Suppl. 117 (1994), 361., [2] Y. Yamamoto, private communication

Theoretical Framework: HyperAMD M. Isaka, et al., PRC83(2011) 044323 M. Isaka, et al., PRC83(2011) 054304

Procedure of the calculation

Theoretical Framework: HyperAMD M. Isaka, et al., PRC83(2011) 044323 M. Isaka, et al., PRC83(2011) 054304

 $\kappa < 0$

Procedure of the calculation

Variational Calculation $\frac{dX_i}{dt} = \frac{\kappa}{\hbar} \frac{\partial H^{\pm}}{\partial X_i^*}$ • Imaginary time development method

• Variational parameters: $X_i = Z_i, z_i, \alpha_i, \beta_i, a_i, b_i, v_i, c_i$

Angular Momentum Projection

$$\left|\Phi_{K}^{s};JM\right\rangle = \int d\Omega D_{MK}^{J^{*}}(\Omega) R(\Omega) \Phi^{s+}$$

Generator Coordinate Method(GCM)

•Superposition of the w.f. with different configuration •Diagonalization of $H_{sK,s'K'}^{J\pm}$ and $N_{sK,s'K'}^{J\pm}$

$$\begin{aligned} H^{J\pm}_{sK,s'K'} &= \left\langle \Phi^{s}_{K}; J^{\pm}M \left| \hat{H} \right| \Phi^{s'}_{K'}; J^{\pm}M \right\rangle \\ N^{J\pm}_{sK,s'K'} &= \left\langle \Phi^{s}_{K}; J^{\pm}M \left| \Phi^{s'}_{K'}; J^{\pm}M \right\rangle \end{aligned} \qquad \left| \Psi^{J\pm M} \right\rangle = \sum_{sK} g_{sK} \left| \Phi^{s}_{K}; J^{\pm}M \right\rangle \end{aligned}$$

1. Triaxial deformation

To identify triaxial deformation by using Λ in p orbit

Example: ²⁴Mg (,²⁶Mg)

Based on

<u>M. Isaka</u>, M. Kimura, A. Dote, and A. Ohnishi, PRC87, 021304(R) (2013)

Deformation of nuclei

• Nuclear deformations are described by quadrupole deformation parameters (β , γ)

Topic 2: Triaxial deformation of nuclei

Triaxial deformed nuclei are not many, Mg isotopes are the candidates

• Largely deformed

Ex.)²⁴Mg

Low-lying 2nd 2⁺ indicates having the triaxial deformation

"<u>A in p orbit can be a probe to study nuclear (triaxial) deformation</u>"

Example: *p*-states of ${}^{9}_{\Lambda}$ Be

 ${}^{9}{}_{\Lambda}$ Be: axially symmetric 2 α clustering

Two bands will be generated as *p*-states ^[1,2]

- Anisotropic p orbit of Λ hyperon
- Axial symmetry of 2α clustering

 \rightarrow *p*-orbit parallel to/perpendicular to the 2 α clustering

Split of *p*-state in ${}^{9}_{\Lambda}$ Be

• ${}^{9}_{\Lambda}$ Be with 2 α cluster structure

T. Motoba, et al., PTP **70** (1983) 189

p-states splits into 2 bands corresponding on directions of *p*-orbits

Triaxial deformation

If ²⁴Mg is triaxially deformed nuclei

Triaxial deformation

If ²⁴Mg is triaxially deformed nuclei

→ *p*-states split into 3 different state

Small overlap leads to shallow binding

Observing the 3 different *p*-states is strong evidence of triaxial deformation Our (first) task: To predict the level structure of the *p*-states in ${}^{25}_{\Lambda}$ Mg

AMD calculation for $^{25}{}_{\Lambda} \rm Mg$

Procedure of the calculation

With constraints on (β, γ) and Λ single particle w.f.

Energy surface on (β, γ) plane Single particle states of Λ

Angular Momentum Projection

$$\left| \Phi_{K}^{s}; JM \right\rangle = \int d\Omega D_{MK}^{J^{*}}(\Omega) R(\Omega) \Phi^{s+}$$

Generator Coordinate Method(GCM)

• Superposition of the w.f. with different configuration

• Diagonalization of $H^{J\pm}_{sK,s'K'}$ and $N^{J\pm}_{sK,s'K'}$

$$H^{J\pm}_{sK,s'K'} = \left\langle \Phi^s_K; J^{\pm}M \left| \hat{H} \right| \Phi^{s'}_{K'}; J^{\pm}M \right\rangle$$

$$N_{sK,s'K'}^{J\pm} = \left\langle \Phi_K^s; J^{\pm}M \left| \Phi_{K'}^{s'}; J^{\pm}M \right\rangle \left| \Psi^{J\pm M} \right\rangle = \sum_{sK} g_{sK} \left| \Phi_K^s; J^{\pm}M \right\rangle$$

Excitation spectra of ${}^{25}_{\Lambda}Mg$

Results : Single particle energy of Λ hyperon

• Λ single particle energy on (β, γ) plane

 $\varepsilon_{\Lambda}(\beta,\gamma) = E_{hyp}(\beta,\gamma) - E_{N}(\beta,\gamma)$

$^{25}_{\Lambda}$ Mg (AMD, Λ in p orbit)

 \bullet Single particle energy of Λ hyperon is different from each p state

– This is due to the difference of overlap between Λ and nucleons

Results : Single particle energy of Λ hyperon ε_{Λ} $\varepsilon_{\Lambda}(\beta,\gamma) = E_{hvp}(\beta,\gamma) - E_{N}(\beta,\gamma)$ ^{25}Mg (AMD) **3** *p*-states with different spatial distributions of Λ in *p*-orbit (MeV) Lowest 0.02nd Lowest **3rd Lowest** γ -2.030° III III III -4.0 Π Π -6.0-8.0 0.6 0.6 0.40.4 0.6 0.4 0.0 0.0 A s. p. energy (MeV) prolate triaxial oblate **3rd lowest p state** 3rd lowest (Parallel to short axis) nd Lowest -4.0 2nd lowest p state (Parallel to middle axis) Lowest -8.0 0.48 0.48 0 γ ß Lowest p state β 60° (Parallel to long axis) Λ s. p. energy is different from each other with triaxial deformation

Results: Excitation spectra

- 3 bands are obtained by Λ hyperon in *p*-orbit \rightarrow Splitting of the *p* states
 - ²⁴Mg \otimes Ap(lowest), ²⁴Mg \otimes Ap(2nd lowest), ²⁴Mg \otimes Ap(3rd lowest)

Lowest threshold ${}^{21}_{\Lambda} Ne$ + Λ : in between 8.3 and 12.5 MeV

Triaxial deformation of ${}^{26}Mg$ (${}^{27}_{\Lambda}Mg$)

Similar discussions can be possible in ²⁷ Mg

2. neutron-rich Λ hypernuclei

How does Λ modify exotic cluster structure ?

Molecular orbit structure of Be isotopes

H. Homma, M. Isaka and M. Kimura

Exotic structure of ¹¹Be

Parity inverted ground state of the ¹¹/₄Be₇

• Ground state of ¹¹Be is 1/2⁺,

while ordinary nuclei have a $1/2^-$ state as the ground state

Vanishing of the magic number N=8

Exotic structure of ¹¹Be

- Main reason of the parity inversion: molecular orbit structure
- ¹¹Be has 2α clusters with 3 surrounding neutrons

 \rightarrow Extra neutrons occupy molecular orbits around the 2 α cluster

However, no one observed molecular orbit structure in ¹¹Be

[1] Y. Kanada-En'yo and H. Horiuchi, PRC **66** (2002), 024305.

What is happen by Λ in these states with different deformations?

 Λ reduces deformations ? Λ affects parity-inverted ground state ?

AMD results for ${}^{12}_{\Lambda}Be$

• Ground state of ${}^{12}_{\Lambda}$ Be

Difference of deformation between 1/2+ and 1/2- states

AMD results for ${}^{12}{}_{\Lambda}\text{Be}$

- Ground state of ${}^{12}_{\Lambda}$ Be
 - \bullet The parity reversion of the $^{12}{}_{\scriptscriptstyle \Lambda}{\rm Be}$ g.s. occurs by the Λ hyperon

Deformation and Λ binding energy

- Λ slightly reduces deformations, but the deformation is still different
- Parity reversion is due to difference of B_{Λ} associated with difference of deformations

If the parity reversion is observed, we can confirm the difference of the deformations between the 1/2+ and 1/2- states by Λ

Other example of "impurity effects"

Structure dependence of "impurity effects"

Ex.) ${}^{21}\Lambda$ Ne Shell-model like and $\alpha + {}^{16}O + \Lambda$ structures coexist

Difference in B(E2) and B_{Λ}

Other example of "impurity effects"

Changes of triaxial deformed hypernucleus ${}^{25}{}_{\Lambda}Mg$

Difference of deformation change leads to shift up of the side band

M. Isaka, M. Kimura, A. Dote and A. Ohnishi, PRC 85 (2012), 034303.

Summary

Summary

• AMD + GCM was used to study deformations of *sd-pf* shell Λ hypernuclei

Λ as a probe to study triaxial deformation: $^{\rm 25}{}_{\Lambda} \rm Mg$

- Λ in p-orbit generates three different p states in ${}^{25}{}_{\Lambda}$ Mg
 - This is due to the triaxial deformation of the core nucleus

Structure change in neutron-rich hypernucleus ${}^{12}{}_{\Lambda}\text{Be}$

- $\bullet\,$ The abnormal parity of ^{11}Be ground state is reverted in $^{12}{}_{\Lambda}Be$
 - B_Λ is different between the 1/2+ and 1/2- states of ^1Be with different molecular orbital structure

Future plan

- To predict the production cross sections
- Structure of Be hyper-isotopes: How does Λ modify the 2 α structure?

Backup

• Low lying $K^{\pi}=2^+$ band: a sign of triaxial deformation

• Excitation energy of $K^{\pi}=2^+$ band depends on the triaxial deformation

M. Bender, P-H. Heenen, PRC78, 024309 (2008). , M. Kimura, R. Yoshida, M.I., PTP 127 , 287(2011).

 $K^{\pi} = 2^+$ band is rigid against the exclusion of the triaxial deformation Does Λ particle change these two bands?

Results: Excitation spectra of ²⁵ Mg

Excitation energy of $K^{\pi}=2^+\otimes \Lambda_s$ band is shifted up by about 200 keV

Back up: Superdeformation

• SD is due to the large shell gap at certain deformations

ND and SD states of ⁴⁰Ca

• Ground, normal deformed and superdeformed states are obtained

Energy curves of ${}^{41}{}_{\Lambda}\text{Ca}$ as a function of β

- $^{41}_{\Lambda} Ca$ "GS⊗Λ", "ND⊗Λ" and "SD⊗Λ" curves are obtained → SD states will appear in $^{41}_{\Lambda} Ca$
 - Energy (local) minima are almost unchanged

Λ single particle energy

- Definition: $\epsilon_{\Lambda}(\beta) = E(^{46}_{\Lambda}\mathrm{Sc})(\beta) E(^{45}\mathrm{Sc})(\beta)$
- General trend: ϵ_{Λ} changes within 1 2 MeV as β increases

➤ Similar to the p shell Λ hypernuclei

Superdeformed states in Sc hypernuclei

Examples: ${}^{46}{}_{\Lambda}$ Sc, ${}^{48}{}_{\Lambda}$ Sc

- Core nuclei Various deformations coexist in the g.s. regions
- (⁴⁵Sc, ⁴⁷Sc) We predict ND and SD states with *mp-mh* configuration

\longrightarrow Difference of B_{Λ} depending on deformation by adding a Λ

Excitation spectra of ${}^{46}{}_{\Lambda}Sc$ and ${}^{48}{}_{\Lambda}Sc$

- \bullet Difference of \mathbf{B}_{Λ} leads to the energy shift up of the deformed states
- Similar phenomena in ${}^{48}{}_{\Lambda}$ Sc

We hope these states in Sc Λ hypernuclei are observed at JLab

Changes of the excitation spectrum in ${}^{48}_{\Lambda}$ Sc

- We predict *mp-mh* states with various deformations in ⁴⁷Sc
- Difference of B_{Λ} and shift up of the deformed states in ${}^{48}{}_{\Lambda}Sc$

Results: Energy curve

³⁸Ar

Energy (local) minima with different deformations appear

Results: Energy curve

- ³⁸Ar Energy (local) minima with different deformations appear
- $^{39}_{\Lambda}$ Ar
- "GS $\otimes \Lambda$ ", "ND $\otimes \Lambda$ " and "SD $\otimes \Lambda$ " curves are obtained
- Energy (local) minima are almost unchanged

Results: Λ single particle energy

- Definition: $\epsilon_{\Lambda}(\beta) = E(^{39}_{\Lambda}Ar)(\beta) E(^{38}Ar)(\beta)$
- \bullet General trend: ϵ_{Λ} changes within 1 2 MeV as β increases

Results: Λ single particle energy

- ϵ_{Λ} varies due to changes of spatial overlap between Λ and N
 - Deformation of Λ distribution is small, while nuclear part is deformed

matter

 $\beta = 0.13$

4 fm

Λ

4 fm

Results: Difference of B_{Λ}

- Excited staes with different deformations are predicted in ${}^{39}{}_{\Lambda} \rm{Ar}$
- B_{Λ} is different depending on deformations and consistent with $\epsilon_{\Lambda}(\beta)$

Short summary

- AMD + GCM framework has been applied to ⁴⁵Sc and ⁴⁷Sc to investigate deformed excited states.
- Various deformed states with many-particle many-hole configurations
 - In ⁴⁵Sc, prediction of the SD states with proton 4p configuration
 - In ⁴⁷Sc, deformed states with 4p proton configuration, but neutron configuration is the same as the GS.

Increase of neutron number may affect neutron configuration?
 Further investigations are required

Structure dependence

- The Λ hyperon coupled to the intermediate state is more deeply bound than that coupled to the well developed α + ¹⁶O state
- Λ is localized around ¹⁶O cluster in the α + ¹⁶O + Λ cluster state. \longrightarrow shallow binding in the α + ¹⁶O state

AMD results for ¹¹Be

• Deformation of the 1/2⁻ state is smaller than that of the 1/2⁺ state

AMD results for ¹¹Be

Deformation of the 1/2⁻ state is smaller than that of the 1/2⁺ state
 Difference in the orbits of extra neutrons

[1] Y. Kanada-En'yo and H. Horiuchi, PRC 66 (2002), 024305.