







Measuring the Potential of antihyperons in nuclei with antiprotons at PANDA

Alicia Sanchez Lorente on behalf of the PANDA Collaboration

SPHERE Meeting, Prague, 9. -11. September 2014

# Nuclei with (anti)hyperons

- ➢ Link between NN ⇒ NN
- ► G-Parity  $G = C \cdot e^{i\pi I_2}$ G=charge conjugation + 180° rotation around 2nd axis in isospin

(Lee und Yang 1956, L. Michel 1952)

Hans Peter Dürr and E. Teller

(Phys. Rev. 101, 494 (1956))

$$V(NN)(r) = \sum_{M} V_{M}(r) \rightarrow V(N\overline{N})(r) = \sum_{M} G_{M}V_{M}(r)$$

- Caveat: meson picture will probably not work at small distance
- chance to study transition
   from meson to quark-gluon regime

Antibaryons in nuclei are a novel probe for short range interactions of strange baryons in nuclei No exp. info on nuclear potential of antihyperons exists so far



Cascade

Antinucleon

Antilambda

Anticascade

~ -15MeV

~ -150MeV

# **A** Potential (in nucleon Matter)

- antiprotons are optimal for the production of mass without large momenta
- consider exclusive  $\overline{p} + p(A) \Rightarrow Y + \overline{Y}$  close to threshold within a nucleus
- ► A and A that leave the nucleus will have different asymptotic momenta depending on the respective potential  $\tilde{p}_{Y} = \sqrt{p_{Y}^{2} - 2U_{Y}m_{Y}}$

```
A. Gal ,Phys. Rev. Lett. 64B, 2 (1976)
J.P., PLB 669 (2008) 306
```



 $\tilde{p}_{\overline{v}} = \sqrt{p_{\overline{v}}^2 - 2U_{\overline{v}}m_{\overline{v}}}$ 

 $\overline{p}$ 

- Advantage: well defined geometry , kinematics determined by energy and momentum conservation of a (nearly) two-body reactions
- ⇒ need to look at transverse momentum close to threshold of coincident  $Y\overline{Y}$  pairs
- But, studying only the average transverse momentum separately does not allow to extract unambiguous information

### (Nearly) two-body kinematics

- Distribution of the produced baryon-antibaryon, not isotropic
- Absorption of antibaryon in the periphery
- Rescattering

 $\Rightarrow$  A difference between tranverse momenta of the coincident YY reflects the different potentials

Studying their correlation and to reduce the influence of the cm. anisotropy by exploring the tranverse asymmetry as a function of the longitudinal asymmetry

$$\alpha_{\perp} = \left\langle \frac{p_{\perp}(\Lambda) - p_{\perp}(\overline{\Lambda})}{p_{\perp}(\Lambda) + p_{\perp}(\overline{\Lambda})} \right\rangle$$

$$\alpha_{L} = \left\langle \frac{p_{L}(\Lambda) - p_{L}(\overline{\Lambda})}{p_{L}(\Lambda) + p_{L}(\overline{\Lambda})} \right\rangle$$



### HESR with PANDA and Electron Cooler



- High resolution mode
  - $e^{-}$  cooling  $1.5 \le p \le 8.9 \text{ GeV/c}$
  - ▶ 10<sup>10</sup> antiprotons stored
  - Luminosity up to  $2 \cdot 10^{31}$  cm<sup>-2</sup>s<sup>-1</sup>
  - ►  $\Delta p/p \le 4 \cdot 10^{-5}$

- ► High luminosity mode
  - Stochastic cooling  $p \ge 3.8 \text{ GeV/c}$
  - ▶ 10<sup>11</sup> antiprotons stored
  - Luminosity up to  $2 \cdot 10^{32}$  cm<sup>-2</sup>s<sup>-1</sup>
  - ►  $\Delta p/p \le 2 \cdot 10^{-4}$

### The PANDA detector





Antiproton potential needs to be scaled by 0.22 to obtain -150MeV

TABLE I: The Schrödinger equivalent potentials of different particles at zero kinetic energy,

| $U_i = S_i + V_i^0 + (S_i^2 - (V_i^0)^2)/2m_i$ (in MeV), in nuclear matter at $\rho_0$ . |     |     |     |     |           |               |                |      |     |           |
|------------------------------------------------------------------------------------------|-----|-----|-----|-----|-----------|---------------|----------------|------|-----|-----------|
| i                                                                                        | N   | Λ   | Σ   | Ξ   | $\bar{N}$ | $ar{\Lambda}$ | $\bar{\Sigma}$ | Ē    | K   | $\bar{K}$ |
| $U_i$                                                                                    | -46 | -38 | -39 | -22 | -150      | -449          | -449           | -227 | -18 | -224      |

### **GiBUU** Simulations

• **GIBUU:** *Phys. Rev. C* 85, 024614 (2012)



- G-parity used to estimate anti-baryons potential
- Approximately 10k exclusive  $\Lambda\overline{\Lambda}$  pairs in each set

| Energy<br>(MeV) | Momentum<br>(MeV/c) | Excess energy<br>(MeV) |
|-----------------|---------------------|------------------------|
| 850             | 1522                | 30.6                   |
| 1000            | 1696                | 92.0                   |



 $Ve \rightarrow \Lambda\Lambda + X$ 

Beam momentum [GeV/c]

- Aim of the present work
  - Explore sensitivity of  $\alpha_T$  to a scaling of the real  $\overline{Y}$  potential
  - Proof the feasibility of a measurement at PANDA
  - Trigger a fully self-consistent dynamical treatment of antihyperons in nuclei

### **Rescattering effects**

- Typical 15000  $\overline{\Lambda}\Lambda$  pairs produced
- U(Λ)= -449MeV, -225MeV, -112MeV, 0MeV
- $\xi_{\overline{\Lambda}}$  scaling factor
- All other potentials unchanged





Kinetic energy 1 GeV

### Scan of $\overline{\Lambda}$ potential

- U(Ā)= -449MeV, -225MeV, -112MeV, 0MeV
- $\xi_{\overline{\Lambda}}$  scaling factor
- All other potentials unchanged



### Scan of $\overline{\Lambda}$ potential

- $U(\overline{\Lambda})$ = -449MeV, -225MeV, -112MeV, 0MeV
- All other potentials unchanged





#### Further options

#### • $\overline{\Lambda} + \Sigma^{-}$

- Ideal probe for interactions in the neutron skin
- <sup>20</sup>Ne; <sup>22</sup>Ne, H for calibration; later: <sup>86</sup>Kr (36 Protons, 50 Neutrons)
- $\Sigma^{-}$  tracking,  $\Sigma^{-} \rightarrow n\pi^{-}$
- similar production rate (at least in light nuclei)

- $\overline{\Xi}^+ + \Xi^-$  production
  - $\bar{p}^{+12}C$
  - 2.9 GeV/c
  - 60M events
  - ~500  $\overline{\Xi}^+ + \Xi^-$  pairs



#### Reactions within the Neutron Skin



- When going from <sup>20</sup>Ne to <sup>22</sup>Ne
  - more absorption of ingoing  $\overline{\mathbf{p}}$  in thicker n-skin  $\Rightarrow$  less  $\overline{\Lambda}\Lambda$  and more  $\overline{\Lambda}\Sigma^{-}$
  - more absorption of outgoing  $\overline{\Lambda}$  in thicker n-skin  $\Rightarrow$  less  $\overline{\Lambda}\Lambda$  and less  $\overline{\Lambda}\Sigma^{-}$
- $\overline{\Lambda} + \Sigma^{-}$  and  $\overline{\Lambda} + \Lambda$  may probe the neutron skin
- Possibility to explore potentials in neutron-rich environment ?



### Antihyperon-Hyperon Pairs at PANDA

- 2018 first beam in PANDA expected  $\rightarrow$  commissioning phase
- We are right now exploring different scenarios
  - Different detector availability
  - Different solenoid fields (1T, 0.5T,...)
- and other important aspects like
  - Luminosity
  - Length of typical running period



|                  | Scenario 1 | Scenario 2 | Scenario 3 | Scenario 4 |
|------------------|------------|------------|------------|------------|
| Efficiency Llbar | 1,41       | 4,31       | 1,48       | 2,17       |
| Efficiency L     | 11,23      | 18,12      | 11,95      | 15,98      |
| Effiency Lbar    | 10,41      | 16,73      | 10,55      | 14,2       |

Scenario 1 : Full Setup ( no Lambda discs ) + full Mag. field, 2 T

Scenario 2 : Full Setup ( no Lambda discs ) + half Mag. field, 1 T

Scenario 3 : Reduced Setup (no Emc, no Fwd Spec, no Lambda discs) + full Mag. field

Scenario 4 : Reduced Setup (no Emc, no Fwd Spec, no Lambda discs) + half Mag. field

All : Realistic Tracking , PID, Mass Constraint Filter

### Antihyperon-Hyperon Pairs at PANDA

- 2018 first beam in PANDA expected  $\rightarrow$  commissioning phase
- We are right now exploring different scenarios
  - Different detector availability
  - Different solenoid fields (1T, 0.5T,...)
- and other important aspects like
  - Luminosity
  - Length of typical running period



- MC Simulation Procedure:
  - **Generation of**  $\Lambda + \overline{\Lambda}$ , GiBUU-based events
  - Transport of particles through entire spectrometer
  - Generation of detector signal, digitization
  - Pattern Recogn./Tracking of charged particles
  - Particle Identification, particle mass assignment
  - $\Lambda / \overline{\Lambda}$  reconstruction from particles cand. Lists.
  - Fitting, Mass constraint / Vertex filter
  - Looking for  $\Lambda + \overline{\Lambda}$  pairs event-by event
  - Asymmetries

#### **MC Events Generation**



# $\Lambda / \overline{\Lambda}$ Reconstruction



Building Asymmetries: Pull  $P_T$  and  $P_7$ 



Building Asymmetries: Pull  $P_T$  and  $P_z$ 



### Antihyperon-Hyperon Pairs at PANDA

- 2018 first beam in PANDA expected  $\rightarrow$  commissioning phase
- We are right now exploring different scenarios
  - Different detector availability
  - Different solenoid fields (1T, 0.5T,...)
  - and other important aspects like
    - Luminosity
    - Length of typical running period



• Typical (*preliminary*)  $\Lambda\overline{\Lambda}$  pair efficiency  $\approx$  3-5% (better at higher momenta)

 $\blacktriangleright \quad \Lambda + \overline{\Lambda}$ 

- <sup>nat</sup>Ne target, H for calibration
- only charged particle detection
- Assume average interactions rate  $10^5 \text{s}^{-1}$  i.e. ~1% of default luminosity
- Moderate data taking period
  - $\Rightarrow$  2.6-10<sup>11</sup> detected interactions
- pair reconstruction efficiency 4%
  - $\Rightarrow$  0.5M events detected  $\Lambda{+}\overline{\Lambda}$  pairs

#### 40 × present GiBUU simulations

easy

~ 30 days

Stored antiproton beams offer several unique opportunities to study the interactions of hyperons and antihyperons in nuclear systems

The antihyperon-hyperon production is an ideal experiment for the commissioning phase of PANDA

#### THANK YOU FOR YOUR ATTENTION

### The PANDA detector





#### <sup>20</sup>Ne and <sup>22</sup>Ne

- target composition : Neon : 90.92 % <sup>20</sup> Ne , 8.82% <sup>22</sup>Ne
- 1000 MeV p+<sup>20</sup>Ne and p+<sup>22</sup>Ne
- Scaling factor for potential  $\xi(\overline{\Lambda}) = 0.25$



|                                                                      | $p + p \rightarrow \overline{\Lambda} + \Lambda$ |        | $p + n \rightarrow \overline{\Lambda} + \Sigma^{-}$ |        |  |
|----------------------------------------------------------------------|--------------------------------------------------|--------|-----------------------------------------------------|--------|--|
| <sup>20</sup> Ne                                                     | 18868                                            | (3.68) | 3667                                                | (3.88) |  |
| <sup>22</sup> Ne                                                     | 15733                                            | (3.92) | 4516                                                | (3.92) |  |
| $^{22}Ne/^{20}Ne = R$                                                | 0.83                                             |        | 1.23                                                |        |  |
| $R(\overline{\Lambda} + \Sigma^{-})/R(\overline{\Lambda} + \Lambda)$ | 1.34                                             |        |                                                     |        |  |

• explore potentials in neutron-rich environment by neutron rich targets