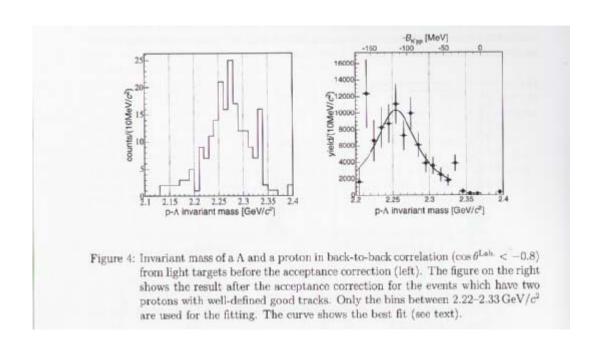
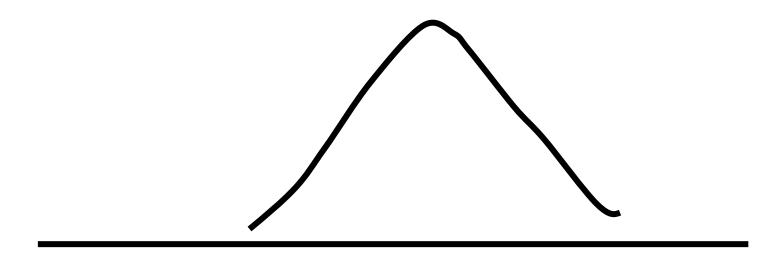
ON THE QUESTION OF WIDTHS

Sławomir Wycech - Warsaw- NCBJ

Content


Why the DISTO line is so broad ? Why so far away from calculations ?

- 1) Shape of the line
- 2) Estimates for non-mesic decay channels
- 3) Experimental checks


Lifetime of unstable state

```
\label{eq:posterior} \begin{split} \Psi(t) = & \int d \; E \; \exp(-iEt) \; (\; E - E_r \; + i \; \Gamma/2 \;)^{-1} \\ & \sim \; \exp(-iE_r t \; - \; \Gamma/2 \;) \qquad \text{Exponential decay for small } \Gamma \end{split} If E_r(E) and \Gamma(E) E - E_r(E) + i \; \Gamma(E) \; /2 \; = 0 \; , \qquad \text{Decay is exponential + polynomial} \\ \text{Line shape - not Lorentzian} \\ \text{Maximum of the line - not at pole position} \end{split}
```

DISTO, FINUDA

Disto line

 $\Lambda N \quad \Sigma N \quad \Lambda \pi N \quad \Sigma \pi N \quad KNN$ Main modes? included in calculations

Crude model for the line shape

```
\Lambda\pi N - weak coupling \Sigma\pi N , KNN - included in calculations \Lambda N , \Sigma N - dominant " external " modes
```

Dominant isospin structure of "DISTO"

```
\{\{NN\}^1K^{\frac{1}{2}}\}^{\frac{1}{2}}=
\sqrt{3}/2\{\{KN\}^0N^{\frac{1}{2}}\}^{\frac{1}{2}}+1/2\{\{KN\}^1N^{\frac{1}{2}}\}^{\frac{1}{2}}
            \Lambda(1405) N 75 % of structure
                                    N\Lambda \pi weak mode
                                     ΣN π almost closed
                                           Λπ
```

"External" decay channels

Decay amplitudes

exchanged meson mases

$$\gamma_{\Sigma}(q) = \sim \kappa / (q^2 + \kappa^2)$$

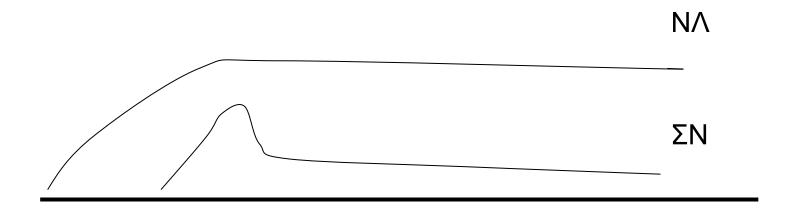
$$\kappa \sim 2.5 / \text{fm}$$

$$\gamma_{\Lambda}(q) = \sim \kappa / (q^2 + \kappa^2)$$

$$\kappa \sim 5.5 / \text{fm}$$

$$\kappa \sim 5.5 / \text{fm}$$

$$\kappa \sim 6 \text{determined by "D" wave function}$$

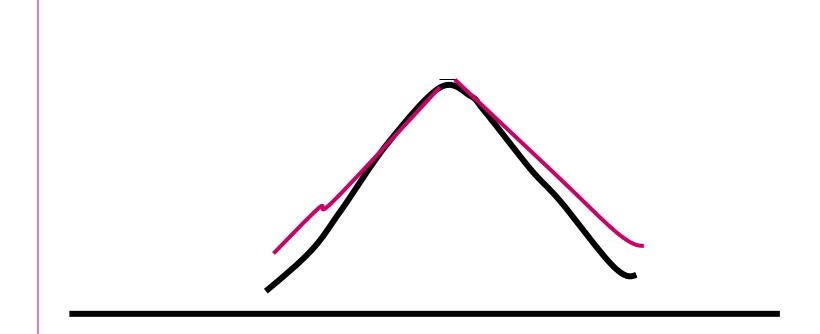

Line shape

$$\begin{aligned} \gamma_i(q) \, \gamma_f(q) \\ T_{i, f} &= & ----- \\ E - E_r + i \, \Gamma_r/2 - \Sigma(E) \end{aligned}$$

$$\Sigma(E) = 1/\pi \int [\gamma(q)]^2 / (E-E(q))$$

Sum over "external" decay channels

Decay widths couplings from compilation


$$\Gamma_{\Sigma N}/2 = \text{Im } \Sigma_{\Sigma N} (E) = q_{\Sigma N} [\gamma_{\Sigma N}(q)]^2$$

ΝΛ ΣΝ

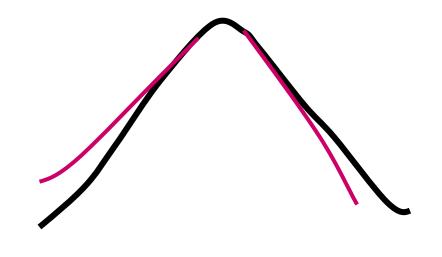
ENERGY

N/\ -Line shape compared to B-W-\ Lorentzian

15-25 % change at ½ width

Change of parameters

Width at the pole $\Gamma = 100$ MeV


Width of the line $\Gamma = 120$

Binding at the pole $E_B = 95$ MeV

Maximum of the line $E_B = 110$

Closer to some calculations

Differences in ΣN , $N\Lambda$ lines

~ 20% different at half widths

Summary

- Two body decays (KNN) → Y N
 Induce structure in line shapes
- 2) Effects up to 20 % makes energy, width closer to calculated
- 3) Sizable differences in ΣN and $N\Lambda$ lines

Problems

Nonmesic decays KNN → YN
Atomic region 20% in He 1 % in De
Extrapolation to deep region

```
    Γ ~ 20 MeV polish – nucleus
    japanese – KNNN
    ~ 50 MeV from Prague - nucleus
```