# Overview of Measurements on Strange and Nuclear Systems at MAMI



Patrick Achenbach for the Collaboration A1 at MAMI 2010

## Strangeness physics and developments in Mainz

### What is the topic of this talk?

open strangeness electro-production at MAMI

What progress was made in the data analysis since 2009?

- final (much improved) version of the tracking code
- near-final study of efficiencies and acceptances
- ongoing study of kaon identification

What hardware was improved since 2009?

- near-final completion of the fibre detector
- successful beam-test of the spectrometer's electron-arm
- final (much improved) design of the pre-target beam chicane What else was done?
- two background studies on coherent φ-meson electro-production on nuclear targets in the two-kaon decay channel and the dilepton decay channel
- a feasibility study on hypernuclear decay pion spectroscopy in a single-arm measurement

## Kaon electro-production

### A glimpse at the theory

task: finding right degrees-of-freedom, interactions and structures



- Saclay-Lyon A: no hadronic f. f., SU(3), crossing symmetry, nucleon (spin 1/2 and 3/2) and hyperon resonances [T. Mart, C. Bennhold, *Phys. Rev.* C 61 (2000) 012201(R)]
- Kaon-MAID: hadronic f. f., SU(3), no hyperon, only nucleon (spin 1/2 and 3/2) resonances [T. Mizutani *et al.*, *Phys. Rev. C* 58 (1998) 75]

all models: extended Born terms (p,  $\Lambda$ ,  $\Sigma$ , K), K\*(890), K<sub>1</sub>(1270)



### Kaos data from 2009 and 2010



From: [T. Mart and A. Sulaksono, Phys. Rev. C 74, 055203 (2006).]

Data points: [K. H. Glander *et al., Eur. Phys. J. A 19,* 251 (2004).

- R. Bradford et al. (CLAS Collaboration), Phys. Rev. C 73, 035202 (2006).
- M. Sumihama et al. (LEPS Collaboration), Phys. Rev. C 73, 035214 (2006).
- K. H. Althoff et al., Nucl. Phys. B 137, 269 (1978).
- M. Q. Tran et al. (SAPHIR Collaboration), Phys. Lett. B 445, 20 (1998).]

### The importance of low momentum transfer



Overview of Measurements on Strange and Nuclear Systems at MAMI

P Achenbach, U Mainz

### Kaon electro-production measurements



Overview of Measurements on Strange and Nuclear Systems at MAMI

2010

P Achenbach, U Mainz

## **Experimental aspects**

### Adaption of the spectrometer facility



1st order resolving power

1st order momentum resolution

max momentum and path length limit kaon survival probability < 15% in A/B/C

Overview of Measurements on Strange and Nuclear Systems at MAMI

P Achenbach, U Mainz

2400

 $\sim 10^{-3}$ 

19000

 $< 10^{-4}$ 

## Installation of KAOS in 2007





## Tracking with two cathode-charge read-out MWPCs



20 mn

9 mm

9 mm

GND

GND

- implementation of MWPC, new frontend read-out and cluster analysis in early 2008
- trigger, DAQ, and cluster analysis now consolidated

Overview of Measurements on Strange and Nuclear Systems at MAMI

E-Field

x-cathode plane

anode plane

cathode plane

### **Cluster analysis**

Challenges:

• charge centroids often do not correspond to the trajectory position

correlation ←→ between induced charges

other continuous clusters
 often divide into individual
 peaks

Task: resolving multi-hit ambiguities important for beam currents above 1 µA

[P. Achenbach et al., Particle tracking with cathode-charge sampling in multi-wire proportional chambers, in preparation]







### Efficiency counter set-up





two 5 mm thick efficiency counters with minimum thickness were built and placed in front of MWPC L and M -- only top of the detectors were active

### **Extracted tracking efficiencies**

- intrinsic efficiency (L/M): any charge detected in the chamber,
- tracking efficiency: any track reconstructed from the charges,
- chamber efficiency (L/M): any track reconstructed to be in the valid acceptance region of the chamber

| beam current | intrinsic (%) |      | tracking (%) |              |             | protons $(\%)$ |      | pions $(\%)$ |      |
|--------------|---------------|------|--------------|--------------|-------------|----------------|------|--------------|------|
| Ι (μΑ)       | $\mathbf{L}$  | Μ    | any track    | $\mathbf{L}$ | Μ           | $\mathbf{L}$   | Μ    | $\mathbf{L}$ | Μ    |
| 1            | 99.3          | 99.6 | 98.3         | 96.3         | 95.6        | 97.7           | 96.9 | 85.5         | 83.7 |
| 2            | 99.5          | 99.7 | <b>98.2</b>  | 95.0         | 93.1        | <b>96.6</b>    | 94.8 | 82.4         | 78.8 |
| 3            | 99.6          | 99.8 | 98.2         | 93.2         | <b>90.3</b> | 94.9           | 92.1 | 80.4         | 75.2 |
| 4            | 99.6          | 99.8 | 98.1         | 91.6         | 87.4        | 93.7           | 89.8 | 75.2         | 68.0 |

bad reconstruction example created by original analysis:



### Track efficiency as a function of quality



for the cross-section extraction kaon tracking efficiency for events passing the missing-mass cut are being deduced

## TOF walls "along" the focal plane



Overview of Measurements on Strange and Nuclear Systems at MAMI

2010 P Achenbach, U Mainz

### Paddle beam-test Aug. 2010



collaboration with Osamu Hashimoto, Satoshi 'Nue' Nakamura, and Satoshi Hirose

### Pion/proton suppression by *dE/dx*



#### cuts on time-of-flight and missing mass to find *dE/dx* band for kaons

### dE/dx cut efficiency



## Time-of-flight and coincidence time resolution



cuts on *dE/dx* and missing mass to find time-of-flight band for kaons

### Particle velocities in the 400-600 MeV/c range





Overview of Measurements on Strange and Nuclear Systems at MAMI

2010 P Achenbach, U Mainz

# $\Lambda$ - and $\Sigma$ -hyperons in a single kinematic setting



### $\Lambda$ and $\Sigma$ yield extraction



## **Cross-section determination**

- cross-section extraction performed by scaling based on K-Maid  $Y = L \times \int \left[ \Gamma(Q^2, W) \frac{d^2 \sigma}{d\Omega_K^*} \right] A(d^5 V) R(d^5 V) dQ^2 dW d\phi_e d\Omega_K^*$ measurements measurements  $Y = L \times \left( \frac{d^2 \sigma}{d\Omega_K^*} \right)_{CA} \times \int \left[ \Gamma(Q^2, W) \frac{\frac{d^2 \sigma}{d\Omega_K^*}}{(\frac{d^2 \sigma}{d\Omega_K^*})_{CA}^*} \right] A(d^5 V) R(d^5 V) dQ^2 dW d\phi_e d\Omega_K^*$ Kaon-Maid
- angular dependency is strong in this kinematic region
- cross-section given for 7 kaon centre-of-mass angular bins
- equivalent Monte Carlo yield determined for a cross-check of procedure

$$Y_{\rm MC} = L_{\rm H} \times \int \left[ \frac{d^5\sigma}{dQ^2 dW d\phi_e d\Omega_{\rm K}^*} \right] A(d^5V) R(d^5V) dQ^2 dW d\phi_e d\Omega_{\rm K}^*$$

 $^{\succ}$  Kaon-Maid + simulation + measured efficiencies and luminosity

### Phase space simulation



### Extracted kaon yields

![](_page_29_Figure_1.jpeg)

Towards a zero-degree experiment at MAMI

![](_page_31_Figure_0.jpeg)

# Installation of a beam chicane for a zero-degree operation of KAOS

![](_page_32_Figure_1.jpeg)

### Final beam chicane design

- all pre-target components available
- installation work started last week
- former head of the MAMI accelerator took responsibility for beam transport and monitoring

![](_page_33_Picture_4.jpeg)

![](_page_34_Picture_0.jpeg)

### **Electron arm Detector Front-End**

![](_page_35_Picture_1.jpeg)

## Read-out with position-sensitive photomultipliers

![](_page_36_Figure_1.jpeg)

![](_page_37_Figure_0.jpeg)

e.g. strong correlation between momenta/positions

![](_page_38_Figure_2.jpeg)

- goal: suppression of background on trigger level
  requirements:
  - 1) correlation of > 60  $\otimes$  4000 channels
  - 2) tracking information (clustering)
  - 3) flexibility (different beams, magnet settings...)
  - $\rightarrow$  programmable, fast trigger decision

![](_page_39_Figure_0.jpeg)

Overview of Measurements on Strange and Nuclear Systems at MAMI

2010

P Achenbach, U Mainz

## Detector production finished in 2010

18 432 fibres in 144 bundles with associated 144 bundle connectors, MaPMTs, front-end boards, etc...

- all work done by 'HiWi' and doctorate students
- quality control after each production stage:
- $\rightarrow$  fibre bundle rejection,
- $\rightarrow$  cable rejection,
- $\rightarrow$  connector rejection

for more on detector production, quality control, test-stands for PMT alignment  $\rightarrow$  see talk by Anselm Esser

### **Detector calibration and characterisation**

![](_page_41_Picture_1.jpeg)

several months of preparation work for gain calibration and final control of all detector modules details → see talk by Anselm Esser • collimated <sup>90</sup>Sr source

- short fibre with PMT as trigger
- automatic course of action:
- computer controlled carriage moves along detector
- data-taking for precise positioning
- data taking for fibre bundle calibration

![](_page_41_Picture_9.jpeg)

## Beam-tests 24–29 August 2010

![](_page_42_Picture_1.jpeg)

~ 120 fibre detectors in two planes placed in high radiation environment beam energy: 510 MeV beam intensity: 0.1–100  $\mu$ A spectrometer angle: 37.5° targets: CH<sub>2</sub> and <sup>12</sup>C

![](_page_42_Picture_4.jpeg)

![](_page_42_Picture_5.jpeg)

7 front-end CPUs ~ 4 000 detector signals ~ 40 trigger modules with FPGA programming ~ 6 kHz data-taking rate in each ROB PC

### Fibre detector as electron arm spectrometer

![](_page_43_Figure_1.jpeg)

## **Further studies**

## Concept for a study of $\phi$ vector mesons

Invariant mass distributions of  $\varphi$  vector mesons inside and outside the nuclear medium via K<sup>+</sup>/K<sup>-</sup> pair spectroscopy at  $\rho_N \cong \rho_0$  and T=0

modification studied by two decay channels:

di-lepton: difficulty in the treatment of the background

*KK*: distortion by the *KN* and *KN* interactions

![](_page_45_Figure_5.jpeg)

 $r(A=60) \approx 4 \text{ fm}$ 

| Meson | Mass<br>(MeV/c²) | Г<br>(MeV/c²) | Cτ<br>(fm) | Main decay          | e⁺e⁻ BR                |
|-------|------------------|---------------|------------|---------------------|------------------------|
| ρ     | 768              | 152           | 1.3        | $\pi^+ \pi^-$       | 4.4 x 10 <sup>-5</sup> |
| ω     | 782              | 8.43          | 23.4       | $\pi^+ \pi^- \pi^0$ | 7.2 x 10⁻⁵             |
| ф     | 1019             | 4.43          | 44.4       | K+ K⁻               | 3.1 x 10 <sup>-4</sup> |

## **Experimental set-up at MAMI**

![](_page_46_Figure_1.jpeg)

Trajectory length: SpekB: 12.03 m SpekC: 8.53 m Kaos: 5.50 m

Solid angle: SpekB: 5.6 msr SpekC: 28 msr Kaos : 11 msr new demands on spectrometer set-up: SpekB at 90°; SpekC at -20°; Kaos at 35°

![](_page_46_Picture_5.jpeg)

### Count rate estimate

Kaon survival:

$$P = \exp(-L/(c\tau_K\beta\gamma))$$

$$P(Kaos) = 0.11$$

$$P(SpekC) = 0.04$$

$$P(KK) = 4.4 \times 10^{-3}$$

$$Y_{\phi} = N_{e}\rho L_{target} \frac{N_{a}}{A} \Delta \sigma(\Omega, t)$$
$$Y_{\phi} \simeq 600 \times \Delta \sigma(\Omega, t) \ [1/\text{nb}]$$

|                                                | SpekB at -15°       | SpekC at $-20^\circ$ |
|------------------------------------------------|---------------------|----------------------|
| $\mathrm{N_{gen}^{\phi}}$                      | $2.4 \times 10^7$   | $2.0 	imes 10^7$     |
| $N_{coin}^{KK}$                                | 54                  | 282                  |
| ${ m N}_{ m coin}^{KK}/{ m N}_{ m gen}^{\phi}$ | $23/10^{7}$         | $127/10^{7}$         |
| KK-survival probability                        | 0.002               | 0.004                |
| $Br(\phi \rightarrow K^+K^-)$                  | 0.49                | 0.49                 |
| wt                                             | 0.3                 | 0.3                  |
| $\eta_{ m eff}$                                | 0.5                 | 0.5                  |
| $K^+K^-$ coincidence rate                      | $0.6/\mathrm{hour}$ | $7/\mathrm{hour}$    |

#### set-up:

SpekA at -51.3°, negative polarity, central momentum= 646 MeV/c SpekB at +52.8°, positive polarity, central momentum= 646 MeV/c 25  $\mu$ A electron beam of 1508 MeV on 45 mg/cm<sup>2</sup> <sup>12</sup>C target

data:

| 27 runs x 30 min.:      | 13.5 h |  |
|-------------------------|--------|--|
| coincidence rate:       | 2 Hz   |  |
|                         |        |  |
| coincident events:      | 86 827 |  |
| missing mass events:    | 33 487 |  |
| coincidences in 1.6 ns: | 889    |  |
| random coincidences:    | 330    |  |
| positron ID (Cherenkov) | : 35   |  |

## Time-line 2010 onwards

| Time           | Activities at MAMI                                                                     |
|----------------|----------------------------------------------------------------------------------------|
| August 2010    | In-beam tests of electron arm detectors and sophisticated FPGA trigger system at       |
|                | very forward angles (8-10 degrees to the beam-line); measurements of background        |
|                | rates; implementation of different trigger options for background suppression; in-     |
|                | beam test of a prototype scintillator paddle                                           |
| September –    | Installation work for the pre-target beam chicane: primary dipole (DCI I), positioning |
| November 2010  | plates, mountings, vacuum chambers, beam pipes, secondary dipole (DCI II), pre-        |
|                | target steering system, beam position monitors, exit beam-line                         |
| Winter 2010/11 | Possibility for in-beam tests of new scintillator wall elements                        |
|                | Elementary kaon electroproduction measurements with the Kaos spectrometer at           |
|                | zero degree using the commissioned beam chicane?                                       |
| Spring 2011    | Commissioning of a new scintillator wall?                                              |
|                | First decay pion spectroscopy experiment using the new scintillator wall in the Kaos   |
|                | spectrometer as kaon tagger and SpekA for pion detection?                              |
| Summer 2011    | First hypernuclear spectroscopy experiment using the Kaos spectrometer at zero         |
|                | degree and the electron arm detector for small angle electron tagging?                 |

# Thank you!

![](_page_51_Picture_0.jpeg)