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OUTLINE

• Kaonic atoms as an itermediate scenario

• Deep or shallow real potential?

• Consequences for neutron stars

• Consequences for K̄NNN.... clusters

• Radial sensitivity

• Reduced data and proposed experiments
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Different scenarios for different exotic atoms

particle real potl. imaginary potl. comments

π− repulsive in bulk moderate excellent data

attractive on surface well understood

K− attractive moderate good data

deep or shallow? open problems

p̄ model dependent very absorptive excellent data

understood

Σ− repulsive in bulk moderate limited data

attractive outside poorly understood

3



Phenomenological analyses of data:

• handle large sets of data

• Could identify characteristic quantities

• serve as intermediaries between ‘genuine’

theories and experiment (e.g. in reproducing the

characteristic quantities)

Tools of the trade: variants of an optical potential.
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When analyzing several nuclear species together one

must have some model for the nuclear geometry, e.g.

make the potential a functional of the nuclear density.

The simplest class of optical potentials Vopt is the generic

tρ(r) potential: (isoscalar)

2µVopt(r) = −4π(1 +
A − 1

A

µ

M
)b0[ρn(r) + ρp(r)]

ρn and ρp are neutron and proton densities normalized to

N and Z, respectively, M is the mass of the nucleon.

Results of global fits apply to average behaviour.
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Global fits to kaonic atoms data (65 points)

model χ2 −ReV (0) (MeV) −ImV (0) (MeV)

tρ 130 81(±10%) 122(±5%)

t(ρ)ρ 84 180(±3.5%) 82(±8%)

chiral ∗ 266 33 45

chiral ∗∗ 120 42 62

*Ramos & Oset, NPA 671 (2000) 481

** I=1 adjusted by +50% and +63% for Re and Im,

respectively
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On the list of most cited NPA papers in 1995.

159 citations till May 2010
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Kaon condensation in neutron stars, when weak

decays are Pauli blocked:

n → p + K−,

e− → K− + νe.

Strangeness makes the Equation of State softer.
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From Glendenning and Schaffner-Bielich, PRC 60 025803 (1999)
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From J. Schaffner-Bielich, NPA 835 (2010) 279.
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From W. Weise, ECT* Trento, October 2009
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From N. Hermann, ECT* Trento, October 2009
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(60 citations till May 2010)
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Are exotic atom data sensitive to the nuclear interior?
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the global coordinate η

Define η by r = Rc + η ac. The value of χ2 becomes a functional

of a global optical potential V (η).
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The functional derivative method

N. Barnea, E. Friedman, PRC 75 (2007) 022202(R).

The variation of χ2 due to a small change in η is

dχ2 =
∫

dη
δχ2

δV (η)
δV (η) ,

where

δχ2[V (η)]

δV (η′)
=

lim
σ→0

lim
ǫV →0

χ2[V (η) + ǫV δσ(η − η′)] − χ2[V (η)]

ǫV

is the functional derivatives (FD) of χ2[V ].
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The FD can be approximated by

≈
1

V (η′)

χ2[V (η)(1 + ǫδσ(η − η′))] − χ2[V (η)]

ǫ
.

The limit ǫ → 0 is obtained numerically for several values

of σ and then extrapolated to σ = 0.

In practice the calculation of the FD was carried out by

multiplying the best fit potential by a factor

f = 1 + ǫδσ(η − η′) (1)

using a normalized Gaussian with a range parameter σ

for the smeared δ-function,

δσ(η − η′) =
1√
2πσ

e−(η−η′)2/2σ2

. (2)
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Supporting evidence for a deep potential, Kishimoto et.al, (2007)

KEK-PS E548 missing mass (K−, n) (upper) & (K−, p) (lower)

spectra on 12C at pK− = 1 GeV/c.
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Is there an experimental problem?

Focusing on targets with large χ2 for the shallow

potential:

• conflicting χΓ and χY , i.e. no systematics

• when removed from data base, still the same two

solutions (deep and shallow )

The two solutions are inherent property of the

data.
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Comparing full and ‘less’ data sets

N χ2 Reb(fm) Imb(fm) χ2 ReB(fm) ImB(fm)

65 130 0.62±0.05 0.93±0.04 84 1.44±0.03 0.59±0.03

56 78 0.57±0.05 0.97±0.04 66 1.44±0.04 0.60±0.04

shallow deep

Removing data for C, Mg and Si (three different

experiments!) the two solutions are still there.

27



Typical quantities for the reduced set of kaonic atoms

target C Si Ni Sn Pb

ref (a) (b) (b),(c) (b) (d)

(n,l) 2p 3d 4f 5g 7i

−ǫ (keV) 0.50 ± 0.08 0.130 ± 0.015 0.223 ± 0.042 0.41 ± 0.18 0.020 ± 0.012

Γ (keV) 1.73 ± 0.15 0.800 ± 0.033 1.03 ± 0.12 3.18 ± 0.64 0.37 ± 0.15

yield 0.070 ± 0.013 0.49 ± 0.03 0.30 ± 0.08 0.39 ± 0.07 0.70 ± 0.08

Γu (eV) 0.99 ± 66 0.53 ± 0.06 5.9 ± 2.3 15.1 ± 4.4 4.1 ± 2.0

EM n+1→n

energy (keV) 63.3 123.7 231.6 403.9 426.2

(a) PLB 38 181 (1972)

(b) NPA 329 407 (1979)

(c) NPA 231 477 (1974)

(d) NPA 254 381 (1975)
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Comparing full and reduced data sets

N χ2 Reb(fm) Imb(fm) χ2 ReB(fm) ImB(fm)

65 130 0.62±0.05 0.93±0.04 84 1.44±0.03 0.59±0.03

12 37 0.80±0.15 0.95±0.12 22 1.47±0.05 0.56±0.06

shallow deep

Fits to a reduced data set of C, Si, Ni and Pb

produce all the features obtained from fits to the

full data.
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Shallow best-fit kaonic atoms potentials

targets N χ2 Re(fm) Im(fm)

all 65 130 0.59 ± 0.05 0.94 ± 0.05

C, Si, Ni, Sn, Pb 15 44 0.78 ± 0.13 0.92 ± 0.11

C, Si, Ni, Pb 12 37 0.80 ± 0.15 0.95 ± 0.12

C, Si, Ni, Sn, 12 43 0.78 ± 0.15 0.90 ± 0.14

Si, Ni, Sn, 9 31 0.68 ± 0.16 0.91 ± 0.14
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Deep best-fit kaonic atoms potentials

targets N χ2 Re(fm) Im(fm)

all 65 84 1.44 ± 0.03 0.59 ± 0.03

C, Si, Ni, Sn, Pb 15 26 1.47 ± 0.05 0.55 ± 0.06

C, Si, Ni, Pb 12 22 1.47 ± 0.05 0.56 ± 0.06

C, Si, Ni, Sn, 12 24 1.47 ± 0.05 0.55 ± 0.06

Si, Ni, Sn, 9 13 1.47 ± 0.05 0.52 ± 0.05
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Summary

• Kaonic atoms favour deep real K−-nucleus potential.

• Deep potentials have consequences for neutron stars

and for K−NNN... clusters.

• Functional-derivative analysis shows sensitivity to the

interior.

• Fits to reduced data sets reveal all the features of full

fits.

• 4-5 targets are proposed for new measurements.
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THANKS to Avraham Gal for long time collaboration!
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