Photoproduction of Strangeness near the Threshold at Tohoku

Masashi Kaneta for the NKS/NKS2 collaboration

Department of Physics, Tohoku University

金田

推司

Outline of this talk

Introduction Experiments Further Investigation Summary

INTRODUCTION

Motivation

Understanding the process of Strangeness production

Key: Neutral channel Threshold region

via $\gamma + n$ reaction

金田雅司

Why Neutral?

Neutral channel is requisite

Theoretical studies were based on

data of $\gamma + p \rightarrow K^+ + Y$

and then there are huge discrepancies in prediction of neutral channel

Data

 $\gamma + n \rightarrow K^0 + \Lambda$

NKS experiment: differencial cross section in $E_{\gamma}=0.8-1.1$ GeV PRC78(2008)014001

$\gamma + n \rightarrow K^+ + \Sigma^-$

LEPS experiment: differencial cross section in E_{γ} =1.5-2.4 GeV with polarized photon beam PRL97 (2006)082003

CLAS experiment: differencial cross section in $E_{\gamma}=1.1-3.6$ GeV PLB688(2010)289

 $\gamma + n \rightarrow K^0 + \Sigma^0$

Discrepancy

Why Threshold?

In the threshold region

Less effect of resonances than higher energy region

Simplicity to compare the data with a model

Theoretical Approach

金 Ð 推 3

Theoretical Study: Effective Lagrangian Approach

Hadron coupling

– Isospin symmetry

Electromagnetic (photo) coupling

- Helicity amplitude
 - Charged and neutral nucleon resonances
- Decay width

金

田推

3

- Charged and neutral Kaon resonances
- However, the decay width of K₁ resonance is not known

$$r(K^*K\gamma) = \frac{g(K^{*0}K^0\gamma)}{g(K^{*+}K^+\gamma)} = -1.53$$

Characteristics of Two Models

• Kaon-MAID

- T.Mart, C.Bennhold, PRC61 (2000) 012201(R)
- Input: $\gamma + p \rightarrow K^+ + \Lambda$, $\gamma + p \rightarrow K^+ + \Sigma^0$, $\gamma + p \rightarrow K^0 + \Sigma^+$
- Resonances:
 - $N(1650) S_{11}$, $N(1710) P_{11}$, $N(1720) P_{13}$,
 - Δ (1900) S_{31} , Δ (1910) P_{31}
 - *K**(892), *K*₁(1270)
- Hadronic form factor, contact term
- Saclay-Lyon A
 - T. Mizutani *et al*. PRC58 (1998) 75
 - Input: $\gamma + p \rightarrow K^+ + \Lambda$
 - Resonances:

金

田推

3

- N(1720) P₁₃
- Λ(1405), Λ(1670), Λ(1810), Σ(1660)
- K*(892), K₁(1270)
- No hadronic form factor

EXPERIMENTS

Experiments to Investigate Strangeness Photo-Production at LNS/ELPH

and NKS2

2000-2004:

Using TAGX spectrometer (INS, U. Tokyo) Reconstruct K_{S}^{0} from $\pi^{+}\pi^{-}$ decay The first measurement of K⁰ cross section from $n(\gamma, K^{0})\Lambda$ reaction [Phys.Rev.C78(2008)014001]

Neutral Kaon Spectrometer

2005-2007: Completely new spectrometer to cover full kinematical region

2008-: Upgrade project 2010-: Taking physics data

Neutral Kaon Spectrometer 2

金田雅司

Place of the Experiment

Laboratory of Nuclear Science (LNS)

Research Center for Electron Photon Science (ELPH)

Accelerator of LNS/ELPH, Tohoku University

Accelerator of LNS/ELPH, Tohoku University

Photon Beam Line

NKS to NKS2

NKS

Acceptance of NKS and NKS2(-2007)

K⁰s momentum [GeV/c]

K. Tsukada et. al, Phys.Rev.C78(2008)014001

Results of NKS

K. Tsukada et. al, Phys.Rev.C78(2008)014001

Results of NKS

 $r_{K1K\gamma}$ =-2.09 for SLA

(Kaon-MAID's value:-0.4474)

Suggestion from NKS Results

backward angular distribution in CM

K. Tsukada et. al, Phys.Rev.C78(2008)014001

Suggestion from NKS Results

Joint Meeting of JSPS+SHERE at Praha, 2010/Sep/4-6

金

田推

3

29

Results of NKS2

Analyzed by K. Futatsukawa (Ph.D student)

Analyzed by K. Futatsukawa (Ph.D student)

~90 events in the peak

Analyzed by K. Futatsukawa (Ph.D student)

Joint Meeting of JSPS+SHERE at Praha, 2010/Sep/4-6

32

推進

FURTHER INVESTIGATION

The next targets

$K_{S}^{0} + \Lambda$ coincidence events with reasonable statistics,

and

Determine the sign of $\Lambda \ recoil \ polarization$

$K^{0}_{S} + \Lambda$ coincidence events

Advantage: No.1

Less background

in the invariant mass distribution

(Remember p.28)

$K^{0}_{S} + \Lambda$ coincidence events

Advantage: No.2

Elimination of Fermi motion correction

Direct comparison with model Separation of $K^0 + \Lambda$ and $K^0 + \Sigma^0$

$K^{0}_{S} + \Lambda$ coincidence events

$$\begin{array}{c} \gamma + n \longrightarrow K^{0} + \Lambda \\ \downarrow & \stackrel{}{\longmapsto} \pi^{-} + p \\ K^{0}{}_{S} \longrightarrow \pi^{+} + \pi^{-} \end{array}$$

4 charged particles in final state

Extending the acceptance is essential

Λ recoil polarization

The information make a restriction to model

Upgrade Project

To increase acceptance Inner detectors are replaced by

> Vertex Drift Chamber (VDC) New Inner Hodoscope (IH)

金田雅司

Gain of Acceptance

for $K^0_S + \Lambda$ coincidence events

about 7 times after upgrade

Joint Meeting of JSPS+SHERE at Praha, 2010/Sep/4-6

金田

推到

VDC

An Event Display from the Last Run

Preliminary results from the last run (2010/June-July)

PID plot: Momentum vs. $1/\beta$ with rough counter calibration for two track event

proton

About 40 counts as Lambda above the background

金田

推到

SUMMARY

Investigation of strangeness photoproduction at ELPH, Tohoku Univ. in Sendai

- NKS/NKS2 is an unique experiment
 - Focusing neutral channel
 - In the threshold region (E_{γ} =0.9-1.1 GeV)
- NKS
 - The first measurement of $n(\gamma, K^0)X$ cross section

 $-\cos\theta_{K_0} = 0.9-1.0$ in CM

- NKS2

金田

推到

- Covering forward region
 - $-\cos\theta_{K_0} = 0.8-1.0$ in CM
- NKS2 upgraded
 - New detectors are added to increase the acceptance
 - Detector and the system is ready
 - Physics data taking is going to start soon
 - Sep/6-26 and Oct/1-31
 - $\sim 2.0 \times 10^{12}$ photon will be achieved
 - » ~400 K_{s}^{0} + Λ coincidence events is expected

THANKS FOR LISTENING