Electroproduction of medium-heavy Λ-hypernuclei

Toshio MOTOBA (Osaka E-C)

major part done in collaboration with

P. Bydzovsky (Prague) M. Sotona (Prague) K. Itonaga (Gifu) K. Ogawa (Chiba) O. Hashimoto (Tohoku)

JSPS Core-to-Core Seminar EU SPHERE Network Meeting September 4-6, 2010, Villa Lanna, Prague

CONTENTS

- **1. Basic motivations** for medium-heavy systems
- **2. Go to** *sd*-shell: "Simplest" target (¹⁹F) and the $(d_{5/2})^6$ model to demonstrate the present theoretical treatments.
- **3. Realistic predictions** for photo-production reaction with a typical target ${}^{28}Si(\gamma, K^+)_{\Lambda}{}^{28}AI$
- **4. Extension** of the approach to produce heavier hypernuclei around A=40-52
- 5. Outlook

1. Basic motivation: Why medium-heavy hypernuclei ? (1)

The great success of Hall A and Hall C experiments at Jlab:

- -- sub-MeV (Γ = approx. 0.5 MeV)
- -- predictions for p-shell confirmed

encourages

extension of high-resolution reaction spectroscopy to heavier hypernuclei:

(K⁻,π⁻)

 (π^+, K^+) played a great role of exciting high-spin series $\Gamma = 1.5$ MeV (best)

Motoba. Sotona, Itonaga, Prog.Theor.Phys.S.<u>117</u>(1994) T.M. Mesons & Light Nuclei (2000) updated w/NSC97f.

JLab Exp't : $\Gamma = 0.5 \text{ MeV}$

Theor. prediction vs. (e,e'K⁺) experiments

Why medium-heavy hypernuclei ? motivation (2)

Unique characteristics of the (e,e'K⁺), (γ , K⁺) process are based on the **basic Properties** of elementary amplitudes for $\gamma p \rightarrow \Lambda K^+$: --- sizable momentum transfer to excite high-spin states, like (π^+, K^+) --- spin-flip dominance of the operator, leading to unnatural parity states

Comparison of the recoil momentum q_{Λ} =350-420 MeV/c at E_Y=1.3 GeV

Elementary amplitudes (2CM): $\gamma p \rightarrow \Lambda K^+$

$$\mathcal{M} \equiv \frac{(2\pi)^2}{\sqrt{s}} \sqrt{e_r e_p e_A e_K} \langle q, -q | t | \kappa, -\kappa \rangle$$

 $=iF_1(\boldsymbol{\sigma}\cdot\boldsymbol{\epsilon})+F_2(\boldsymbol{\sigma}\cdot\hat{\boldsymbol{q}})[\boldsymbol{\sigma}\cdot(\hat{\boldsymbol{\kappa}}\times\boldsymbol{\epsilon})]+iF_3(\boldsymbol{\sigma}\cdot\hat{\boldsymbol{\kappa}})(\hat{\boldsymbol{q}}\cdot\boldsymbol{\epsilon})+iF_4(\boldsymbol{\sigma}\cdot\hat{\boldsymbol{q}})(\hat{\boldsymbol{q}}\cdot\boldsymbol{\epsilon})$

$$\begin{aligned} \frac{d\sigma}{d\Omega}\Big|_{2\mathsf{CM}} &= \frac{q}{\kappa} \left\{ |F_1|^2 + |F_2|^2 - 2\cos\theta_{\mathsf{CM}} \operatorname{Re}(F_1^*F_2) \\ &+ \frac{1}{2} \sin^2\theta_{\mathsf{CM}}[|F_3|^2 + |F_4|^2 + \operatorname{Re}(F_1^*F_4 + F_2^*F_3 + F_3^*F_4\cos\theta_{\mathsf{CM}})] \right\}, \\ \mathcal{P}_Y \frac{d\sigma}{d\Omega}\Big|_{2\mathsf{CM}} &= \frac{q}{\kappa} \sin\theta_{\mathsf{CM}} \operatorname{Im} \left\{ -2F_1^*F_2 - F_1^*F_3 + F_2^*F_4 + \sin^2\theta_{\mathsf{CM}}F_3^*F_4 \\ &+ \cos\theta_{\mathsf{CM}}[F_2^*F_3 - F_1^*F_4] \right\}, \end{aligned}$$

Lab $d\sigma/d\Omega$ for photoproduction (2Lab)

$$\frac{d\sigma}{d\Omega}\Big|_{2\text{Lab}} = \frac{(2\pi)^{4}p^{2}E_{\kappa}E_{r}E_{\Lambda}}{k\{p(E_{\Lambda}+E_{\kappa})-kE_{\kappa}\cos\theta_{L}\}}\Big|\langle k-p,p|t|k,0\rangle_{L}\Big|^{2}, \qquad (2\cdot4)$$

$$\langle k-p,p|t|k,0\rangle_{L} = a_{1}(\sigma\cdot\epsilon) + a_{2}(\sigma\cdot\hat{k})(\hat{p}\cdot\epsilon) + a_{3}(\sigma\cdot\hat{p})(\hat{p}\cdot\epsilon) + a_{4}\{(\hat{k}\times\hat{p})\cdot\epsilon\}. \qquad (2\cdot5)$$

$$\langle k-p,p|t|k,0\rangle_{L} = \epsilon_{0}(f_{0}+g_{0}\sigma_{0}) + \epsilon_{x}(g_{1}\sigma_{1}+g_{-1}\sigma_{-1}) \qquad (2\cdot11)$$
with definitions of the coefficients:
$$f_{0} = a_{4}\sin\theta_{L}, \qquad g_{0} = a_{1}, \qquad g_{1} = \frac{1}{\sqrt{2}}\{\mp(a_{1}+a_{3}\sin^{2}\theta_{L}) - i\sin\theta_{L}(a_{2}+a_{3}\cos\theta_{L})\}. \qquad (2\cdot12)$$

These characteristic merits of the $\gamma p \rightarrow \Lambda \ K^+ \ process(ability to excite)$ high-spin unnatural-parity states) should be realized better in heavier systems with large j_p and large j_Λ

(e,e'K⁺) $d^{3}\sigma/dE_{e} d\Omega_{e} d\Omega_{K} = \Gamma \times d\sigma/d\Omega_{K}$ Γ : virtual photon flux (kinematics)

Hereafter we discuss $d\sigma/d\Omega_{K}$ for $^{A}Z(\gamma,K+)_{\Lambda}^{A}Z'_{10}$

2. Go to sd-shell:

2-1. Simplest sd-shell target

Choose ¹⁹F(1/2+) target for demonstration of the hypernuclear photoproduction

(asking the feasibility as a practical target)

Choose ¹⁹F(1/2+) target for demonstration

Partial contributions

Cf. a trial calculation: If the last odd proton were in $Od_{5/2}$, then

Conversion of 1s_{1/2}-proton(nb/sr)

XS in nb/sr (correct units in the above figs.)

As a "closed core (¹⁸O)" + Λ , cf. SO-splitting(0p)=152+-54 keV(C13)

2-1. Single-*j* model for the ²⁸Si target

A typical example of medium-heavy target :²⁸Si: $(d_{5/2})^6$

to show characteristics of the (γ, K^+) reaction with DDHF w.f.

(Spin-orbit splitting: consistent with ${}_{\Lambda}{}^{7}$ Li, 9 Be, 13 C, 89 Y)

Theor. x-section for $(d_{5/2})^6 (\gamma, K^+) [j_h-j_\Lambda]J$

	(a) DWIA	0s^A_{1/2}	0p^A_{3/2}	0p^A_	$0d^{A}_{5/2}$	$0d^{\Lambda}_{3/2}$	$1s^{\Lambda}_{1/2}$
XS(I)	(E_{Λ})	(-16.92)	(-8.40)	(-8.40)	(0.69)	(0.69)	(0.32)
	(p-hole) J=0	_	_	_	0.1	_	_
	J-1	_	5.3	_	27.6	7.2	_
	$(0d_{5/2}^{-1}) J=2$	32.9	2.9	15.7	0.2	33.6	1.6
DVVIA	J-3	65.5	4.6	87.0	20.6	31.1	3.1
(650/)	J-4	_	141.0	_	0.3	124.1	
(05%)	J-5	_	_	_	165.4	_	_
	(b) PWIA	0s^A_{1/2}	$0p_{3/2}^{\Lambda}$	$0p_{1/2}^{\Lambda}$	$0d^{\Lambda}_{L/2}$	$0d^{\Lambda}_{3/2}$	$1s_{1/2}^{\Lambda}$
	(E_{Λ})	(-16.92)	(-8.40)	(-8.40)	(0.69)	(0.69)	(0.32)
V3.	(p-hole) J=0	_		_	0.2		_
	J-1	_	10.9	_	59.6	15.3	_
	$(0d_{5/2}^{-1}) J=2$	68.3	4.03	33.4	0.4	71.9	1.4
PWIA	J-3	135.6	8.3	155.3	46.5	58.9	2.7
	J-4	_	250.5	_	0.4	186.9	_
	J-5	_	_	_	248.1	_	

$d\sigma/d\Omega(\theta_{\rm K})$: angular dependence

3. Realistic prediction for ${}^{28}Si(\gamma, K^+)_{\Lambda}{}^{28}Al$

By fully taking account of

- -- full $p(sd)^6.n(sd)^6$ configurations,
- -- fragmentations when a proton is converted,
- -- ²⁷Al core nuclear excitation
- -- K⁺ wave distortion effects

\rightarrow Comparison with the ²⁸Si (e,e'K⁺) exp.

proton-state **fragmentations** should be taken into account *to be realistic*

Proton pickup from ${}^{28}Si(0^+):(sd)^6 = (d_{5/2})^{4.1}(1s_{1/2})^{0.9}(d_{3/2})^{1.0}$

Peaks can be classified by the characters

Peak energies: ${}^{28}_{\Lambda}$ Si vs. ${}^{28}_{\Lambda}$ Al

H.Hotchi et al, PRC 64(2001) vs. O.Hashimoto et al, NP A804(2008)

j	²⁸ Si(p+,K+) ²⁸ _A Si	²⁸ Si(e,e'K ⁺) ²⁸ ^A	
Λ	$E_{\Lambda} = -B_{\Lambda}$ (Ex)	(as read on the	(γ,K⁺) CAL
		Sendaí08 poster)	
S	-16.6+-0.2 (GS)	-17.85 ?? (GS)	-16.6 (GS)
		-15.7 ?	-11.9+-0.4 (<i>E_x</i> =4.7)
		-13.0 ?	
		-10.8 ?	
р	-7.0+-0.2 (<i>E_x</i> =9.6)	- 6.88 +- ?? (<i>E_x</i> =11)	-8.1 (<i>E_x</i> =8.5)
	-4.3+-0.2 (E_x =12.4)		-5.6, -4.0
d	+1.0+-0.8 <i>E_x</i> =17.6)	+ 1.35 +/- (<i>E_x</i> =19.2)	+0.9 (<i>E_x</i> =17.5)

4. Extend to heavier nuclear Targets

⁵²Cr: $(f_{7/2})^4$ assumed ⁴⁰Ca: (*sd*-shell LS-closed)

Well-separated series of peaks due to large q and spin-flip dominance: $j_{>}=l+1/2, j_{<}=l-1/2$

 $[(nlj)_{n}^{1}(nlj)^{\Lambda}]_{I}$ a series of pronounced peaks jj - closed target : (^{28}Si , ^{52}Cr) $[j_{5}^{-1}, j_{5}^{\Lambda}]_{J}$ $J=j_{5}+j_{5}^{\Lambda}=I_{0}+I_{\Lambda}+1=L_{max}+1$ (unnatural parity) $[j_{>}^{-1} j_{<}^{\Lambda}]_{J} \quad J = j_{>} + j_{<}^{\Lambda} = l_{0} + l_{\Lambda} = L_{max}$ (natural parity) LS - closed target : (40Ca) $\begin{bmatrix} j_{\ell}^{-1} & j_{\Lambda}^{\Lambda} \end{bmatrix}_{J} \quad J = j_{\ell} + j_{\Lambda}^{\Lambda} = J_{0} + J_{\Lambda} = L_{max}$ (natural parity)

⁵²Cr (*j*, dominant target case) typical unnatural-parity high-spin states

⁴⁰Ca (LS-closed shell case): high-spin states with natural-parity (2+,3-,4+)

6. SUMMARY

1) Basic properties of the $\gamma p \rightarrow \lambda K + process$ are discussed with typical models for the amplitudes:

----- spin-flip domiance, large q,

----- appreciable difference among theor. models (P).

2) Novel characteristics of photo/electroproduction of hypernuclei are clarified with the ²⁸Si target: $(d_{5/2})^{12}$ Model $[\vec{j}_{\gamma}^{1} \ \vec{j}_{\gamma}^{\Lambda}]$: $J_{\max} = \vec{j}_{\gamma} + \vec{j}_{\gamma}^{\Lambda} = \vec{l}_{N} + \vec{l}_{\Lambda} + 1 = L_{\max} + 1$ unnatural parity $[j_{\lambda}^{-1} j_{\lambda}^{\Lambda}], [j_{\lambda}^{-1} j_{\lambda}^{\Lambda}]: J_{\max}^{\prime} = l_{N} + l_{\Lambda} = L_{\max}$ orbitally streched Selective excitation of high-spin states, providing a series of

 Λ orbits.

- Realistic prediction for the ²⁸Si target was made. The calculation is in good agreement with the recent JLab exp. The predictions are made also for ⁴⁰Ca and ⁵²Cr.
- 4) Almost all predictions for the p-shell targets have been confirmed by the recent Jlab exp.(Hall A, C).
- 5) Medium-mass hypernuclear production by (e,e'K+) provide us with good opportunities in understanding the *details* of the hyperon motion in nuclear matter.(Λ-s.p.e. to establish "textbook", Rotation/Vib.-Λ coupling, Auger effect, μ_Λ,
 e_{eff} (Λ), etc) 30