JSPS CORE2CORE/SPHERE MEETING

4th Sep 2010 Satoshi N Nakamura Tohoku University

Overview and Status of JLab Hall-C Hypernuclear Experiments

The ^AZ(e,e'K⁺) ^A_A(Z-1) reaction for hypernuclear spectroscopy

(π ,K) reaction established hypernuclear reaction spectroscopy (e,e'K) has similar features with better resolution

Characteristics of (e, e'K) HY study

- Electromagnetic production
 - Photo/electron strangeness production
- Proton goes to Lambda
- Both spin flip and non-spin flip amplitudes
- High quality primary beam
 - High energy resolution (< 1MeV)
 - Thin enriched target

Real photon (γ ,K) HY spectroscopy is practically impossible. Eg. JLab-CLAS Bremsstrahlung tagged photon ~ 50 MHz, 10⁻³ E_o = 2 MeV for 2 GeV

Early works : EM production of Λ Hypernucleus

ES132 @INS-TAGX, PRC 52 (1995) 1157.

NEXT STEP: Spectroscopy with mass resolution of sub-MeV

E91-016 @ JLab-HallC , PRL 93(2004)242501

Definition of Kinematic Parameters

Elementary $p(\gamma, K^+) \Lambda$

Fig. 2. Total cross-section for Λ -hyperon photoproduction measured at CLAS (solid circles). Data from SAPHIR/Bonn [11] (open triangles) are also shown. The curves are for effective Lagrangian calculations of Bennhold *et al.* as computed by Kaon-MAID [9] (solid), Williams, Ji, and Cotanch [12] (upper dotted), Saghai [13] (dashed), and a Regge-model calculation of Guidal *et al.* [14,15] (dotdashed). The lower dotted curve illustrates the effect when the $D_{13}(1900)$ resonance in the Kaon-MAID calculation is switched off.

R.A.Schmacher for CLAS

Eur. Phys. J. A 18, 371–375 (2003)

 σ for elementary process Max. at Eγ ~ 1.5 GeV Lower Eγ : Close unnecessary reaction channel Higher Eγ : Smaller K decay loss, Larger Λ trapping rate

Hypernucleus recoil momentum for various reactions ¹²C target

p(e,e'K)A Cross Section

$$\frac{d^{3}\sigma}{dE_{e'}d\Omega_{e'}d\Omega_{K}} = \Gamma \left[\frac{d\sigma_{T}}{d\Omega_{K}} + \varepsilon_{L} \frac{d\sigma_{L}}{d\Omega_{K}} + \varepsilon \frac{d\sigma_{TT}}{d\Omega_{K}} \cos(2\phi_{K}) + \sqrt{2\varepsilon_{L}(1+\varepsilon)} \frac{d\sigma_{LT}}{d\Omega_{K}} \cos(\phi_{K}) \right]$$

$$\Gamma = \frac{\alpha}{2\pi^2} \frac{E'}{E} \frac{E_{\gamma}}{Q^2} \frac{1}{1-\varepsilon} \qquad \varepsilon = \left(1 + \frac{2|\mathbf{q}|^2}{Q^2} \tan^2(\theta_e/2)\right)^{-1} \qquad \varepsilon_L = \frac{Q^2}{\omega^2} \varepsilon$$

E01-011 : Q² ~ 0.01 (GeV/c)² , θ_{e} ~6.5 deg. $\epsilon \sim 0.04$, ϵ_{L} ~1.7×10⁻⁴

$$\frac{d^{3}\sigma}{dE_{e'}d\Omega_{e'}d\Omega_{K}} \sim \Gamma \frac{d\sigma}{d\Omega_{K}}$$

Angular Dependences

Both of e' & K+ are forward.

Kaon scattering angle distribution, harm. osci., DWIA

Challenge of (e,e'K) HY Study

 Large e' Background due to Bremsstrahlung and Møller scattering Signal/Noise, Detector
 High Quality Electron Beam is Essential !
 High Quality Electron Section
 Coincidence Measurement (e', K+)

Coincidence Measurement (e', K⁺)
 Limited Statistics, DC beam is necessary

Beam requirements

 Continu Electro High cu Beam s Mome Good

Until upgrade of MAMI-C, CEBAF had been only facility for this program.

First Generation Experiment

SPL + SOS + HMS

E89-009 (HNSS; HyperNuclear Spectrometer System)

Data taking year 2000

The first (e,e'K⁺) hypernuclear experiment (E89-009, HNSS)

 Demonstrated that the (e,e'K) hypernuclear spectroscopy is possible!

Good energy resolution <800 keV (FWHM)

Best hypernuclear energy resolution achieved by the reaction spectroscopy at that time

PRL 90 (2003) 232502, PRC 73 (2006) 044607

Improvement of the E89-009 experiment

 Energy resolution as well as acceptance are limited by the kaon spectrometer (SOS) cτ (K⁺) ~4m

New Spectrometer High resolution Kaon Spectrometer (HKS)

Zero degree tagging method to maximize virtual photon flux

Severe background from electrons associated with Bremsstrahlung (200 MHz for e' arm)

Tilt Method

The 2nd Generation Experiment was approved by Jlab PAC19 E01-011 (Spokesmen: Hashimoto, Tang, Reinhold, Nakamura)

Second Generation Exp. at JLab

2005 E01-011 (Hall C)

First step to midium heavy hypernuclei (²⁸Si, ¹²C, ⁷Li)

Two Major Improvements New HKS Tilt Method

Beam: 30 μA , 1.8GeV HKS: Δp/p=2 x 10 ⁻⁴ [FWHM] Solid angle 16msr(w/ splitter)

Tilt method

Background electrons

- Bremsstrahlung very forward peaked
- Møller scattering scattering angle and momentum are correlated

to avoid them

Tilt Enge spectrometer by 8 degree (optimization of e' detection angle)

2004.2.23.

Λ and Σ spectra (CH₂ target)

Absolute mass scale calibration

c.f. E89-009, 183 hours (8.8 mg/cm², 0.5 or 1.0 uA) T. Miyoshi *et al.*, Phy. Rev. Lett. **90**, 232502(2003)

Better resolution and statistics

To be published soon.

Highlights of E01-011 Results

¹²_AB : Reference Spectrum w/ best resolution

 ^{28}AI : First beyond-p shell HY. by (e,e'K)

⁷_{Λ}He : First reliable data, CSB effect

${}^{12}C(e,e'K^{+}){}^{12}{}_{\Lambda}B, {}^{12}C(\pi^{+},K^{+}){}^{12}{}_{\Lambda}C$

¹²_ΛC emulsion data

Nuclear Physics A484 (1988) 520-524

TABLE 1 ^a)					
Range of the hypernucleus (µm)	$B_A (as {}^{12}_{A}C) (MeV)$	Ref.			
_	11.14±0.57	4)			
3.0 ± 0.8	10.45 ± 0.33	3)			
4.3 ± 0.7	10.50 ± 0.47	3)			
3.5 ± 0.4	10.65 ± 0.33	1,2)			
3.5 ± 0.5	10.85 ± 0.44	1.2)			
3.4 ± 0.5	11.59 ± 0.45	^{1,2})			
3.2 ± 0.4	15.67 ± 0.50	1,2)			
	TABLE 1 a) Range of the hypernucleus (μm) 3.0 \pm 0.8 4.3 \pm 0.7 3.5 \pm 0.4 3.5 \pm 0.5 3.4 \pm 0.5 3.2 \pm 0.4	TABLE 1 a) B_A (as ${}^{12}_AC$) (MeV) Range of the hypernucleus (μ m) B_A (as ${}^{12}_AC$) (MeV) - 11.14 ± 0.57 3.0 ± 0.8 10.45 ± 0.33 4.3 ± 0.7 10.50 ± 0.47 3.5 ± 0.4 10.65 ± 0.33 3.4 ± 0.5 10.85 ± 0.44 3.2 ± 0.4 15.67 ± 0.50			

¹¹C (3/2-) : Ex = 4.8MeV

situation is not the case for π^- mesonic decay modes of ${}_{A}^{12}C$: $(\pi^{-12}N)$, $(\pi^-p^{11}C)$, $(\pi^-p^3He^4He^4He)$ and $(\pi^-p^4He^7Be)$. Every one of these decay topologies is easily confused with those of other hypernuclei.

The value obtained for B_A of ${}^{12}_A$ C, (10.80 ± 0.18) MeV

Statistical errors quoted, systematic errors (~0.04 MeV) reduced by measuring M_A in same emulsion stack.

Nuclear Physics A547 (1992) 369 $i_{\Lambda}^{12}C$ 10.76 ± 0.19 Statistical error only Reference for all (π , K) B_{Λ} data: B_{Λ} (¹²_{Λ}Cg.s.) = 10.76 +-0.19MeV

¹²^A B emulsion data

Nuclear Physics B52 (1973) 1-30.

A NEW DETERMINATION OF THE BINDING-ENERGY VALUES OF THE LIGHT HYPERNUCLEI ($A \le 15$)

Ref) A=4 S	ystem
------------	-------

$^{4}_{\Lambda}$ H	$\pi^{-} + {}^{1}H + {}^{3}H$ $\pi^{-} + {}^{2}H + {}^{2}H$ total	56 11 67	2.14 ± 0.07 1.92 ± 0.12 2.08 ± 0.06	Different modes give 0.22 MeV
$^{4}_{\Lambda}$ He	$\pi^{-} + {}^{1}H + {}^{3}He \pi^{-} + {}^{1}H + {}^{1}H + {}^{2}H$ total	83 15 98	2.42 ± 0.05 2.44 ± 0.09 2.42 ± 0.04	difference Systematic Error?

$^{12}C(e,e'K^{+})^{12}AB$ @ JLab Hall C & A

Binding energies are consistent with The other (e,e'K) data.

¹² A emulsion data

Nuclear Physics B52 (1973) 1-30.

²⁸Si(e,e'K⁺)²⁸_ΛAl, ²⁸Si(π⁺,K⁺)²⁸_ΛSi

²⁸Si(e,e'K⁺)²⁸^A (a) JLab Hall C

7Li(e, e'K⁺)⁷ He First reliable observation of ⁷ He w/ good statistics

Detailed Discussion : Tomorrow

CSB effect by cluster model

Four-body cluster model

α

A=4, T=1/2 System ${}^{4}_{\Lambda}$ H, ${}^{4}_{\Lambda}$ He

A=7, T=1 iso-triplet ${}^{7}_{\Lambda}$ He, ${}^{7}_{\Lambda}$ Li*, ${}^{7}_{\Lambda}$ Be

A=10, T=1/2 system

 ${}^{10}_{\Lambda}\mathsf{Be}$, ${}^{10}_{\Lambda}\mathsf{B}$

Hypernuclei in wide mass range

Hypernuclei in wide mass range

Third Generation Exp. at JLab 2009 E05-115 (напс)

Wide mass range hypernuclear spectroscopy $({}^{52}_{\Lambda}V, {}^{12}_{\Lambda}B, {}^{10}_{\Lambda}Be, {}^{9}_{\Lambda}Li, {}^{7}_{\Lambda}He)$

Major Improvements (10 times more VP tagging) New HES best match to HKS New Calibrations H2O cell target Beam energy scan

Goals of the 3rd Generation Experiment

- ⁷Li(e,e'K⁺)⁷ He, ¹⁰B(e,e'K⁺)¹⁰ Be
 - Cluster model, shell model approach
 - Charge Symmetry Breaking in AN interaction
 - > $\Lambda N-\Sigma N$ coupling effect
 - ⁵²Cr(e,e'K⁺)⁵²∧V
 - Shell model, Mean field theory
 - > A dependence of Λ single particle energies
 - Measurement of fine structure (core configuration mixing, Is splitting...)

Missing mass calibration data

$e + p \rightarrow e' + K^+ + \Lambda / \Sigma^0$ Elementary process of **Electromagnetic production of strangeness** h12 CH, target missing mass Entries 33019 25.5 Mean 400 41.61 RMS 350 Λ 300 Analysis Status 250 By Kawama 200 Σ^0 150 100 tourself south and the the and the second 50 0₆₀ -20 20 60 80 100 -40 40 O $M_{x}-M_{\Lambda}$ [MeV]

E05-115 (2009) preliminary

Λ single particle energiesJLab E05-115JLab E01-011

Summary

With a high quality electron beam from CEBAF, (e,e'K) hypernuclear spectroscopy was established

- The second gen. exp. E01-011 (HKS) achieved ~500keV (FWHM) resolution
 - $^{12}{}_{\Lambda}B$: reference data with the best resolution
 - $^{7}_{\Lambda}$ He : first reliable observation of g.s., CSB

²⁸ AI : first observation, doorway to mid-heavy HY

The third gen. exp. E05-115 (HKS-HES) successfully finished

 $\Lambda, \Sigma^0, {^7}_{\Lambda}$ He, ${^9}_{\Lambda}$ Li, ${^{10}}_{\Lambda}$ Be, ${^{12}}_{\Lambda}$ B, ${^{52}}_{\Lambda}$ V