The HypHI Status and First Results

Take R. SaitoGSI-Darmstadt and Mainz University, Germany

S. Bianchin, O. Borodina, V. Bozkurt, E. Kim, Y. Ma, S. Minami, D. Nakajima, B. Oezel-Tashnov, C. Rappold for the HypHI collaboration

Hypernuclear spectroscopy

(K⁻, π⁻) reactions, stopped K⁻

- Strangeness exchange
- Small momentum transfer
- Missing mass and γ-ray spectroscopy
- CERN, BNL, KEK, LNF, J-PARC
- (π⁺, K⁺) reactions
 - Strangeness production
 - Large momentum transfer
 - Missing mass and γ-ray spectroscopy
 - BNL, KEK, J-PARC
- (e, e'K⁺) reactions
 - Strangeness production
 - Large momentum transfer
 - Missing mass spectroscopy
 - JLAb, MAMI
- (K⁻,K⁺) reaction and Ξ⁻ capture
 - Multi-step process
 - Double strangeness
 - BNL, J-PARC, FAIR (PANDA)

Hypernuclear spectroscopy

- (K⁻, π⁻) reactions, stopped K⁻
 - Strangeness exchange
 - Small momentum transfer
 - Missing mass and γ-ray spectroscopy
 - CERN, BNL, KEK, LNF, J-PARC
- (π⁺, K⁺) reactions
 - Strangeness production
 - Large momentum transfer
 - Missing mass and γ-ray spectroscopy
 - BNL, KEK, J-PARC
- (e, e'K⁺) reactions
 - Strangeness production
 - Large momentum transfer
 - Missing mass spectroscopy
 - JLAb, MAMI
- (K⁻,K⁺) reaction and Ξ⁻ capture
 - Multi-step process
 - Double strangeness
 - BNL, J-PARC, FAIR (PANDA)

Advantage

- Precise spectroscopy
 - Structure in detail
- Clean experiment

Disadvantage

- Limited isospin
- Small momentum transfer to separate hypernuclei
- Difficulties on decay studies
- Only up to double-strangeness

Hypernuclear spectroscopy with heavy ion beams

HypHI project

The HypHI project

Precise hypernuclear spectroscopy with heavy ion induced reactions at GSI and towards FAIR

Only the way to access

- Extreme neutron/proton rich hypernuclei
- Hypernuclear magnetic moments
- Hypernuclei with extremely multiple strangeness
- Hypernuclear decay in detail

Difficulties:

- Small hypernuclear cross section
- Huge background

2005:

- Feb. : HypHI collaboration started
- March: LOI
- 2006
 - April: HypHI group at GSI
 - September: Proposal for Phase 0
- 2009
 - August/October: Phase 0 experiment
- 2010
 - March: Phase 0.5 experiment

Coalescence of Λ in projectile fragments

- Coalescence of Λ in projectile fragments $(\pi^+ K^+)$ projections in projectile fragments
- (π^+ , K⁺) reactions in projectile fragments

- Coalescence of Λ in projectile fragments
 (π⁺, K⁺) reactions in projectile fragments
- **NN** -> Λ KN : Energy threshold ~ 1.6 GeV
 - Heavy ion beams with E > 1.6 A GeV needed
 - Stable heavy ion beam at GSI
 - Stable heavy ion beam at FAIR
 - RI-beam from FRS and super-FRS

Accessible to neutron- and proton rich hypernuclei

Heavy-ion induced hypernuclear production

- No RI-beam induced hypernuclear production so far
- Stable heavy-ion induced hypernuclear production at Dubna in 1989.
 - ⁴He beam at 3.7 GeV/u on a polyethylene target
 - 7Li beam at 3.0 GeV/u on a polyethylene target
 - Streamer chamber
 - Cross section: an order of 10⁻⁷ barn

H. Bando et al., NPA 501 (1989) 900

Large Lorentz factor γ (>3)

 Effective lifetime : Longer by the Lorentz factor 200 ps -> 600 ps at GSI (ct ~ 20 cm) 200 ps -> 4 ns at FAIR (ct ~ 120 cm)

Hypernuclear separation and spin precession

- Can be feasible with 20 Tm at 20 A GeV
- Large spin precession in magnetic fields
 - 225 degrees with free- Λ magnetic moment

Nuclear matter with multiple-strangeness

°_-2

HypHI concept and requirement

- Invariant mass spectroscopy
 - A mass peak must be observed clearly on the background
 - A peak is not sufficient proof
 - Lifetime must be measured to confirm the identification

Hypernuclei must be measured at the projectile rapidity

GI Relativistic Boltzmann-Uehling-Uhlenbeck

T. Gaitanos et al., Physics Letters B 675 (2009) 297

HypHI at GSI/FAIR: Concept of Experiments

Produced hypernucleus close to projectile velocity

• Large Lorents factor $\gamma > 3$

• cτ ~ 20 cm at 2 A GeV

Example : ${}^{12}C + {}^{12}C - A_{\Lambda}Z + K^{+,0} + X$

HypHI at GSI/FAIR: Concept of Experiments

Produced hypernucleus close to projectile velocity

- Large Lorentz factor $\gamma > 3$
- cτ ~ 20 cm at 2 A GeV

Example : ${}^{12}C + {}^{12}C \rightarrow {}^{A}_{\Lambda}Z + K^{+,0} + X$

HypHI at GSI/FAIR: Concept of Experiments

Produced hypernucleus close to projectile velocity

• Large Lorentz factor $\gamma > 3$

• cτ ~ 20 cm at 2 A GeV

Example : ${}^{12}C + {}^{12}C - A_{\Lambda}Z + K^{+,0} + X$

Present hypernuclear landscape

Known hypernuclei

HypHI Phase 0 in October 2009

The goal of the Phase 0 experiments

 To demonstrate the feasibility of precise hypernuclear spectroscopy with ⁶Li primary beams at 2 A GeV : Mesonic decay Λ -> π⁻ + p

Funding

- Helmholtz-University Young Investigators Group VH-NG-239, 2006-2012
- DFG grant SA1696/1-1 2007-2009, TOF detectors

Trigger

1: Secondary vertex with fiber

- Vertex out of the target
 - Hypernuclear decay
 - Free- Λ decay
- FPGA/DSP based trigger module
- Efficiency to ${}^{4}_{\Lambda}$ H $\pi^{-}\alpha$ decay channel : ~ 14 %

2: π^- with ALADIN TOF

- π^- from hypernuclear decay
- 28 % for ${}^{4}{}_{\Lambda}$ H π - α decay channel
- 3: Fragments with TOF+
 - ${}^{3}_{\Lambda}H \rightarrow {}^{3}He + \pi^{-}, {}^{4}_{\Lambda}H \rightarrow {}^{4}He + \pi^{-}, {}^{5}_{\Lambda}He \rightarrow {}^{4}He + p + \pi^{-}, {}^{4}_{\Lambda}He \rightarrow {}^{d} + {}^{d}$
 - Efficiency to ${}^{4}{}_{\Lambda}$ H $\pi^{-}\alpha$ decay channel : ~ 94 %

1 & 2 & 3: Efficiency 7%

Background reduction down to 0.017 %

Talk by C. Rappold

Phase 0.5 experiment in March 2010

- Hypernuclear spectroscopy with heavier projectiles: ²⁰Ne
- H and He hypernuclei
- Li, Be, B and C hypernuclei

Setup in March 2009

Particle identification

D. Nakajima, PhD thesis C. Rappold, PhD thesis

Talk by D. Nakajima

Lambda hyperon trial

D. Nakajima, PhD thesis C. Rappold, PhD thesis

Talk by D. Nakajima

Summary and Outlook

Hypernuclear spectroscopy with heavy ion beams

- Hypernuclei at extreme isospin
- Hypernuclei with multiple strangeness
- Hypernuclear magnetic moments

Invariant mass hypernuclear spectroscopy

- At projectile rapidity region
- Clear mass peak on the background
- Lifetime measurements

Phase 0 and Phase 0.5 experiments

- ⁶Li and ²⁰Ne beams at 2 A GeV on ¹²C
- Successfully performed
- Full data analysis in progress

Perspective

- 2011: New development for the tracking detector and trigger system
- 2012: Phase 1 experiment at GSI
- Experiments at JINR and Lanzhou

People working for HypHI Phase 0-0.5

- GSI Helmholtz-University Young Investigators Group VH-NG-239
 - S. Bianchin (GSI)
 - O. Borodina (Mainz Univ., GSI)
 - V. Bozkurt (Nigde Univ., GSI)
 - B. Göküzüm (Nigde Univ.)
 - E. Kim (Seoul Univ., GSI)
 - D. Nakajima (Tokyo Univ., GSI)
 - B. Özel-Tashnov (GS)
 - C. Rappold (Strasbourg Univ., GSI)
 - T.R. Saito (Spokes person)
- Mainz University
 - P. Achenbach, J. Pochodzalla
- GSI HP2 and Mainz University
 - D. Khaneft, Y. Ma, F. Maas
- GSI HP1
 - W. Trautmann
- **GSI EE department**
 - J. Hoffmann, K. Koch, N. Kurz, S. Minami, W. Ott, S. Voltz
- GSI Nuclear reaction
 - T. Aumann, C. Caeser, H. Simin

- GSI Detector Lab.
 - M. Träger, C. Schmidt
- KEK
 - T. Takahashi, Y. Sekimoto
- KVI
 - E. Guliev, M. Kavatsyuk, G.J. Tambave
- Kyoto University
 - Y. Hayashi, T. Hiraiwa, M. Moritsu, A. Okamura, T. Nagae, M. Sako, T. Sugimura
- Nigde University
 - Z.S. Ketenci, S. Erturk
- Osaka University
 - S. Ajimura, A. Sakaguchi, K. Yoshida
- Osaka Electro-Communication University
 - T. Fukuda, Y. Mizoi
- Seoul National University
 - H. Bhang, M. Kim, S. Kim, K. Tanida, C.J. Yoon
- Tohoku University
- Student
- T. Koike, H. Tamura
- Postdoc Tenure track