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Nemám závažný d̊uvod proti užit́ı tohoto školńıho d́ıla ve smyslu §60 Zákona č.121/2000
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rezonanćı. Zaj́ımavým procesem je produkce kaonu, při které
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nukleonové rezonance, izobarický model
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Chapter 1

Preface

In this work, we aim to deal with the production of pseudoscalar mesons

on nucleons induced by electrons in the energy range of several GeV. This

process is suitable for investigating properties of baryons and their reso-

nances. The models based on the tree-level perturbation theory of the effec-

tive hadronic Lagrangian are a suitable tool for studying this process. Free

parameters in the Lagrangian are determined by fitting observable quantities

(such as cross section, polarisation etc.) on the experimental data.

It is believed, that the particle electromagnetic production will bring

some deeper insight into the structure of hadrons because in this process

one can study the resonance properties. Therefore, it is an important and

very promising field of study.

Although there are many ways to study the particle production, the most

challenging process is the kaon photo- and electroproduction. Since the

electromagnetic part of the process is well understood, the kaon production

can be relatively easy described.

There are several ways how to describe these production processes, but

the most promising approaches are the isobar and Regge-plus-resonance

(RPR) models. Especially to the former, we will pay special attention
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CHAPTER 1. PREFACE

in this thesis.

In the second chapter, a brief introduction to the problematics as well as

main points of our motivation and historical overview are sketched. Chapters

three and four serve to give a description of the fundamental properties

of the Regge and hybrid RPR models. Properties of the isobar model in

chapter five are given in much greater detail. In chapter six, the isobar-model

amplitudes, constructed in this work, are presented and their properties

discussed.

Detailed information about the formalism, kinematics, fitting procedure

and data from experiments is provided in the appendices.

2



Chapter 2

Introduction and motivation

During last decades, production of pseudoscalar mesons on nucleons has

revealed as a suitable tool for studying baryons and their resonances. More-

over, it is strongly believed that the analysis of the pseudoscalar processes

can bring some deeper insight into this field of study.

It is not only this fact we owe for the motivation. In addition,

models for the elementary electroproduction process are used in calcula-

tions of electroproduction of hypernuclei. New precise data from CLAS,

LEPS and GRAAL collaborations allow improving these models.

Another question mark which motivate us is the so-called “missing res-

onance” problem. Many of the resonances predicted by quark models are

still waiting to receive experimental confirmation. It was proposed [30] that

these resonances manifest themselves in other reaction channels than those

usually measured (e.g. πN channel).

The main task of this work is to construct a new isobar model ampli-

tude, by choosing original set of resonances and subsequently by fitting to

experimental data. The amplitude can be further used for calculations in

hypernuclei problematics.
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CHAPTER 2. INTRODUCTION AND MOTIVATION

2.1 Historical background

The beginning of both theoretical and experimental study of kaon photo-

and electroproduction was given in the year 1957, when both Caltech [19]

and Cornell [39] laboratories released the p(γ,K+)Λ cross-section data ob-

tained at their electron synchrotrons. There were a plenty of data collected

on the kaon photoproduction (Caltech, Cornell, etc. [13]) but only a few ex-

periments were realized on the electroproduction (DESY, Cambridge [13]).

The modeling of kaon photoproduction processes started by the pioneer-

ing work of Kuo [31], later followed by Thom [43]. The few datapoints

reported in these pioneering publications were of a limited accuracy, and

only the kinematical region very close to threshold could be probed due to

the limited electron energies available at that time.

Further experiments were performed in the 1970s and 1980s, not only in

the USA but also at facilities in Bonn [4] and Tokyo [21]. After that, one

had to wait until the year 1998, when the SAPHIR collaboration, operating

at the Bonn ELSA facility, released the first high precision data for all

three reaction channels on the proton target p(γ,K+)Y , with Y = Λ, Σ0,

and p(γ,K0)Σ+ over the photon laboratory energy range from threshold up

to 2 GeV [44]. The SAPHIR data clearly triggered revived interest in the

theoretical community in the search for missing resonances.

The study of meson photoproduction at intermediate energy (e.g. at

Elab
γ ≤ 4 GeV) becomes now experimentally accessible in a systematic way

with the high-duty cycle electron facilities like TJNAF. In particular, the

combination of the large acceptance detector CLAS and the high intensity

beam of TJNAF, makes possible the study of meson photo- and electropro-

duction reactions at large angle and opens up an unexplored field [25].

Over the past years, the amount of data of the photo- and electroproduc-
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CHAPTER 2. INTRODUCTION AND MOTIVATION

tion processes has been substantially extended with a high precision data

from the CLAS (2005, 2007 and 2010) [37, 7, 8], SAPHIR (2003) [22], LEPS

(2003, 2006 and 2007) [50, 42] and GRAAL (2007) [33] collaborations. In

addition, the SAPHIR collaboration has also provided a new analysis of the

p(γ,K0)Σ+ channel [32].

2.2 Underlying physics

As it was written in the previous section, the investigation of strangeness

production from a proton, using real or virtual photons, started in the late

fifties, but a comprehensive description of the underlying mechanism is still

not available. This uncomfortable situation, compared for example to pion

production which is dominated basically by one nucleonic resonance, might

be attributed to the more complex role played by the strange quark versus

that arised by u and d quarks. This additional degree of freedom leads to the

fact that, even close to the threshold, a rather ample number of hyperonic

and nucleonic resonances may intercede the process.

The following reactions are studied:

γ + p −→ K+ + Λ, (2.1)

γ + p −→ K+ + Σ0, (2.2)

γ + p −→ K0 + Σ+, (2.3)

Reaction 2.1 is the one most studied, both experimentally and theoretically,

including polarization observables measurements; although, a large part of

the existing data base suffers from inconsistences within the reported accu-

racies. There are less extensive investigations of the reaction 2.2. The third

process has received very little consideration, probably because of experi-

mental difficulties in identifying the final state properties.
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CHAPTER 2. INTRODUCTION AND MOTIVATION

The photoproduction of K0 on the neutron cannot be studied directly. In

Laboratory for Nuclear Science of Tohoku University, however, the inclusive

momentum distributions of K0 off the deuteron target were measured for

the first time, which can constrain the photoproduction amplitudes in the

K0Λ channel [45].

The high-duty electron facilities like CEBAF, MAMI etc. also allow

envisioning high quality electroproduction data for the elementary reactions

e+ p −→ e′ +K+ + Λ (2.4)

e+ p −→ e′ +K+ + Σ0 (2.5)

e+ p −→ e′ +K0 + Σ+ (2.6)

In these processes, the virtual photon has besides the transverse polariza-

tion component also a longitudinal part and offers the possibility of varying

independently the energy and momentum transfers. In this respect, the

electrons are a finer probe for the strangeness domain [16].

Although each of the above introduced reactions is interesting by itself, a

necessary step by step investigation requires first the understanding of the

photoproduction reactions. The electroproduction processes can be formally

reduced to an investigation of the binary processes of the photoproduction by

virtual photons since the electromagnetic coupling constant is small enough

to justify the one-photon approximation. An extension to the electroproduc-

tion processes constitutes the next step. Subsequently, we can take benefit

of the much cleaner electromagnetic probes, compared to hadronic ones, to

study the strangeness production in composite hadronic systems, especially

in the hypernuclear physics.
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CHAPTER 2. INTRODUCTION AND MOTIVATION

2.3 Various approaches to the strangeness

electromagnetic production

In general, theoretical approaches to the electromagnetic strangeness pro-

duction can be divided into two categories. In parton-based models, the

quark-gluon structure of the interacting hadrons is explicitly tied in with

the reaction dynamics. Since in the initial state the strange quarks are ab-

sent, the production process is forced to make a connection to the quark

sea.

In contrast, hadrodynamic approaches consider the interacting hadrons

themselves as the basic degrees of freedom of the effective field theory. In

such an approach, the hadrons are treated as effective particles with specific

properties. In the lowest order, the reaction mechanism proceeds through

the exchange of intermediate states (so called resonances).

Except at very high energies, where QCD can be solved perturbatively,

quarks and gluons do not represent the optimum building blocks in hadron

reaction models. More appropriate degrees of freedom in the nonpertur-

bative regime are the bound states of constituent quarks, i.e. mesons and

baryons. Since we are not able to fully determine the properties of these

objects by the fundamental field theories, the hadrons are referred to as ef-

fective degrees of freedom. Which effective building blocks to use depends

on the energies one aims to describe. Near the p(γ,K+)Λ(Σ) threshold there

are obvious structures in the cross sections, reflecting the production of indi-

vidual N∗ (∆∗) states. A logical strategy to model these states is to employ

hadrons in their entirety as effective degrees of freedom.

There are several approaches to the treatment of the photoproduction

process. Among them, the isobar models based on the effective Lagrangian

description considering only the hadronic degrees of freedom are suitable for

7



CHAPTER 2. INTRODUCTION AND MOTIVATION

their further use in the more complex calculations. The other approaches

are suitable either for higher energies (Elab
γ > 4 GeV) - the Regge model, or

to the threshold region (Elab
γ < 1 GeV) - the Chiral Perturbation Theory.

The chiral models differ from isobar models principally in the inclusion of

resonances. These are not included explicitly, but they are generated dy-

namically by the chiral effective Lagrangian. Another approach, aimed at

description of the process in the resonant and high-energy (Elab
γ ≤ 20 GeV)

regime, is the hybrid Regge-plus-resonance model in which the background

part of amplitude is generated by the t-channel Regge-trajectory exchanges

and the resonant behaviour is shaped by the s-channel resonances like in an

isobar model.

Let us now briefly summarize main advantages and shortcomings of other

approaches to the photoproduction process.

Constituent Quark Model

In its long history, the constituent quark model (CQM) has had a plenty of

achievements. Within the framework of this model, the spectra of mesons

and baryons, as well as their strong, electromagnetic and weak decays have

been treated.

The constituent quark model allows us to perform elementary approaches

to study the reaction mechanism of γ+ p→ K+ + Λ. Obviously, this model

is in a closer connection with QCD than those based on the hadronic degrees

of freedom. It needs a smaller number of parameters to describe the data.

In fact, it contains only a few coupling constants which are related together

and there is no need to introduce the resonances, because they emerge nat-

urally from the model as excited states of the system. The quark models

therefore assume explicitly the extended structure of the hadrons which was

found to be important for a reasonable description of the photoproduction
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CHAPTER 2. INTRODUCTION AND MOTIVATION

data. In the quark model we usually restrict ourselves to the nonrelativistic

description.

The study of nucleon spectroscopy has come up with a very important

question that points at the interplay between the CQM and QCD. By def-

inition, the quark model describes nucleon as a bound state of three con-

stituent quarks. Although, the quark model in many of its forms predicted

a substantial number of “missing” light baryons which have not so far been

experimentally proven. Two possible explanations have been postulated for

this problem of “missing resonance”. One solution is that constituent quarks

might not represent the proper degrees of freedom. Quark-diquark models,

which contain fewer degrees of freedom, may be more convenient for the

description of baryons. A second solution which is plausible is the possi-

bility that these missing states in fact do exist, but manifest themselves in

different reaction channels.

This question about baryon physics is at the very basics. If there will be

no new baryons found, the quark model will have made wrong predictions

and the dynamics within the quark model would have to be changed [10].

Chiral Perturbation Theory

In the last years, the chiral perturbation theory appeared as a powerful

scheme to describe the low-energy meson-meson and meson-baryon dynam-

ics. Since it is limited to energies from threshold only to approximately

100 MeV, it cannot describe physics higher in the resonance region. In ad-

dition, contributions originating from resonances with spin higher than 3/2

cannot be reproduced [5].

This approach differs considerably from approaches based on the isobar

model. In the chiral unitary approach not all resonances are generated

dynamically, so one might have to include them in certain channels in order

9



CHAPTER 2. INTRODUCTION AND MOTIVATION

to reach an exact description [5].

Coupled Channel Analysis

A number of analysis of data on strangeness production have been per-

formed, but only a few of them are based on a coupled-channel model.

However, in the past decade many coupled-channel models have been de-

veloped. These models take into account different intermediate processes

(rescattering) which can occur between the initial and final state. Since

some intermediate processes have much higher cross sections than the KΛ

channel, their effects can be substantial. Particularly, it was found [46] that

the narrow structure at 1.7 GeV is generated through rescattering effects.

On the other hand, these models have a lot of unknowns, which should

be fitted to data from all considered channels. Moreover, the determination

of the background is not completely clear.

10



Chapter 3

Review of the Regge Model

A major drawback of the isobar model introduced in the chapter 5 is its lim-

ited scope in energy. Specifically, isobar approaches fail to meet a necessary

condition for unitarity, known as the Froissart bound [20], which constitutes

an upper limit on the high-energy behaviour of the cross sections. A realis-

tic total cross section is allowed to increase with energy less than ln2(s/s0).

In an isobar framework, however, the background contribution rises as a

positive power of s. Up to a certain energy, this rise can be compensated

by destructive interferences with other resonant and nonresonant diagrams.

For center-of-mass energies higher than a few GeV, where adding individual

resonances no longer makes sense, unphysical behaviour develops [13].

A solution is provided by a high-energy framework introduced by Tullio

Regge in the year 1959. Regge’s starting point was to consider the partial-

wave amplitudes as a function of a complex angular momentum variable.

Interestingly, poles of the amplitude were suggested to correspond to reso-

nant states, which could be sorted into several families. The members of

such a family, the Regge trajectory, turned out to share identical internal

quantum numbers, such as strangeness or isospin, while having different

total spins.

11



CHAPTER 3. REVIEW OF THE REGGE MODEL

Regge theory rests upon the preposition that, at energies where individ-

ual resonances can no longer be distinguished, the reaction dynamics are

governed by the exchange of entire Regge trajectories rather than of sin-

gle particles. The high-energy Regge framework employed here applies to

the so-called ”Regge limit” of extreme forward (in the case of t-channel

exchange) or backward (for u-channel exchange) scattering angles, corre-

sponding to small |t| or |u|, respectively. The focus on the forward-angle

kinematical region for electromagnetic KY production implies the exchange

of kaonic trajectories in the t-channel, while in the backward angles the Y ∗

trajectories in the u-channel are exchanged. The diagrams contributing to

the high-energy, forward-angle K+Λ photoproduction amplitude are shown

in Figure 3.1. We refer to them as background terms, because none of them

passes through a pole in the physical region of the p(γ,K+)Λ process.

There are two reasons why we have chosen not to treat the u-channel

reggeization. First, the high-energy data in the backward-angle regime are

scarce. Second, more fundamental reason involves the fact that the lightest

hyperon, the Λ, is significantly heavier than a K meson. As a consequence,

the u-channel poles are located much further from the backward-angle kine-

matical regime than the t-channel poles are from the forward-angle region.

Therefore, for the u-channel reggeization, the procedure of requiring the

Regge propagator to reduce to the Feynman one at the closest crossed-

channel pole cannot be guaranteed to lead to good results.

3.1 Regge trajectories

Empirically, it is observed that the meson trajectories αX(t)

αX(t) = αX,0 + α′X(t−m2
X),

12



CHAPTER 3. REVIEW OF THE REGGE MODEL

Figure 3.1: Feynman graphs contributing to the p(γ,K+)Λ amplitude for Elabγ ≥ 4 GeV

and forward angles: exchange of (a) K and (b) K∗ trajectories. The electric part of the

s-channel Born term, diagram (c), is added to restore gauge invariance.

with mX the mass and αX,0 the spin of the trajectory lightest member

(or “first materialization”) X, relating the spins and squared masses of

the hadronic trajectory members are linear to a very good approximation.

Figure 3.2 illustrates that statement by showing the J versus m2 plots

(also known as Chew-Frautschi plots) for the trajectories with K(494) and

K∗(892) as their lightest members. There are only two degenerate trajec-

tories taken into account when modeling the background of the p(γ,K+)Λ

process.

There are just three parameters needed to quantify them: the gK+Λp

coupling constant for the K(494) trajectory and the vector gvKΛp and tensor

gtKΛp coupling constants for the K∗(892) trajectory. The coupling constants

have to be constrained from fitting to data [14].

13



CHAPTER 3. REVIEW OF THE REGGE MODEL

Figure 3.2: Chew-Frautschi plots for the K(494) and K∗(892) trajectories. The meson

masses are from the Particle Data Group.

3.2 Regge propagators

An efficient way to model trajectory exchanges involves embedding the

Regge formalism into a tree-level effective-field model. The amplitude for

the t-channel exchange of a linear kaon trajectory α(t) can be obtained from

the standard Feynman amplitude by replacing the usual pole-like Feynman

propagator of a single particle with a Regge one

1

t−m2
X

−→ PXRegge[s, αX(t)],

while keeping the vertex structure given by the Feynman diagrams which

correspond to the first materialization of the trajectory.

The Regge amplitude can then be written as

MX
Regge(s, t) = PXRegge[s, αX(t)]× βX(s, t),

with βX(s, t) the residue of the original Feynman amplitude, calculated from

the interaction Lagrangians at the γ(∗)KX and pXY vertices.

14



CHAPTER 3. REVIEW OF THE REGGE MODEL

In our treatment of K+Λ and K+Σ0 photoproduction, we identify the

K(494) and K∗(892) trajectories as the dominant contributions to the high-

energy amplitudes. The corresponding propagators assume the following

form [15]

PK(494)
Regge (s, t) =

(
s

s0

)αK(t)
1

sin(παK(t))

πα′K
Γ(1 + αK(t))

 1

e−iπαK(t)

 ,

PK
∗(892)

Regge (s, t) =

(
s

s0

)αK∗ (t)−1
1

sin(π(αK∗(t)− 1))

πα′K∗

Γ(αK∗(t))

 1

e−iπ(αK∗ (t)−1)

 ,

with trajectory equations given by [15]

αK(t) = 0.70(t−m2
K),

αK∗(t) = 1 + 0.85(t−m2
K∗).

The phase of these propagators can be either constant (1) or rotating

(exp(−iπα(t))), depending on the relative sign between the residues of the

individual signature parts (the degenerate trajectories are assumed, see be-

low).

As can be seen from the definition of the Regge propagators, they have

poles at nonnegative integer values of α(t), corresponding to the zeroes of

sin(πα(t)) which are not compensated by the poles of Γ(1 + α(t)). Thence

comes the interpretation that the Regge propagator effectively incorporates

the exchange of all members of the α(t) trajectory. However, in the physical

region of the processes under study (with t < 0), these poles cannot be

reached.

Whether or not a trajectory should be treated as degenerate depends

less on the trajectory equations themselves than on the process under study.

Non-degenerate trajectories give rise to dips in the differential cross section

because they exhibit so-called wrong-signature zeroes (these are zeroes of

15



CHAPTER 3. REVIEW OF THE REGGE MODEL

the Regge propagator corresponding to poles of the gamma function which

are not removed by the sine function in the denominator). Vice versa, a

smooth, structureless cross section points to degenerate trajectories. Be-

cause no obvious structure is present in the p(γ,K+)Λ cross-section data for

Elab
γ ≥ 4 GeV, both the K and K∗ trajectories are assumed to be degenerate.

However, it can seem strange that a certain trajectory may need to be

treated as degenerate in one hadronic process, but as non-degenerate in

another. This apparent inconsistency is easily explained when realizing that

the determining fators for degeneracy are the residues of the positive and

negative-signature amplitudes, which obviously depend on the specific initial

and final state [14].

3.3 Restoring gauge invariance

An essential property of any theory dealing with electromagnetic interactions

is gauge invariance, related by the Noether theorem to the law of charge

conservation.

It is argued that, apart from the K+(494) and K∗+(892) trajectory ex-

changes, the Regge amplitude for K+ photoproduction should also include a

contribution from the electric part of the s-channel Born term (as a counter

term to the exchange of the lowest pole in the K+ trajectory), as visualised

in Figure 3.1 [15]. This can be accomplished through the recipe

MRegge(γp→ K+Λ) =MK+(494)
Regge +M

K∗+(892)
Regge +Mp,elec

Feyn×P
K+

Regge×(t−m2
K+).

This procedure is necessary because of the gauge-breaking nature of the K+-

exchange diagram. In a typical effective-Lagrangian framework the Born

terms Mp,K,Y
Feyn in the s-, t- and u-channels do not individually obey gauge

invariance, but their sum does. It can be shown [13], that implementing this
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gauge-invariance restoration procedure leads to an improved description of

the high-energy p(γ,K+)Λ differential cross section at |t| → 0.
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Chapter 4

Review of the

Regge-plus-resonance Model

As it was written in the previous chapter, the Regge theory is a high-energy

tool by construction. The experimental meson production cross sections are

observed to exhibit Regge behaviour for photon energies as low as 4 GeV.

Even in the resonance region, the order of magnitude of the forward-angle

pion and kaon electromagnetic production observables is remarkably well

reproduced in the Regge model [15].

4.1 Inclusion of resonance contributions

Nonetheless, it is evident that a pure background description such as the

Regge-pole model cannot be expected to describe the reaction at energies in

the resonance region. The near-threshold cross sections exhibit structures,

such as peaks at certain energies and sudden variations in the angular distri-

butions, which may reflect the presence of individual resonances. These are

incorporated into the Regge-plus-resonance (RPR) model by supplement-

ing the reggeized background with a small number of resonant s-channel
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diagrams. For the latter, standard Feynman propagators are assumed, in

which, as in the isobar approach, the resonances finite lifetimes are taken

into account through the substitution [15]

s−m2
R −→ s−m2

R + imRΓR,

in the propagator denominators, with the mR and ΓR the mass and width

of the propagating state (R = N∗,∆∗).

In conventional isobar models, the resonance contributions increase with

energy. However, for the RPR approach to be meaningful the resonance

amplitudes should vanish at high values of Elab
γ . This is accomplished by

including a Gaussian hadronic form factor F (s) (on the contrary to the

dipole form factor used in the isobar approach) at the strong KY R vertices

F (s) = exp

(
−(s−m2

R)2

Λ4
R

)
. (4.1)

A single cutoff mass ΛR is assumed for all resonances. Along with the

resonance couplings, ΛR is used as a free parameter when optimizing the

model against the resonance-region data. The motivation for introducing

Gaussian form factors instead of dipole form factors is that they fall off much

more sharply with energy than dipoles [13], as can be seen from Figure 4.1.

By construction, the RPR amplitude is valid over the entire energy region

described by the isobar and Regge models, i.e. from threshold up to about

20 GeV. In the high-energy regime (Elab
γ ≥ 4 GeV), all resonant contribu-

tions vanish by construction, so that only the Regge part of the amplitude

remains.

The RPR amplitude in its entirety involves t-channel exchanges of kaonic

trajectories as well as s-channel Feynman diagrams corresponding to indi-

vidual baryon resonances. In Figure 4.2, the RPR amplitude is shown.

The greatest benefit of the RPR strategy, apart from its wide energy

range, is the elegant description of the non-resonant part of the reaction am-
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Figure 4.1: Dipole and Gaussian form factors as a fucntion of the photon energy in the

lab frame Elabγ for a resonance with mass mN∗ = 1710 MeV. The full, dashed and dotted

curves correspond to cutoffs ΛR = 800,1200 and 1600 MeV, respectively.

plitude. In the standard isobar model, the determination of the background

requires a significantly larger number of parameters. A Regge-inspired model

is limited to t- or u-channel exchanges, with only a small number of trajecto-

ries required in either case. In the Regge model, there is only one additional

uncertainty, namely the choice between constant or rotating phase.

One point which may obscure the procedure of constructing the RPR

amplitude is a double counting, caused, according to the duality princple,

by adding a small number of individual resonances onto the Regge back-

ground. As the p(γ,K)Y processes are largely dominated by background

contributions, the few s-channel terms may be considered as relatively sub-

ordinate corrections, and therefore the double counting is not expected to

be a significant issue [13].

Figure 4.2: General forward-angle RPR amplitude for the p(γ,K)Y process.
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Chapter 5

Review of the Isobar Model

In this chapter, the review of the isobar model will be given. Since my

bachelor thesis was primarily aimed at studying this model, some more in-

formation can be found there [40].

5.1 Main principles

Let us introduce the main thoughts of the isobar model. The starting point

in modeling the p(γ,K+)Λ processes is a description in terms of hadronic

degrees of freedom. This means that in these models the reaction amplitude

is derived from an effective hadronic Lagrangian using the Feynman dia-

grammatic technique in the tree-level approximation (these are the diagrams

with the smallest possible number of interaction vertices). The Feynman di-

agrams contribute to the background (or nonresonant) and the resonant part

of the amplitude. The diagrams containing the intermediate nucleon exci-

tations (or resonances) are reffered to as the resonant diagrams, as they can

produce peaks in the cross section.

As can be seen from Figure 5.1, the various types of tree-level diagrams

can be classified in several ways. The left column collects Born terms, which
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have a ground-state hadron in the intermediate state (one can further dis-

tinguish between s-, t-, and u-channel contributions). The t- and u-channel

diagrams and the s-channel Born term are background contributions, as the

energy-momentum conservation prevents their poles from being reached in

the physical region. This means that these contributions do not give rise

to peaks in the energy dependence of the differential cross section. Only

the s-channel non-Born term (the red diagram involving an excited state)

produces resonant structures in the observables.

Figure 5.1: Tree-level contributions to the p(γ,K)Y amplitude (Y = Λ,Σ0,Σ+). The

∆∗ states can only be produced in the KΣ channels due to isospin conservation. The

Mandelstam variables s, t and u are defined by s = (pp + pγ)2, t = (pγ − pK)2 and

u = (pp − pK)2, respectively, where pγ , pp, pK , and pY are the four-vectors of the

asymptotic particles playing a role in this process.

To summarize, this kind of description (i.e. the tree-level effective-field

approach) is commonly reffered to as the isobar model. It is the near-
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treshold and resonant kinematic region involving photon-laboratory energies

Elab
γ = 0.91 − 2.5 GeV, where this model is of particular interest [9] (see

Figure 5.2).

Figure 5.2: The schematic representation of the total KY (Y≡ Λ,Σ0,Σ+) photoproduc-

tion cross section in dependence on the incoming photon energy Elabγ in the laboratory

frame is shown. Figure stems from [13].

Despite the long history and the large amount of both experimental

and theoretical efforts, a complete understanding of the p(γ,K+)Λ reac-

tion mechanism still remains problematic. Firstly, there is a lot of nucleon

and hyperon resonances that contribute to the process, which results in

a great number of versions of the isobar model [9] (for instance, we can

mention the Kaon-MAID or Saclay-Lyon model [16]). Secondly, when the

SU(3) predictions for the coupling constants gKΛp are used the Born term

contributions in their own predict the p(γ,K+)Λ cross sections which are

a few times the measured ones [28]. Another issue is that the isobar mod-

els violate the Froissart bound [20] which is an asymptotic upper limit on

the high-energy behaviour of the cross section. For the total inelastic cross
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section the relation for s→∞

σ ≤ C ln2 s

s0

,

where s0 is a reference scale set by convention at 1 GeV2, is supposed to

hold. Unfortunately, in the isobar model the s-channel contributions exhibit

a power-law dependence in the high-energy limit.

Since 1990, three major models, based on isobaric approaches, have been

published. The first one by Adelseck-Saghai focuses on the reaction (2.1)

for Elab
γ ≤ 1.5 GeV. The second one, by Williams, Ji, and Cotanch inves-

tigates all the reactions (2.1)-(2.6) mentioned in previous chapter except

the p(γ,K0)Σ+ channel, and extends the energy range to Elab
γ ≤ 2.1 GeV.

Finally, the third model, by Mart, Bennhold, and Hyde-Wright [35], is ded-

icated to the KΣ photoproduction channels with a special emphasis on the

charged Σ production in the same energy range as the model by Williams

et al. [48].

5.2 Properties of the Isobar Model

Although built upon the same set of formal principles, effective-Lagrangian

models face a number of challenges unknown to the fundamental field theo-

ries.

Form factors

In the phenomenological field-theoretical description, the function called

form factor is often used. It gives the properties of certain particle inter-

actions without including all of the underlying physics. Moreover, it takes

into account the dependence of the hadronic interaction vertex on the energy

scale.
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Hadrons are not pointlike particles, but have an internal structure. As a

consequence, they manifest themselves differently according to the resolution

at which they are probed. This can be formally expressed by modifying the

effective coupling constants with appropriate form factors.

The strong or hadronic form factors are the running coupling constants

at the hadronic vertices. The form most often assumed in literature is a

dipole [13]

Fx =
Λ4
R

Λ4
R + (x−m2

R)2
, (5.1)

with x the squared four-momentum of the intermediate hadron (resonance)

R, and mR its mass. The cutoff mass ΛR determines the high-energy (and

therefore short-range) behaviour of the interaction. This can be either hard

(ΛR small) or soft (ΛR large).

For fermions of arbitrary spin the so-called multidipole-Gauss form factor

was introduced [18] in the form

FmG(s;mR,ΛR,ΓR, JR) =

(
m2
RΓ̃2

R(JR)

(s−m2
R)2 +m2

RΓ̃2
R(JR)

)JR− 1
2

exp

[
−(s−m2

R)2

Λ4
R

]
,

(5.2)

where the width Γ̃R is defined as

Γ̃R(JR) =
ΓR√

2
1

2JR
−1

.

For JR = 1/2 the multidipole-Gauss form factor reduces to the Gaus-

sian hadronic form factor, Equation 4.1. For higher spin, this form factor

increases the multiplicity of the propagator pole, which assures that the

contribution from the exchange of a given resonance resonates at s = m2
R.

The free parameters of the form factors are extablished when optimizing

the model parameters against the data. A single cutoff value ΛR is usually

assumed for all resonant diagrams, whereas for background diagrams an-
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other value ΛBorn is used. It is well-known that introducing the hadronic

form factors violates the gauge invariance at the level of the Born diagrams.

Additional contact term (i.e. diagram which does not contain any pole) is

then required to restore this fundamental symmetry [28].

The electromagnetic form factors which mimic a hadron structure in the

electromagnetic vertex depend on Q2 = −p2
γ, with pγ the incoming pho-

ton four-momentum. Many calculations assume a monopole form factor for

mesons and a dipole for baryons. They are normalized so that they reduce

to either 0 or 1 in the real-photon point [13].

Gauge invariance

Among the most important properties of theories dealing with electromag-

netic interactions is gauge invariance which is related to the principle of

charge conservation.

The total amplitude constructed using the interaction Lagrangian of the

p(γ,K+)Λ process without hadronic form factors is gauge invariant. How-

ever, for the Born terms the electromagnetic current contains so-called elec-

tric term which violates the Lorentz condition for gauge invariance when

assumed for each diagram separately. As proposed by Haberzettl [26], the

gauge invariance of the Born diagrams can be again renewed by adding a

number of contact terms. On the other hand, there are several other gauge-

restoration prescriptions [17, 24], which is a source of ambiguities in the

isobar model approach.

SU(3) symmetry breaking

The SU(3) flavour symmetry, which governs the baryon and meson mul-

tiplets, can be used to establish relations between various meson-baryon-

baryon coupling constants connecting different processes (e.g. π−, η−, and
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K-production). Moreover, these relations allow us to connect the coupling

constants of the up-down sector to the coupling constants of the strange

sector.

Using de Swart’s convention, for the unbroken SU(3) symmetry one can

derive relations

gKΛN = − 1√
3

(3− 2αD)gπNN , (5.3)

gKΣN = (2αD − 1)gπNN , (5.4)

where αD is the fraction of symmetry coupling in the πNN vertex. Taking

αD = 0.644 ± 0.006 and the experimental knowledge of g2
πNN/4π = 14.4,

the values for two main KYN couplings can be determined. Because of the

substantial mass difference between the mass of the proton and the Λ (which

originates from interchanging an up quark with a strange quark), it is known

that the SU(3) symmetry is not exact. It is commonly assumed that the

SU(3) symmetry is broken at the level of 20%. Therefore, the relations (5.3)

and (5.4) are not exact and one obtains the following ranges for the coupling

constants

−4.4 ≤ gKΛN√
4π
≤ −3.0,

0.8 ≤ gKΣN√
4π
≤ 1.3.

Unitarity

Since the unitarity requirement is linked to the conservation of probabil-

ity, it is automatically fullfilled for the fundamental interactions. However,

effective field theories are not necessarily unitary by construction. When

restricting ourselves to the tree-level diagrams, there is need to plug in the

decay widths of the various resonances by hand. This can be reached through
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the explicit insertion of the Breit-Wigner width ΓR

s−m2
R −→ s−m2

R + imRΓR

in the propagator denominators, with mR being the mass of the propagating

state (R = N∗,∆∗). This procedure is applied solely to the resonant dia-

grams, where the exchanged particle can be on its mass-shell in the physical

region of the process.

Higher-order corrections

It is obvious that the isobar approach, similarly as any other model, has its

limitations. Apparrently, by truncating the amplitude at tree level, higher-

order contributions like channel couplings and final-state interactions are

excluded from the reaction mechanism.

Importance of this issue becomes evident when realizing e. g. that the

π+N → π+N cross section is many times larger than the γ+p→ K+Y one.

In other words, contributions from higher-order processes, such as the one

shown in Figure 5.3, are not necessarily less important than the tree-level

diagrams.

Figure 5.3: A typical higher-order contribution to p(γ,K)Y (on the left side) compared

to the direct process (right).

Although Chiang et al. [12] have shown that the contributions of the

intermediate πN channel to the p(γ,K+)Λ cross sections are of the order of

20 %, the success of the isobar approach in describing even the most recent
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data demonstrates that lowest-order diagrams are well able to mimic certain

higher-order effects.

However, when comparing the coupling constants found in the context of

a tree-level model to values calculated with accounting higher-order correc-

tions, one has to be cautious.

In this work, the channel-coupling effects are not taken into account.

5.3 Isobar Model variants

As it was mentioned before, since there is no dominant resonance we have

a plenty of versions of the isobar model. The most important and succesful

models are Kaon-MAID model, Saclay-Lyon model and Gent isobar model,

which was developed by the Gent group and inspired them to the develop-

ment of the Regge-plus-resonance model. In this section, main thoughts of

these isobar model variants will be sketched.

Saclay-Lyon

The Saclay-Lyon model developed by David et al. [16] gave the first descrip-

tion of both photo- and electroproduction reactions as well as kaon capture

reactions. In addition to the Born terms (exchanges of proton, K+, Λ and

Σ0 particles), this model involves the exchange of vector (K∗(890)) and axial

vector (K1(1270)) mesons in the t-channel and hyperon u-channel resonances

Λ(1407), Λ(1670), Λ(1810) and Σ(1660). The resonant structure is modeled

by the exchange of nucleonic resonances P11(1440), P13(1720) and F15(1680)

in the s-channel.

Moreover, Saclay-Lyon model includes no hadronic form factors. Their

effects are simulated by the presence of hyperon resonances.
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Figure 5.4: Cross section in dependence on the total center-of-mass energy is shown. The

data stem from CLAS 2005 [7]. The continuous line represents the Saclay-Lyon model.

The dashed, dotted and dash-dotted lines illustrate the description of the data without

P11(1440) resonance, F15(1680) resonance and all nucleonic resonances, respectively.

Kaon-MAID

Besides the Born terms, the Kaon-MAID–model background also includes

vector (K∗(890)) and axial vector (K1(1270)) meson exchanges in the t-

channel. Moreover, the exchanges of resonances in the s-channel (S11(1650),

P11(1710), P13(1720) and a “missing resonance” D13(1895)) are assumed

[29]. On the contrary, the model does not include any exchange of hyperon

resonances in the u-channel. In this model, the amplitude is not unitary

by construction (single-channel approach) and therefore the corrections for

unitarity must be included in the nucleon resonance propagator through

an energy-dependent width [18]. The hadronic form factors are used to
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regularise the Born terms, which in their own predict the cross sections

being a few times the measured ones.

Figure 5.5: Cross section in dependence on the total center-of-mass energy is shown.

The experimental data originate from CLAS 2005 [7]. The continuous line represents

the Kaon-MAID model, which is in a good agreement with the data in the energy range

W = 1.6 − 2.2 GeV (this is caused by the fact, that this model was fitted with the old

data which were measured only within this energy range). The dashed, dotted and dash-

dotted lines illustrate the description of the data without D13(1895) resonance, P13(1720)

resonance and all nucleonic resonances, respectively.

The behaviour of the Kaon-MAID model for fixed kaonic angle is shown

in Figure 5.5. Moreover, the dashed, dotted and dash-dotted lines illustrates

the description of the experimental data by this model when some of the

resonances are omitted. From this comparison, it is apparent that the pres-

ence of resonances is important for the model in order to give a reasonable

correspondence with the data. For the calculation the very clearly arranged
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web pages of Kaon-MAID model [29] can be used.

The Gent Isobar Model

In this model, an extra attention was payed to the determination of the

background amplitude, which is composed of the Born terms and axial and

vector meson exchange in the t-channel. This effort has led to the inves-

tigation of three background model variants, each of which uses a distinct

strategy to balance the unrealistically large contribution of the Born terms,

predicted by SU(3) flavour symmetry.

This model comprises the same resonances as the Kaon-MAID, but the

P13(1900) has been proposed as an alternative for the D13(1895). The un-

certainties with respect to the various background amplitudes are reflected

in the strong model dependence of the extracted coupling constants [18].
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Results and discussion

The aim of this work was to construct new models in the isobar approach.

Since there are more than twenty resonances as likely candidates to partic-

ipate in the p(γ,K+)Λ process, this can be done by choosing a new set of

resonances and then by proceeding to the fitting procedure in which the free

parameters, such as the coupling constants and cut-off masses, of the model

are determined.

6.1 Construction of new isobar models

The construction of new models consists of several steps. In the first step, the

resonances, which contribute to the KΛ channel process, have been chosen

in the following way: the model with a specific choice of the resonance set

was fitted to the limited data, the cross sections from CLAS. From various

considered resonance sets the one with the smallest value of χ2/n.d.f. was

chosen. For example, for the models DS1 and DS2 the value of χ2/n.d.f.

fitted only to this CLAS data set was 1.46 and 1.44, respectively, while for

some other choices of resonances the χ2/n.d.f. value was two or more times

bigger.
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The considered resonance sets were motivated by the robust Bayesian

analysis performed by the Gent group [18], where the most probable candi-

dates for the resonances were pointed out.

In the second step, the full χ2 minimisation procedure took place (details

are given in App. C). In this procedure, data from CLAS [36] (the cross

section for energies up to W = 2.275 GeV and polarisation for energies

below 2.145 GeV) and GRAAL [33] (the beam assymetry and polarisation)

collaborations and several other experiments, whose results were mentioned

in the paper of Adelseck and Saghai [1], were used. There were 16 and

17 free parameters for the models DS1 and DS2, respectively (besides two

main coupling constants gKΛN and gKΣ0N and cut-offs for the hadronic form

factors, each spin-1/2 resonance introduced one free parameter, whereas

spin-3/2 resonances have an additional degree of freedom at the photon

vertex and give rise to two free parameters). While minimizing χ2 in a

space with a large number of parameters it is important to find a global

minimum. Since this huge parameter space has a lot of local minima, the

result of the fitting procedure often depends on starting values of the fitted

parameters. Therefore, it is recommended to proceed carefully during the

fit, to add data step by step and to vary the initial values of parameters in

order to reach the global minimum. More detailed information about this

procedure is given in App. C.

Finally, two sets of resonances turned out to give a reasonable small

χ2/n.d.f. - these are the models DS1 and DS2. For a thorough analysis,

each of these models was constructed assuming two different prescriptions

for introducing the hadronic form factors: the method adopted in the Kaon-

MAID model with the dipole form, Equation 5.1, (variant A) and the pre-

scription by Davidson and Workman [17] with the Gaussian shape, Equation

4.1, (variant B). In both prescriptions, the form factors are assumed to have
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Resonance Mass [GeV] Width [GeV] Spin Isospin Parity Model

K∗ 0.892 0.05 1 1/2 -1 both

K1 1.270 0.09 1 1/2 1 both

N3 (S11) 1.535 0.15 1/2 1/2 -1 DS2

N4 (S11) 1.650 0.15 1/2 1/2 -1 both

N5 (D13) 1.700 0.10 3/2 1/2 -1 DS2

N6 (P11) 1.710 0.10 1/2 1/2 1 both

N7 (P13) 1.720 0.15 3/2 1/2 1 both

N9 (D13) 1.895 0.37 3/2 1/2 -1 both

Y2 (S01) 1.670 0.04 1/2 0 -1 DS1

Y3 (S01) 1.800 0.30 1/2 0 -1 DS1

Table 6.1: Resonances and their properties are shown. Beside two kaon resonances, K∗

and K1, exchanges of nucleon: N3, N4, N5, N6, and N7, and hyperon: Y2, Y3 resonances

are assumed. In addition, the D13(1895) state which was predicted by the constituent

quark model and assumed in the Kaon-MAID model but not reliably observed yet was

considered, too.

independent cut-offs for the Born and resonant terms.

In addition to the Born terms and t-channel diagrams involving the K∗

vector meson and K1 axial-vector meson exchanges, the model DS1 includes

nucleonic resonances N4, N6, N7, N9 and hyperonic resonances Y2 and

Y3 (as was stated in chapter 5, these u-channel resonances are not likely

to produce a “structure” in the observables since they never reach their

poles; their importance is in balancing the two large contributions from the

Born terms). In the model DS2 the hyperonic resonances are replaced with

nucleonic resonances N3 and N5. The overview of the resonances with their

parameters is given in Table 6.1.

Those versions of the models with the same type of the hadronic form

factor provide similar results, as can be seen either from graphs or from a

comparison of χ2/n.d.f. values. The coupling constants values for all variants
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of the models are shown in Table 6.2.

The two main coupling constants were kept in the limits of the 20 %

broken SU(3) symmetry during the fit

−4.4 ≤ gKΛN√
4π
≤ −3.0,

0.767 ≤ gKΣ0N√
4π
≤ 1.33.

As can be seen in Table 6.2, almost all extracted values of these coupling

constants reach some of these boundaries. Except for the model DS2A the

coupling constant gKΛN ends up on the value of the upper limit, while gKΣ0N

tends to the lower limit.

For the values of the cut-off masses the boundaries were

0.6 ≤ Λ ≤ 2.0 GeV.

The same boundaries were assumed for the Born and resonant term cut-off

masses. In all variants of the assumed models, the extracted value of the

cut-off mass for the Born terms, ΛBorn, approaches the lower limit, whereas

the cut-off mass for resonances, ΛR, is close to the upper one.

6.2 Discussion of the outcomes

After the short overview of the tedious but quite straightforward fitting

procedure discussed above, in this subsection the results are presented. For

a detailed discussion several figures revealing the behaviour of the DS1A,

DS1B, DS2A and DS2B constructed models are shown.

In Figure 6.1 the cross section is displayed in dependence on the center-

of-mass energy W for several kaonic angles. Whereas both models with the

Kaon-MAID–like hadronic form factor are in an acceptable agreement with

experimental data in the whole energy range in which the models were fitted
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Figure 6.1: Cross section in dependence on total center-of-mass energy W for several

forward angles is shown. The solid line stands for model DS1A, the dashed one for DS1B,

the dotted one for DS2A and the dash-dotted one for DS2B. CLAS 2009 [36] data are

shown, too.

to data (i.e. up to 2.2 GeV), the two models with the Gaussian form factor

fail to describe the data around 1.9 GeV, particularly for forward kaonic

angles. This strange behaviour can be ascribed to the fact that the Gaussian

form factor is too strong and cuts the resonances around this energy too

fast. The interference between the Born and resonant terms can be harmful

as well. However, since the odd behaviour develops in both models, this

argument does not seem to be so strong. In addition, as it was stated by

the Gent group [18], employing the Gaussian form factors introduces a very

strong cut-off dependence in the cross section.

On the other hand, model DS1B gives the best description of the peak
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Figure 6.2: Cross section in dependence on center-of-mass energy W for several backward

angles is shown. The solid line stands for model DS1A, the dashed one for DS1B, the

dotted one for DS2A and the dash-dotted one for DS2B. The data is form CLAS 2009

[36].

around 1.7 GeV in comparison with the other models. This can be attributed

to the much stronger coupling constants of N7 resonance (see Table 6.2)

which therefore plays a dominant role in this energy region.

Figure 6.2 shows the cross section in dependence on center-of-mass energy

W for several backward angles. Similarly as for the forward angles, strange

behaviour of the models with the Gaussian form factor develops. In the

model DS1B, the presence of the hyperon resonance Y3 is noticable, since

its coupling constant is very large. On the other hand, there is no indication

for a presence of the Y2 resonance despite the fact that its coupling constant

is quite large, too.
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Model DS1A Model DS1B Model DS2A Model DS2B

Couplings

gKΛN/
√

4π -3.00 -3.00 -4.40 -3.00

gKΣ0N/
√

4π 0.89 0.77 0.77 0.77

GV /4π -0.24 -0.19 -0.36 -0.20

GT /4π -0.57 1.08 -1.40 -0.61

GK1
V /4π 0.66 3.61 1.35 2.81

GK1
T /4π -0.57 0.50 0.36 -4.99

GN3/
√

4π -0.09 -0.17

GN4/
√

4π -0.13 -0.08 -0.09 -0.08

G
(1)
N5/
√

4π -0.05 -0.04

G
(2)
N5/
√

4π 0.01 -0.03

GN6/
√

4π -0.19 -0.23 -0.28 -0.28

G
(1)
N7/
√

4π 0.14 0.24 0.11 0.09

G
(2)
N7/
√

4π 0.22 0.83 0.24 0.52

G
(1)
N9/
√

4π 0.63 -0.12 0.56 0.41

G
(2)
N9/
√

4π 0.48 -0.15 0.45 0.27

GY 2/
√

4π -6.99 10.00

GY 3/
√

4π 0.10 -9.99

Cut-offs

ΛBorn 0.84 GeV 0.95 GeV 0.65 GeV 1.08 GeV

ΛR 1.85 GeV 1.83 GeV 1.72 GeV 2.00 GeV

χ2/n.d.f. 3.62 5.21 3.21 5.09

Table 6.2: Coupling constants, cut-offs for Born as well as resonant terms and values of

χ2 normalized to number of degrees of freedom for various models are shown. Models

marked with letter A assume Kaon-MAID hadronic form factor, whereas those marked

with B assume form factor of Gaussian shape. As the former have lower χ2 values, they

are supposed to give a better correspondence with the data. Since the coupling constants

for N3 and N5 in the model DS2 are very small, their contributions are expected to be

entirely negligible.
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Figure 6.3: Cross section in dependence on kaonic angle for several values of center-of-

mass energy is shown. The solid line stands for model DS1A, the dashed one for DS1B,

the dotted one for DS2A and the dash-dotted one for DS2B. CLAS 2009 [36] data are

shown.

Although the couplings of nucleonic resonances N6 and N7 are quite large,

their contribution to the cross section is negligible. As was mentioned by the

Gent group, when using a Gaussian form factor with large cut-off values, the

effective resonance peak is only the “shoulder” of the developed unphysical

peak [18]. The location of this peak strongly depends on the cut-off value

which must be set much lower than the mass of the resonance in order

to suppress the unphysical peak. Since the cut-off for resonant terms ΛR

is 1.83 GeV, which is slightly bigger than the masses of N6 and N7, the

unphysical peak overshadows the real resonance peak. Example of such

odd behaviour is apparent on Figure 6.2 mainly for more backward angles.
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As suggested by the Gent group, the remedy of this issue is to use the

multidipole Gauss form factor (Equation 5.2). With the help of this type

of form factor the unphysical cut-off dependent peak is removed from the

cross section and the position of the genuine resonance peak is restored to

its expected location.

Moreover, the peak around approximately 1.9 GeV suggested by the

CLAS data is not reproduced satisfactorily by any of the models. This

situation may be caused by the interference of the N9 resonance (which ac-

tual mass and width correspond to the peak in the data set) with other

resonances which suppress the resonance contribution to the cross section.

Figure 6.4: Cross section in dependence on kaonic angle for fixed Elabγ at 1.3 GeV is

shown. The solid line stands for model DS1A, the dashed one for DS1B, the dotted one

for DS2A and the dash-dotted one for DS2B. The data points stem from Ref. [4].
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Results for the cross section in dependence on kaonic angle, Figure 6.3,

reveal for W = 1.8 GeV an acceptable description of the data by all of

the models. Unfortunately, with the growing center-of-mass energy W the

description at forward angles by the models assuming the Gaussian form

factor becomes worse. This can be atributed to the strong effect of the

Gaussian form factor which cuts the resonances in this energy region too

fast. The data points displayed in figure include all experimental results

taken within the energy range ±10 MeV around the value stated on the

graph.

Figure 6.5: Cross section in dependence on total center-of-mass energy is shown. For

comparison with newly constructed models, DS1A (solid line) and DS2A (dashed line),

Kaon-MAID (dash-dotted line) and Saclay-Lyon (dotted line) models are used. Supple-

mented by two sets of CLAS data [7,36].
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Figure 6.4 displays the cross section in dependence on kaonic angle for

Elab
γ fixed at 1.3 GeV. As can be seen, throughout the whole range of angles

all models give satisfactory description of the data, whereas in the small

angle region only the DS2A model is in agreement with experiment. Par-

ticularly, it is worth noting behaviour of the models assuming the Gaussian

hadronic form factor, i.e. DS1B and DS2B, which are clearly beneath the

data up to 60 degrees of kaonic angle θ∗K . This can be seen also in Figure

6.3, mainly at W = 2.0 GeV.

Figure 6.6: Cross section in dependence of the total center-of-mass energy for fixed value

of kaonic angle is shown. The continuous line represents model DS1B. The dashed, dotted

and dash-dotted lines illustrates the description of the data without resonances N6, N9,

and N7, respectively. Data stem from CLAS 2009 [36].

In Figure 6.5 the comparison between the Kaon-MAID, Saclay-Lyon and

the newly constructed DS1A and DS2A models is given for cos θ∗K = 0.8.

45



CHAPTER 6. RESULTS AND DISCUSSION

In figure, the CLAS data sets from 2005 and 2009 are supplied. In the en-

ergy range in which the new models were fitted to data, all models, except

Saclay-Lyon which do not predict any resonant structure, are comparable

and have the same resonant structure, especially in the vicinity of peaks at

1.7 and 1.9 GeV. An agreement with the data of the DS1A model is rather

good except for the unpredicted peak at 1.7 GeV and the overprediction of

the data above 2.3 GeV which was not included in fitting the model param-

eters. The DS2A model slightly overpredicts the data in the energy range

from 1.8 GeV to 2.0 GeV. On the other hand, this model is closer to the

experimental data from CLAS 2009 around the peak at 1.7 GeV and also,

as the only one, gives a good description of the CLAS 2005 data points

above 2.3 GeV despite the fact that only CLAS 2009 data up to 2.2 GeV

were used in fitting. Up to about 2.1 GeV, the DS2A model predicts slightly

larger cross section than DS1A model. As can be seen from the figure, the

Kaon-MAID model is in a fair agreement with the data only up to 2.2 GeV.

This is caused by the fact that this model was fitted with the old data which

were measured only in the energy range W = 1.6− 2.2 GeV.

In order to further discuss the strange behaviour of the model DS1B, in

particular above 1.8 GeV, Figure 6.6 is shown. The full line represents the

model DS1B with all resonances assumed in this model. It describes the

data well up to 1.8 GeV where it suddenly drops down. Since the other

model assuming the same set of resonances, DS1A, describes the data sat-

isfactorily in the whole energy range, this disagreement with experimental

data can be ascribed to the use of the Gaussian form factor. The other

curves in Figure 6.6 represent variants of the model DS1B with omission of

individual resonances. As can be seen, by omitting the resonance N7 we

get a satisfactory description of data around 1.9 GeV and by omitting N6

we get fairly good agreement with data around 2 GeV. On the other hand,
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both models fail to describe peak at 1.7 GeV. Model DS1B without N9 has

a similar structure like the full model which is apparently caused by the

smallness of the coupling constants for N9. To conclude, whereas the value

of χ2/n.d.f. for the complete model DS1B is 5.18, if we omit in this model

the resonance N6, N7 or N9 the χ2/n.d.f. value rises to 11.03, 16.58 or 8.90,

respectively. This fact emphasises the inconsistency with the experimental

data apparent from Figure 6.6.

Figure 6.7: Polarisation in dependence on the total center-of-mass energy is shown. The

experimental data originate form CLAS 2009 [36]. The solid line stands for model DS1A,

the dashed one for DS1B, the dotted one for DS2A and the dash-dotted one for DS2B.

Figure 6.7 displays polarisation in dependence on the center-of-mass en-

ergy W for forward and backward kaonic angles. For very forward angles the

agreement with the data is rather shaky as the models predict forW > 2 GeV

higher polarisation than the data suggest. However, these data was not in-
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cluded in fitting. For cos θ∗K = 0.5 both models assuming the Gaussian form

factor give reasonable results. The same situation as for the forward angles

occurs for the backward angles where the polarization is overestimated for

W > 2 GeV by all models. Only the model DS2B mimics the peak in the

experimental data at lower energies.
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Conclusions and outlook

In this work, effective-Lagrangian and Regge-theory frameworks for describ-

ing the photo- and electroproduction processes over a large energy range

from threshold Elab
γ = 0.911 GeV up to Elab

γ = 16 GeV were presented. There

are many ways how to describe these processes, e.g. the constituent quark

model (giving rise to the problem of “missing resonance”), chiral perturba-

tion theory (which is a low energy approximation of the QCD formalism)

and coupled channel analysis. The promising are two techniques based on

different means of treatment the underlying degrees of freedom - isobar and

Regge models, where the former is of particular interest here.

The aim was to construct a new reaction amplitude in framework of the

isobar model approach. Since there are more than twenty resonances as

likely candidates to participate in the p(γ,K+)Λ reaction, the first step of

the construction consisted of selecting suitable resonances. Subsequently,

the procedure of fitting to several sets of experimental data followed. As a

result, two models were created, each assuming a different set of resonances,

and, in order to give a rich discussion, each model was created assuming

either a Kaon-MAID–like form factor or a Gaussian form factor. As can

be seen from figures in chapter 6, the models DS1A and DS2A using the
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Kaon-MAID–like form factor correspond much better with the experimental

data. Predictions of these models for the cross section are comparable with

predictions of the established models Kaon-MAID and Saclay-Lyon.

On the other hand, these models assuming the form factor of Gaussian

shape give rise to a very strange behaviour which is particularly apparent

in the energy-dependent cross section around W = 1.8 GeV. This can be

ascribed to the effect of the Gaussian form factor and a remedy for this could

be, according to the Gent group [18], simple - using instead of the Gaussian

form factor the multi-dipole Gaussian one.

Since the models assuming Kaon-MAID form factor are in a better cor-

respondence with experimental data, they can be used in calculations of the

electroproduction of hypernuclei.

In the near future, works on the models for description of the photo-

production processes will continue, concerning particularly the creation of a

well-working program for the Regge-plus-resonance model.
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Feynman rules and diagrams

The formalism of Feynman diagrams is a calculation scheme introduced by

Richard P. Feynman to represent the mechanisms of elementary-particle in-

teractions. The Feynman-diagram technique is very important in the Quan-

tum Electrodynamics (QED) for calculations of the cross sections and tran-

sition rates because the coupling constant α in the perturbation expansion

is very small, α = 1/137.

As we mentioned above, the Feynamn diagrams are connected with the

perturbation theory. The basic building block of the Feynman diagram is a

vertex. Any physical process in QED involving the interaction of electrons,

positrons, photons, etc. can be represented and the first step is to find a di-

agram with the least possible number of vertices. This simplest combination

of vertices which give the required process is called a leading-order diagram

(it is important to know that there may be more than one such diagram).

The leading-order diagrams correspond to the lowest order of a perturbation

calculation and have the biggest contribution to the total amplitude of the

process.

In addition to the leading-order diagrams there are higher-order diagrams,

each of which will contribute to the total amplitude. However, these con-
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tributions are in magnitude at least α-times smaller than the leading order.

It is the smallness of α which makes all but the next-to-leading-order con-

tributions negligible. Since the higher-order diagrams can only be drawn by

adding internal lines, they must always involve two more vertices for each

step in increasing order.

In an effective field theory (e.g. the Quantum Hadrodynamics), the cou-

pling constants need not to be small enough to justify the perturbation

expansion and, therefore, one assumes only the lowest order(s) of the ex-

pansion, e.g. the tree level.

For the construction of the Feynman diagrams, only the topological struc-

ture is important. As long as the ordering of the vertices along the fermion

lines is kept, the graphs can be arbitrarily deformed without changing their

meaning.

A.1 The rules for the construction and interpretation

of Feynman diagrams

There is a list of rules which needs to be obeyed when constructing Feynman

diagrams. The first two rules are universal - these are the conservation laws.

But there are six other rules that apply in the diagrams, too.

1. Energy and momentum are conserved at a vertex.

2. Electric charge is conserved at a vertex.

3. Solid straight lines with arrow that point in the direction of increas-

ing time are used to represent fermions propagating forward in time.

Arrow heads pointing in the reverse direction represent antifermions

propagating forward in time.

4. Broken, wavy, or curly lines are used to represent bosons.
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5. Lines having one end at the boundary of the diagram represent free

(that means real) particles approaching or leaving a reaction.

6. Lines that join two vertices (internal lines) normally represent virtual

particles.

7. The time ordering of the vertices connected by an internal line is not

determined, so that two diagrams having an internal line apparently

oriented differently with respect to time, but otherwise the same, are

equivalent diagrams.

8. Every particle at the boundary should be labelled with a momentum.

If this is done two diagrams which might otherwise appear to be the

same become different diagrams.

A.2 How to write down the invariant amplitude

The invariant amplitude Mfi follows from these rules:

• overall multiplicative factor i,

• for each external scalar leg only possible factor describing internal de-

grees of freedom (e.g. isospin),

• for each external vector leg include a polarization vector εµ(k, λ) (initial

state) or ε∗µ(k′, λ′) (final state),

• for fermion external lines

fermion (initial) u(~p, σ)

fermion (final) ū(~p′, σ′)

antifermion (initial) v̄(~p, σ)

antifermion (final) v(~p′, σ′)
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• each internal line represents a virtual particle propagator:

– for the propagator of scalar particle write: i∆F (q) = i
q2−m2+iε ,

– for the propagator of vector particle write: i∆µν
F (q) = −igµν

q2−m2+iε ,

– for the propagator of fermion write: iSF (q) = i 6q+m
q2−m2+iε ,

• each vertex receives a factor determined by the structure of the interac-

tion Lagrangian iLint by removing fields and translating the derivatives

into momenta, i. e.

iLint vertex factor

−ieψ̄γµψAµ −ieγµ

−iλψ̄ψφ −iλ

−i2gψ̄γ5ψφ gγ5

• undetermined loop momenta are integrated over:
∫

d4p/(2π)4,

• each fermion loop receives a factor (-1).

Detailed information about the Feynman diagrams can be found in Ref.

[23] and [49].
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Formalism

In the one-photon exchange approximation (OPEA), the electromagnetic

kaon production process can be depicted as an incoming electron scattering

on a nucleon through the exchange of a virtual photon. This results in a

hyperon and kaon in the final state, together with the scattered electron.

Moreover, the OPEA allows us to separate this process into a leptonic and

hadronic plane (see Fig. B.1). The leptonic plane is determined by the

incoming and outgoing electron, while the propagation directions of the

virtual photon and the kaon set the hadronic plane.

Figure B.1: Kinematics for kaon electroproduction on the nucleon in the OPEA is shown.
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B.1 Kinematics

In the case of photoproduction we deal with the reaction in the hadronic

plane

p(pp) + γ(pγ) −→ K(pK) + Y (pY ),

where the corresponding four-momenta of the particles are given in the

parenthesis.

The unpolarised cross section for the process p(γ,K)Y has the following

general expression

dσ = (2π)4δ(4)(pp + pγ − pK − pY )
1

4Epωvrel
|Mfi|2

d3pK
(2π)32EK

d3pY
(2π)32EY

,

(B.1)

where the bar over invariant amplitude stands for averaging over the ini-

tial state polarisations and summing over final state polarisations. This can

be used in the case when the polarisation of the particles remains undetected.

Evaluating this expression in the lab frame, where for the four-momenta

of the particles holds

pµp = (Mp, 0), pµK = (EK , ~pK),

pµγ = (ω, ~pγ), pµY = (EY , ~pY ),

gives (
dσ

dΩK

)
lab

=
1

64π2

|~pK |
ω

1

M2
p

1

1 + ω
Mp
− Ek

Mp

ω
|~pK |

cos θK
|Mfi|2,

whereEK =
√
|~pK |2 +M2

K and EY =
√
M2

Y + ω2 + |~pK |2 − 2ω|~pK | cos θK

are functions of ω and lab kaon angle θK .

By inspecting the energy conservation relation

ω +Mp = EK + EY =
√
|~pK |2 +M2

K +
√
M2

Y + ω2 + |~pK |2 − 2ω|~pK | cos θK ,

one notices that for certain values of ω and θK , |~pK | does not exists or has

two solutions. This means that the low-energy cross section in the lab frame
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is not uniquely determined only by ω and θK but, e.g. a magnitude of the

kaon lab momentum |~pK | have to be given, too. This problem can be avoided

by shifting to the center-of-mass (CMS) frame.

In the CMS frame the four-momenta of the particles are (all variables in

CMS frame will be denoted with an asterisk)

p∗µp = (E∗p , ~p
∗
p), p∗µK = (E∗K , ~p

∗
K),

p∗µγ = (ω∗,−~p∗p), p∗µY = (E∗Y ,−~p ∗K).

These momenta can be combined to form the well-known Mandelstam vari-

ables s, t and u for which the following relation holds

s+ t+ u = M2
p +M2

K +M2
Y .

The total energy in the CMS frame is also denoted as the invariant mass W

of the interaction, i.e.

W = E∗p + ω∗ =
√
s.

Using the four-momenta of the particles and inserting them into equation

(B.1) yields the expression for the unpolarised differential cross section(
dσ

dΩ∗K

)
CMS

=
1

64π2

|~p ∗K |
ω∗

1

(E∗p + ω∗)2
|Mfi|2,

in which energy conservation uniquely determines the quantity |~p ∗K |.

B.2 Calculation of observables

In this section, we will deal with the electroproduction process and show

how to write the invariant amplitudes and thereof cross sections.

Firstly, some particular channel of the process should be chosen. We will

write down the invariant amplitude of the process e + p → e′ + Λ + K+

in the one-photon-exchange approximation, i.e. in the first order of the
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perturbation theory, where only the terms ∼ α = e2/4π~c are taken into

account.

The contribution to the invariant amplitude is

iMfi = ūe′(p
′
e)(−ieγµ)ue(pe)

(
−igµν
p2
γ

)
J ν(pp, pΛ, pγ), (B.2)

where pe = (Ee, ~pe) are the four-vectors and pγ = p′e − pe, p
2
γ < 0 is the

momentum of a virtual photon; u is the Dirac spinor; γµ is the Dirac matrix;

gµν the metric tensor; and J ν is the matrix element of the hadron flux,

describing the photoproduction of a kaon on proton induced by the virtual

photon.

In the equation (B.2), the contribution of the electron part of the dia-

gram is given explicitly and therefore one needs only to calculate the matrix

element J ν . For the description of this, the effective hadronic Lagrangian in

the tree-level approximation is used. Schematically, the single contributions

(the reducible part) are shown in Figure B.2.

For illustration, we calculate the contribution of the first term in the

series in Figure B.2. The hadron flux matrix element can be written as

J ν
(1) = ūΛ(pΛ)gKΛpγ5

(
i
6 P +mp

s−m2
p

)[
−ieγν + up

e

2mp

σµνpγµ

]
up(pp), (B.3)

where gKΛp is the strong coupling constant of the vertex with kaon and Λ

hyperon; γ5 is the Dirac matrix, P = pp + pγ, s = P 2, σµν = i
2

[γµ, γν ]. The

first term in the brackets represents the vector coupling, the second term

symbolizes the tensor coupling caused by the anomal magnetic moment of

the proton µp.

For further calculations, the hadron current for the virtual-photon pro-

duction process is convenient to write down in a general form given by gauge

and Lorentz symmetries as

J ν(pp, pΛ, pγ) =
6∑
j=1

Aj(s, t, p2
γ)ūΛ(pΛ)γ5M

ν
j up(pp),
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Figure B.2: There are shown different elements of the lowest-order p(γ∗,K+)Λ ampli-

tude. The upper line collects the Born terms, which have a ground-state hadron in the

intermediate state. Depending on whether the exchanged particle is a proton, a kaon,

or a hyperon, one distinguishes between s-, t- and u-channel contributions, respectively.

The lower line shows the non-Born terms [3].

where Mν
j are the gauge invariant operators, for which Mν

j pγν = 0, and Aj
are scalar amplitudes, which in the isobar model result from contributions

of particular Feynman diagrams. For the operators Mν
j , there are many

prescriptions used in the literature. The one used in this thesis is

Mν
1 = 1

2
( 6 pγγν − γν 6 pγ) , M ν

2 = pνp − pγ · pp
pνγ
p2
γ
,

Mν
3 = pνΛ − pγ · pΛ

pνγ
p2
γ
, M ν

4 = γνpγ · pp− 6 pγpνp,

Mν
5 = γνpγ · pΛ− 6 pγpνΛ, Mν

6 =6 pγpνγ − γνp2
γ.

By a suitable manipulation of the terms in equation (B.3), one obtains

J ν
(1) = −iūΛ(pΛ)γ5

[
A(1)

1 Mν
1 +A(1)

2 Mν
2 +A(1)

4 Mν
4 −A

(1)
6 Mν

6 + egpKΛ

pνγ
p2

]
up(pp),

where expressions for A(1)
j reads

A(1)
1 = −ie gKΛp

s−m2
p
(1 + µp), A(1)

2 = −2ie
gKΛp

s−m2
p
,

A(1)
4 = −ie gKΛp

s−m2
p

µp
mp
, A(1)

6 = −1
2
A(1)

4 .
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The last term in the brackets, which violates the gauge invariance, van-

ishes in the full tree-level approximation, because the counter term emerges

from the second contribution in Fig. (B.2) - the kaon exchange.

B.3 CGLN amplitudes

Because of historical and mainly practical reasons (the nuclear calculations)

the two-component spinor representation of the amplitude is often used.

In this form the full amplitude can be expressed in terms of six Chew-

Goldberger-Low-Nambu (CGLN) amplitudes Fj

F = σ · ε̂F1 + i(σ · p̂K)(σ × p̂γ · ε̂)F2

+(σ · p̂γ)(p̂K · ε̂)F3 + (σ · p̂K)(p̂K · ε̂)F4

+(σ · p̂γ)(p̂γ · ε̂)F5 + (σ · p̂K)(p̂γ · ε̂)F6,

(B.4)

where we used â ≡ ~a/|~a|. There are many prescriptions used in the

literature; the one we use stems from Ref. [16]. Relations between the

CGLN amplitudes and the scalar amplitudes Aj are

F1 = (
√
s−Mp)A1 − pγ · ppA3 − pγ · pΛA4 − p2

γA5,

F2 =
|pγ| · |pK |

(Ep +Mp)(EΛ +MΛ)

[
(
√
s−Mp)A1 − pγ · ppA3 − pγ · pΛA4 − p2

γA5

]
,

F3 =
|pγ| · |pK |
(Ep +Mp)

[
−2pγ · ppA2 + (

√
s+Mp)A4 + p2

γA6

]
,

F4 =
|pK |2

(EΛ +MΛ)

[
2pγ · ppA2(

√
s−Mp)A4 − p2

γA6

]
,

F5 =
|pγ|2

(Ep +Mp)

[
−A1 + 2pγ · pΛA2 + (

√
s+Mp)(A3 −A5) + pγ · pΛA6

]
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F6 = |pγ |·|pK |
(EΛ+MΛ)

[−2pγ · pΛA2 + (
√
s−Mp)A3 − pγ · pΛA6

− 1
Ep+Mp

(pγ0A1 + pγ · ppA3 + pγ · pΛA4 + pγ0(
√
s+Mp)A5)],

The main benefit of a formalism using CGLN amplitudes is the fact that

they can be easily used to a multipole analysis [1].
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Fitting procedure

In this appendix, an overview of the procedure which is needed to obtain an

optimum set of coupling constants is given. A classic example which occurs

very often in scientific research is the estimation of unknown parameters in

a theory by minimizing the difference between the theory and experimental

data.

Since the isobar model is an effective field theory letting the coupling

constants, which compose a central part of the physical information that

can be derived from the calculations, undetermined, our goal is to extract

values for these free parameters. This is done by optimizing the isobar model

calculations to the available data set.

The optimum set of coupling constants (c1, . . . , cn) for a given set of data

points (d1, . . . , dN) is considered to be the one that produces the lowest value

for χ2, which is defined as

χ2 =
N∑
i=1

[di − pi(c1, . . . , cn)]2

σ2
di

,

where pi represents the theoretical prediction for the measured data point

di with standard deviation σ2
di

. In order to obtain this optimum set, one is

forced to minimize χ2 in the n dimensional space. For calculations presented
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in this work, n is around 15.

While minimizing χ2 in this huge parameter space, it is important not to

get stuck in one of the local minima (and indeed, the multidimensional χ2

surface has a number of them) and assure that the absolute global minimum

has been found. Unfortunately, finding a global minimum in a multidimen-

sional space is not a trivial task.

In this work, the issue of minimizing the χ2 is performed with the help of

CERN MINUIT package [11]. MINUIT contains several tools for minimizing

a function (either χ2, likelihood or other user defined) with respect to one or

more parameters and for statistical error analysis. Its original field of usage

is CERN data analysis, but it is used by people outside high energy physics,

too. The major application is still the statistical analysis and computing the

best-fit parameter values and uncertainties, including correlations between

the parameters.
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Experimental data

For meson photoproduction experiments, the primary motivation is to give

the experimental data from which theorists can extract information about

the nucleon resonance spectrum.

As was written in the second chapter, there is a plenty of p(γ,K+)Λ

cross-section data sets from experiments, which had emerged in the last

fifty years. It has started in Caltech [19] and Cornell [39] laboratories in

1957. Since then, further experiments were pursued in the 1970s and 1980s

at accelerators in Bonn [4] and Tokyo [21].

After that, the first high precision data for all three reaction channels on

the proton target (i.e. processes 2.1, 2.2, 2.3) were released by the SAPHIR

collaboration, operating at the ELSA facility in Bonn. These data had

revived involvment of the theoretical community in the search for missing

resonances.

Over the past decade, the amount of data of the process (γ∗, K+) has been

considerably extended with a high precision data from the CLAS (2005, 2007

and 2010) [37, 7, 8], SAPHIR (2003) [22], LEPS (2003, 2006 and 2007) [50,

42] and GRAAL (2007) [33] collaborations. In addition, the SAPHIR col-

laboration has also provided a new analysis of the p(γ,K0)Σ+ channel [32].
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While the amount of data does not yet approach that of the pionic chan-

nels, over 12000 data points have been published for the open strangeness

channels. An overview of the experimental data for the process p(γ,K+)Λ

is shown in the following table.

Observable No. of data Collaboration Year Reference

dσ
dΩ

56 SLAC 1969 Boyarski [6]

720 SAPHIR 2004 Glander [22]

1377 CLAS 2006 Bradford [7]

12 LEPS 2007 Hicks [27]

2066 CLAS 2010 McCracken [36]

Σ 9 SLAC 1979 Quinn [38]

45 LEPS 2003 Zegers [50]

54 LEPS 2006 Sumihama [42]

4 LEPS 2007 Hicks [27]

66 GRAAL 2007 Lleres [33]

T 3 BONN 1978 Althoff [2]

66 GRAAL 2008 Lleres [34]

P 7 DESY 1972 Vogel [47]

233 CLAS 2004 McNabb [37]

66 GRAAL 2007 Lleres [33]

1707 CLAS 2010 McCracken [36]

Table D.1: Overview of the accesible experimental data for the process p(γ,K+)Λ. Sym-

bols dσ
dΩ

, Σ, T and P stand for differential cross section, beam asymmetry, target polari-

sation and recoil polarisation, respectively.
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