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the antiproton. Next, the relativistic mean field (RMF)
theory is briefly introduced and the RMF model for a nu-
cleus with the antiproton is formulated. Results of the
selfconsistent calculations of single-particle energies of the
antiproton bound in a light nucleus 16O, as well as the
energies and densities of the core nucleons are presented.
The dynamical approach revealed huge polarization effects
inside the nucleus due to the presence of the antiproton,
i.e., large compression of nuclear matter. We also noticed
considerable increase of the binding energy of the system
16O + p̄, approximately 1000 MeV. All calculations were
performed within the RMF approach and antiproton cou-
pling constants were obtained by G-parity transformation.
The possibility of annihilation of the antiproton in nuclear
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Abstrakt: Cieľom tejto práce je skúmanie interakcie antiprotónu s
jadrovou hmotou, najmä efekty silno interagujúceho an-
tiprotónu na dynamiku nukleónov v jadrovej hmote. Táto
práce najskôr zhŕňa základné poznatky o antičasticiach a
vlastnostiach antiprotónu. Ďalej je stručne predstavená
relativistická teória stredných polí (RMF) a je sformulo-
vaný RMF model pre jadro s antiprotónom. Boli usku-
točnené selfkonzistentné výpočty jednočasticových energií
antiprotónu viazaného v ľahkom jadre kyslíku 16O, ako aj
výpočty energií a hustôt nukleónov. Dynamický prístup
odhalil silné polarizačné efekty spôsobené prítomnosťou an-
tiprotónu v jadre, t.j., veľké stlačenie jadrovej hmoty. Tak-
isto sme zaznamenali obrovský nárast vo väzbovej energií
systému 16O + p̄, okolo 1000 MeV. Všetky výpočty boli
realizované v rámci RMF a väzbové konštanty pre antipro-
tón boli získané pomocou transformácie G-parity. V tejto
práci ale nebola zahrnutá možnosť anihilácie antiprotónu v
jadre.
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Chapter 1

Preface

This bachelor thesis deals with the study of the interaction of the antiproton
with nuclei. The aim of this work is to explore the influence of the antiproton on
surrounding nucleons. The study of the antiproton–nucleon and antiproton-nucleus
interaction could test models of baryon–baryon interactions as well as nuclear mod-
els. The responses of a nucleus to the embedded antiproton can provide interesting
information about nuclear dynamics, e.g., the information about the changes of the
depth of a potential acting on nucleons in the presence of the antiproton. The i-
ssue of antiproton-nucleon annihilation is of interest as well. The interaction of the
antiproton with nuclei is studied within a complex optical potential. Its imaginary
part accounts for the absorption of the antiproton. The question is whether the
antiproton can be attached at the periphery of a nucleus by a real attractive poten-
tial without being immediately absorbed. It has been shown that the deeply bound
antiproton can theoretically exist in dense nuclear matter for relatively long time
[1]. The annihilation can be realized by many channels producing mesons, even
multinucleon annihilation is possible. The annihilation rates into different channels
are proportional to the average available energy in phase space [2].

An important source of information about the antiproton–nucleus interaction is
the experimental study of antiprotonic atoms. The antiprotonic atom is a sort of
exotic hadronic atom that is created when a strongly interacting particle is captured
by a target atom into an atomic orbit. The antiproton is much heavier than the elec-
tron and, therefore, gets much closer to the nucleus than the electron. Consequently,
the antiproton feels not only the electromagnetic but also strong interaction. Due
to this interaction the antiproton can be absorbed by the nucleus. This process is
accompanied by the X-ray emission which provides valuable information about the
energy shifts and widths of atomic levels [3].

The study of the interaction of the antiproton with a nucleus is performed in the
framework of the relativistic mean-field (RMF) approach. This model was proposed
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by Walecka in 1974 [4]. The RMF model describes nucleus as a system of Dirac
nucleons interacting via boson fields. Many aspects of the nuclear structure and
dynamics were successfully described within this approach (for references see e.g.
[5]).

The Bachelor thesis is organized as follows: In the next chapter, the antiproton
basic properties are introduced. The third chapter deals with the RMF model and
equations of motion for nucleons and meson fields. The model for the description of
a nuclear system with the antiproton is introduced in chapter 4. The results of our
selfconsistent calculations of the 16O nucleus with the antiproton are presented and
discussed in chapter 5. Finally, conclusions are drawn in chapter 6.
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Chapter 2

Antiproton and its properties

2.1 Antiparticles

In 1927, Paul Dirac derived an equation that described the motion of a free
relativistic particle with half-integer spin. This equation had a rather strange impli-
cation. For every positive-energy solution there was a solution with negative energy.
This would have meant, according to the tendency of every system to evolve in the
direction of lower energy, that the particle should cascade into a negative state while
radiating an infinite amount of energy (because there were infinitely many negative
energy states available). To solve this problem Dirac postulated that the negative
energy states are all filled by an infinite “sea” of fermions. The decay of particles
from positive-energy states to negative energy states is then prohibited by the Pauli
exclusion principle (which says that no two identical fermions may occupy the same
quantum state simultaneously).

This new interpretation had an important consequence. If a photon with suf-
ficient energy is absorbed by a negative energy particle, it results in the creation
of a positive energy particle and a hole in the negative-energy “sea”. This hole was
interpreted as an antiparticle. Since the Dirac equation describes the motion of
a fermion with spin 1/2, we would expect that for every known charged fermion
there must exist its antifermion with the same mass and spin but opposite charge.
Dirac’s theory was confirmed by Anderson’s discovery of the positron, a positively
charged twin of an electron, in 1931. The development of quantum field theory,
however, brought new insight into the hole theory. It has made the interpretation of
antiparticles as holes in the vacuum unnecessary and the Dirac’s theory has became
a historical matter [6].

The antiparticles are standardly denoted by an overbar, for example, n is the
neutron and n̄ is the antineutron. It turns out that particles and their antiparticles
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can generally differ not only in charge, but also in another quantum numbers like
baryon and lepton number, strangeness, charm. This holds for fermions and so
for bosons. In the case of neutral bosons with B=L=S=C=0, the antiparticle is
identical with the particle, for instance, the photon γ ≡ γ̄. The particle and its
antiparticle have one specific feature. Since antiparticles have opposite additive
quantum numbers from their particles, the quantum numbers of an annihilating
pair are zero. Consequently, any set of particles whose total quantum numbers are
zero could be produced, provided conservation of energy and momentum is obeyed
(e.g. the annihilation could lead to photons or mesons). The laws of conservation
guarantee that fermions are produced in pairs — particle and antiparticle.

In particle physics, there is a general principle called crossing symmetry [7].
Consider a reaction

A+B → C +D. (2.1)

We can “cross” over any particle to the other side of the equation and simultaneously
replace the crossed particle with its antiparticle and vice versa. The new reaction
will be also allowed. It can be, for example

A+ C̄ → B̄ +D. (2.2)

This new reaction could be regarded as a different manifestation of the same fun-
damental process. However, there is one important restriction. If energy is not
conserved, the process, otherwise permissible, will not occur.

2.2 Antiproton

The antiparticle of the proton is the antiproton, denoted by p̄. The antiproton
was first observed experimentally by Emilio Segré and Owen Chamberlain at Beva-
tron at University of California, Berkeley, in 1955 [8]. The laws of conservation allow
the production of antinucleons only in pairs nucleon–antinucleon. The production
of the antiproton is therefore allowed in reaction

p+ p→ p+ p+ p+ p̄. (2.3)

The threshold energy for production of antiprotons is about 6 GeV.
Antiprotons occur also in nature–they have been detected in cosmic rays. These

cosmic antiprotons are produced in collisions of high energy protons with atomic
nuclei in the interstellar medium.

The proton is a baryon and hence the antiproton is an antibaryon. Baryons
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and antibaryons are strongly interacting particles–hadrons. In fact, baryons are
not elementary particles. They have internal structure composed of quarks and
gluons and interact strongly, electromagnetically and weakly. According to the quark
model, the antiproton is composed of two up antiquarks and one down antiquark.
The antiproton has the same mass and spin as the proton and all additive quantum
numbers (such as charge, baryon number) have the same value with opposite sign.
Selected properties of the antiproton and proton are compared in Table 2.1. The
values are taken from ref. [9].

Table 2.1: Properties of antiproton and proton
Antiproton Proton

Mass (MeV) 938.272526(24) 938.272013(23)
Spin 1/2 1/2
Parity (-) -1 +1
Mean life (years) >7 ×105 >2.1 ×1029

Electric charge (e) -1 +1
Magnetic moment (µN) -2.793(6) 2.792847356(23)
Baryon number (-) -1 +1

The properties of the antiproton has been explored in many experiments. In
1986, antiprotons were first captured and stored in the Penning trap. These an-
tiprotons were produced at LEAR (Low Energy Antiproton Ring) facility at CERN.
Initial 21.3 MeV antiprotons were slowed down in kinetic energy by 4 orders of
magnitude and then captured in a trap [10].

The antihydrogen atom H̄0, a bound state of the antiproton and positron, was
first observed at LEAR in 1995 [11].

The OBELIX experiment in 1996 measured the cross section of proton–antiproton
annihilation. The measurement was realized with low-momentum antiprotons (about
40 MeV). The data from this experiment confirmed the assumption that because of
Coulomb attraction the cross-section behaves like 1/v2, where v is the velocity of
the incident antiproton [12].

The experiment ASACUSA aims to study bound or continuum states of an-
tiprotons in simple atoms [13]. In 2006 the ASACUSA experiment successfully
determined the mass of the antiproton. The mass of the antiproton is 1836.153674
times the mass of the electron with an error of 5 in the last decimal place [14]. The
corresponding mass of the proton is 1836.15367261 times the mass of the electron.
These results confirm perfect agreement between the proton and antiproton masses.

12



2.2.1 Exotic atoms

An exotic atom is an atom in which an electron is replaced by another charged
particle. It is formed whenever a charged particle from a beam enters an atomic
target and is stopped in an atomic orbit replacing the electron. The exotic atom is
usually formed in an excited state. The charged particle then cascades down through
the atomic levels until it stops at some state with low principal quantum number n
and then is absorbed by the nucleus. This process is accompanied by X-ray emission.
Atoms with π−, K−,Σ− or p̄ are called hadronic atoms. The hadrons involved have
long enough mean live times to study the strong interaction effects. Hadrons are
much heavier then the electron, so they can get much closer to the atomic nucleus. As
a consequence, their atomic orbital overlaps with the nucleus and they can interact
strongly with the nucleons of the nucleus. The strong interaction of the hadron–
nucleus system causes shifts (ε) and widths (Γ) of atomic levels and these are the
subject of interest. The overlap of the hadron wave function with the nucleus covers
a wide range of nuclear densities and can thus bring important information about the
density dependence of the hadron–nucleus interaction. Moreover, hadronic atoms
are an important source of information about the neutron density distribution in a
nucleus [15].

The shifts and widths of energy levels in hadronic atoms have been measured
already for several decades. Experiments with antiprotons were carried out at LEAR
facility at CERN [16], kaonic atoms were studied at KEK [17] and DAΦNE (Frascati)
[18].

The calculations of strong interaction effects are performed using an optical
potential which is added to the Coulomb interaction. The simplest form of the
optical potential is given by

Vopt = tρ, (2.4)

where t is the two-body hadron-nucleon scattering amplitude and ρ is the nuclear
density distribution. As can be seen, the optical potential is density dependent. The
density distribution of protons is considered to be known. It is obtained from the
finite nuclear charge distribution [19]. However, there is no sufficient information
about the neutron density distribution with required accuracy. Experiments with
pionic atoms revealed [20] that the main feature of the neutron density which influ-
ences strong interaction effects is its radial extent. The shape of the neutron density
distribution and other features are less important. Therefore, the dependence of the
difference of rms radii rn − rp on (N − Z)/A has been studied in hadronic atoms
[15].

The experimental information about the strong interaction effects in antiprotonic
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atoms consists of 90 points of X-ray data and 17 points of radiochemical data [15].
The radiochemical method is based on measuring activities of residual nuclei which
are produced by annihilation of p̄ on a single peripheral nucleon. This measurement
can provide the ratio between the probability of annihilation of p̄ on a neutron to
that on a proton. Considering the fact that the annihilation takes place in the
surface region of nuclei, it gives information on the ratios between the neutron and
proton densities in this region. The combination of these two types of data leads to
consistent results as shown in ref. [21].

The study of antiprotonic atoms revealed a large cross-section for annihilation
of antiprotons on nucleons. This implies a large value of the imaginary part of the
optical potential of the order of 100 MeV. The absorption takes place mainly at
the surface of the nucleus and, therefore, p̄ hardly penetrates deep into the nuclear
interior. This fact considerably complicates the connection between the free p̄N
interaction and the interaction inside nuclear matter. For more details see [3, 21, 15].
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Chapter 3

Relativistic mean-field approach

In the framework of the relativistic mean-field theory, nucleons are described
as Dirac fields ψ which interact by the strong interaction mediated by meson ex-
change. The mesons are also treated as fields. These are sorted by their internal
angular momentum J, parity Π and isospin I. Only the fields with good parity are
considered because we are working with nuclear states with natural parity. The for-
malism includes the following fields: isoscalar-scalar field σ(xµ) (σ), isoscalar-vector
field ωµ(x

µ) (ω), isovector-vector field ρ⃗µ(x
µ) (ρ) and massless vector field Aµ(x

µ)

(γ). The σ-field is responsible for the medium range attraction between nucleons,
the ω-field mediates the short range repulsion, the ρ-field allows to adjust isovector
properties of the studied nuclear systems and the photon mediates the electromag-
netic interaction. The mean-field theory is based on two approximations which allow
us to solve the equations of motion for the above mentioned fields. These are the
mean-field approximation and the no-sea approximation [22].

3.1 Mean-field approximation

The mean-field approximation is based on substituting the quantum fields by
their expectation values. This means that all quantum fluctuations are dismissed
and quantum fields are treated as c-number fields. This approximation simplifies
handling with nucleons which are then moving as independent particles in the meson
mean fields. For example, consider a system consisting of nucleons ψ which interact
only by the scalar field σ. The Lagrangian density for this system is

L = ψ̄(iγµ∂µ −mN)ψ +
1

2
(∂µσ∂µσ −m2

σσ
2)− gσψ̄ψσ. (3.1)

15



Here, the meson field operator is replaced by its expectation value

σ̂ → σ = ⟨σ⟩, (3.2)

therefore all nucleons interact only via the σ meson mean field.

3.2 No-sea approximation

Since the nucleons move as independent particles in this model, the nucleon field
operator can be expanded at all times in terms of single particle states α as

ψ̂ =
∑
α

ψα(x
µ)âα, (3.3)

where âα is the annihilation operator for a nucleon in the state α and ψα(x
µ) is the

single particle wave function. For example, the scalar density can be written in the
form

⟨: ψ̄ψ :⟩ = ρvacuum +
A∑

α=1

ψ̄αψα, (3.4)

where : · · · : symbolizes the normal ordered product, i.e., all creation operators are
moved to the left of annihilation operators, ρvacuum denotes the contribution from
vacuum polarization and second term denotes the contribution of A nucleons bound
in a nucleus. The no-sea approximation consists in neglecting the contribution from
the vacuum. More detailed explanation is given in ref. [22].

3.3 RMF model

We will consider all aforementioned nucleon and meson fields. The Lagrangian
density of the RMF model for nucleons and mesons has the form

L =ψ̄(iγµ∂µ −mN)ψ

+
1

2
∂µσ∂

µσ − 1

2
m2

σσ
2 − gσN ψ̄ψσ − 1

3
g2σ

3 − 1

4
g3σ

4

− 1

4
ΩµνΩ

µν +
1

2
m2

ωω
µωµ − gωNψγµψω

µ +
1

4
d(ωµωµ)

2

− 1

4
R⃗µν · R⃗µν +

1

2
m2

ρρ⃗µ · ρ⃗µ − gρN ψ̄γµτ⃗ψ · ρ⃗µ

− 1

4
FµνF

µν − eψ̄γµ
1

2
(1 + τ3)ψA

µ,

(3.5)
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where the arrow denotes isovector quantity and τ⃗ is the triplet of Pauli matrices;
mN , mσ, mω, mρ are the masses of nucleon, σ-, ω- and ρ-meson; gσN , gωN , gρN and
e are the coupling constants of the corresponding fields to the nucleon. The field
tensors are defined as

Ωµν = ∂µων − ∂νωµ

R⃗µν = ∂µρ⃗ν − ∂ν ρ⃗µ − gρN(ρ⃗µ × ρ⃗ν)

Fµν = ∂µAν − ∂νAµ.

(3.6)

We consider stationary states of spherical symmetric nuclei. We will look for the
solution of the Dirac equation in the form

ψi(x) = e−iϵitψi(x⃗). (3.7)

It implies that all time derivatives of the fields vanish and all spatial components of
the fields will be zero as well

σ̇ = 0, ω̇µ = 0, ˙⃗ρµ = 0, Ȧµ = 0 (3.8)

⟨ωi⟩ = 0, ⟨ρ⃗i⟩ = 0, ⟨Ai⟩ = 0 for i=1,2,3. (3.9)

Rotational invariance causes that all the fields will depend only on the radial co-
ordinate r. We further assume that the nucleon single particle states do not mix
isospin, so only the third neutral component of the isovector meson ρ is considered.
Only the fields σ, ω0, ρ0 and A0 remain after the above simplifications. As a result,
the Lagrangian density (3.5) will acquire the form

LRMF =ψ̄i(iγµ∂
µ −mN − gσNσ0 − gωNγ0ω0 − gρNγ0τ3ρ0 − eγ0

1 + τ3
2

A0)ψi

− 1

3
g2σ

3
0 −

1

4
g3σ

4
0 +

1

4
dω4

0 −
1

2
[(∇iσ0)

2 +m2
σσ

2
0]

+
1

2
[(∇iω0)

2 +m2
ωω

2
0] +

1

2
[(∇iρ0)

2 +m2
ρρ

2
0] +

1

2
(∇iA0)

2.

(3.10)

Using the Hamilton’s variational principle we find Euler-Lagrange equations for the
motion of a given field ϕ(x⃗, t) = ψi, σ, ω, ρ, A

∂L

∂ϕ(x)
− ∂

∂xµ
∂L

∂(∂µϕ)
= 0. (3.11)
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Applying the Euler-Lagrange equations (3.11) to the RMF Lagrangian (3.10) we
obtain Dirac equations of motion for nucleons

[−iαj∇j + β(m+ gσNσ) + gωNω0 + gρNρ0τ3 + e
1 + τ3

2
A0]ψi = ϵiψi. (3.12)

The meson field equations of motion in the mean-field approximation are

(−△+m2
σ + g2σ + g3σ

2)σ = −gσNρS (3.13)

(−△+m2
ω + dω2

0)ω0 = gωNρV (3.14)

(−△+m2
ρ)ρ0 = gρNρI (3.15)

−△A0 = eρp. (3.16)

The corresponding densities are defined as

ρS =
A∑
i=1

ψ̄iψi (3.17)

ρV =
A∑
i=1

ψ̄iβψi (3.18)

ρI =
A∑
i=1

ψ̄iβτ3ψi (3.19)

ρp =
A∑
i=1

ψ̄iβ
1 + τ3

2
ψi, (3.20)

where the sums run over all occupied single-particle states.
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Chapter 4

p̄-nucleus interaction

4.1 Antibaryon–nucleus interaction

The interaction of antibaryons with nuclei is an interesting topic. Unfortunately,
only a little is known about it. The main source of information is the study of
antiproton atoms and p̄-scattering experiments. The possibility of forming a bound
state of the antinucleon in a nucleus was first studied in the 80s [23, 24].

The charge independence of the strong interaction led to the introduction of
isospin. Projections of I correspond to different particle charge states. The com-
bination of charge conjugation (see below) and rotation in isospin space gives the
transformation

Ĝ = ĈeiπI1 (4.1)

called G-parity. The symbol I1 is the generator of rotation around 1-axis and Ĉ is the
charge conjugation operator. The eigenstates of Ĝ-parity operator are, for example,
charged mesons (even though they are not eigenstates of Ĉ alone). Multiplet with
the isospin I has the eigenvalue

Ĝ|I⟩ = (−1)IC|I⟩, (4.2)

where C is the charge conjugation number of the neutral member (e.g. π0). G-
parity is a multiplicative quantum number; for a system of n pions the eigenvalue
is (−1)n. If the Hamiltonian of a system is invariant under charge conjugation and
rotation in isospin space, the G-parity is conserved.

Charge conjugation, Ĉ, is a transformation, which converts a particle into its
antiparticle. It means that it reverses sign of the charge, baryon number, lepton
number, strangeness, charm, beauty, truth . . . On the other hand, it does not change
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mass, momentum, energy, and spin. Therefore it holds

Ĉ|p⟩ = |p̄⟩, (4.3)

where |p⟩ (|p̄⟩) denotes some state of a particle (antiparticle). Double application
of Ĉ turns the system back to the initial state. As a consequence, the eigenvalues
of Ĉ are ±1. However, not every particle is the eigenstate of the operator Ĉ.
In fact, only particles identical with their antiparticles can be eigenstates of the
charge conjugation operator. Such particles are, for example, photon or π0 meson.
A system of particles, like a bound state of fermions and antifermions, with total
angular momentum l and spin s, constitutes the eigenstate of Ĉ with the eigenvalue
(−1)l+s. Using this prescription, the charge conjugation number C of mesons can
be determined from the quark model.

TheG-parity transformation thus inverts the nucleon into the antinucleon. There-
fore, the potential for the antiproton can be obtained by the transformation of the
proton potential

Vp̄ = ĜVpĜ = GσVσ +GωVω +GρVρ +GγVγ, (4.4)

where the symbols Gσ, Gω, Gρ and Gγ denote the value of G-parity for the meson
and photon fields. The fields σ, ρ and Coulomb field have positive G-parity. In
contrast, the ω meson has negative G-parity. Expressing this by coupling constants
gives

gσN = gσN , gωN = −gωN , gρN = gρN . (4.5)

The nuclear ground state is well described by an attractive scalar potential of
magnitude |S| ≃ 350 MeV and a repulsive vector potential |V | ≃ 300 MeV. The
central potential for slow nucleons is then S + V ≃ −50 MeV. For antinucleons the
vector potential changes sign and consequently the central potential becomes very
deep, S−V ≃ −650 MeV. The presence of antiproton in a nucleus causes significant
changes in its structure. Because of the very deep p̄ potential the binding energy of
the nucleus with antiproton considerably increases and so does the central density
of the system.

Of course, the relations for the coupling constants (4.5) is an idealization. There
are several factors which can modify the meson fields like many-body effects and
p̄-annihilation. The G-parity may be violated in dense baryon-rich matter when
the quark-antiquark degrees of freedom start to play a role. The maximal binding
energy per quark-antiquark pair in baryon-symmetric matter predicted by Nambu-
Jona-Lasinio (NJL) model [25] is about five times lower than within the RMF model
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(for more details see ref. [2]). This violation may cause that the value of coupling
constants for the antiproton (4.5) are overestimated. Therefore, we considered also
the reduced antiproton coupling constants

gσp̄ = ξ gσN , gωp̄ = −ξ gωN , gρp̄ = ξ gρN , (4.6)

where the scaling parameter ξ is from interval ⟨0, 1⟩ and is considered to have the
same value for all fields.

The value of the parameter ξ could be determined from fits to atomic data. Such
fits to a large database were performed by Friedman et al. in 2005 [15]. It was found
that the value of the parameter ξ varies between 0.15 (40Ca) and 0.35 (208Pb). So
there is a substantial deviation from the G-parity transformed p̄-coupling constants.

4.2 RMF model for nucleus with antiproton

In the framework of the RMF model, the antiproton interacts with nucleons
through the exchange of the scalar (σ) and vector (ω, ρ) mesons and photon field
(γ). The Dirac equations for the antiproton and nucleons (i = N, p̄) will have the
form

[−iαj∇j + β(mi + Si) + Vi]ψi = ϵiψi, (4.7)

where
Si = gσiσ, Vi = gωiω0 + gρiρ0τ3 + ei

1 + τ3
2

A0. (4.8)

The Klein-Gordon equations for the meson fields will be modified due to the presence
of the antiproton as follows:

(−△+m2
σ + g2σ + g3σ

2)σ = −gσNρS − ξ gσNρSp̄ (4.9)

(−△+m2
ω + dω2

0)ω0 = gωNρV − ξ gωNρV p̄ (4.10)

(−△+m2
ρ)ρ0 = gρNρI + ξ gρNρIp̄ (4.11)

−△A0 = eρp − eρp̄. (4.12)

The equations of motion are solved numerically by an iteration procedure. The
solution is described in detail in ref. [26]. The binding energy of the system is
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determined by

B(A,Z, p̄) =
∑A

i=1 (mN − ϵi) + (mp̄ − ϵp̄)

− 1

2

∫
d3x (−gσN σρS + gωN ω0ρV + gρN ρ0ρI + eA0ρp)

− 1

2

∫
d3x (−1

3
g2 σ

3 − 1
2
g3 σ

4 + 1
2
dω4)

− 1

2

∫
d3x (−gσp̄ σρSp̄ + gωp̄ ω0ρV p̄ + gρp̄ ρ0ρIp̄ − eA0ρp̄) .

(4.13)

4.3 RMF Parametrization

There exist several parameter sets for the RMF model, which define the masses
of meson fields and the values of their coupling constants. These parametrizations
are divided into so called linear and nonlinear models. The linear models have ad-
vantage in their simplicity and numerical stability. They describe rms radii, nuclear
densities and single particle energies quite well. But the linear parametrizations give
nuclear compressibility K too large. The nonlinear models contain extra nonlinear
terms for the scalar field σ and the vector field ω. These models give much better
binding energies of nuclei and also fit better other experimental data. The detailed
description is given in ref. [22].

Table 4.1: The parameters of TM2 and HS model
TM2 HS

mN [MeV] 938 939
mσ [MeV] 526.443 520
mω [MeV] 783 783
mρ [MeV] 770 770
gσN 11.4694 10.47
gωN 14.6377 13.8
gρN 9.3566 8.07
g2 [fm−1] -4.444 0
g3 4.6076 0
d 84.5318 0

In this work, two models, namely TM2 and HS, were adopted. The TM2
parametrization was introduced by Sugahara and Toki [27]. The TM2 parametriza-
tion is nonlinear and contains an extra nonlinear term ω4. The corresponding cou-
pling constant is denoted by d. The TM2 model was inspired by the relativistic
Brueckner-Hartree-Fock (RBHF) theory of nuclear matter. The reason for intro-
ducing the nonlinear term ω4 lies in the weakening of the vector potential from
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linear behavior at high densities in order to get closer to the results of the RBHF
theory. This model gives the value of the compressibility K = 344 MeV.

The HS parametrization is a linear parametrization introduced by Horowitz and
Serot [28]. This model gives very large value of nuclear compressibility, K = 544.4

MeV. Parameters of the TM2 and HS RMF models are listed in Table 4.1.
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Chapter 5

Results

In this work, the properties of the 16O nucleus with one added antiproton were
explored. The 16O nucleus is a light magic nucleus, which is suitable for the RMF
approach. Magic nuclei are characterized by the high binding energy per nucleon
and high stability. Within the shell model magic nuclei have all their shells closed
(filled) and they are spherical.

I performed calculations of the densities and energies in 16O plus one proton in
1s1/2 state and for 16O plus one antiproton in 1s1/2 state. I will use notation 16Op

for 16O plus one proton in 1s1/2 and 16Op̄ for 16O plus one antiproton. Of course,
the 16O nucleus plus one proton in 1s1/2 state cannot exist in real world because
of the Pauli exclusion principle. I used this fictitious system as a tool for testing
the model and numerical code. The antiproton could be also added into the states
characterized by higher quantum numbers. It would be interesting to explore such
states as well but this was not in the center of my interest in this work.

I used the set of coupling constants (4.6) for the antiproton. To be more specific,
I did calculations for the values of ξ = 0.25, 0.5, 0.75 and 1. The vast majority of
the calculations were performed dynamically, i.e, the nucleus was allowed to change
its rearrangement due to the presence of the antiproton. For comparison, I did also
static calculations, i.e. the nuclear core was not allowed to response to the pres-
ence of the antiproton, for a comparison between the dynamical and static approach.

The presence of the antiproton in a nucleus causes considerable changes in the
magnitudes of the scalar and vector potentials. In Figure 5.1, the scalar and vector
potentials felt by the antiproton in the 16Op̄ system are shown as a function of r. The
scalar and vector potentials in 16Op are shown for comparison. The extra proton in
the 1s1/2 state causes small changes of the scalar and vector potentials. Moreover,
these changes are approximately the same in the both cases. On the other hand, the
addition of the antiproton results in a significant increase of the scalar (attractive)
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Figure 5.1: The scalar (left) and vector (right) potentials in the 16O nucleus felt by
protons in comparison with potentials in the nucleus 16Op and the potentials in the
16Op̄ nucleus for the antiproton. The results for the TM2 model (top) and the HS
model (bottom) are presented for comparison.

potential. Due to the G-parity transformation, the vector potential reverses its sign
and becomes attractive too. However, its depth is about half of the depth of the
scalar potential. Protons and neutrons also feel much stronger attraction due to the
presence of antiproton in the nucleus (of course, the vector potential is repulsive for
nucleons).

The density distributions of the core nucleons in 16O and 16Op̄ are displayed in
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Figure 5.2: The density distribution of the nuclear core of 16Op̄ compared with the
nuclear density in 16O and the density distribution of the core in 16Op, for the TM2
model.

Figure 5.2. We witness a huge increase of the core density in 16Op̄. The central
density is about three times larger than the density in 16O. The addition of the 1s1/2
proton into the 16O nucleus causes only a minor increase of the density of the core.

In Figure 5.3, the density distribution of nucleons in 16Op̄ are displayed for dif-
ferent values of the scaling factor ξ. The central density of nucleons grows with
increasing value of the parameter ξ. There is a considerable increase of the density
in the center of the nucleus for ξ = 0.25. However, the density increases until the
critical value ξ = 0.75, when it starts to decrease. We observed some sort of satu-
ration of the nucleon density. This can be caused by the increase of the repulsive ω
field between nucleons of the core and by shell effects.

The core nucleons are compressed due to the presence of the antiproton and
their single particle energies increase as well. The extent of the rearrangement
of the nuclear core is connected with the nuclear compressibility. Indeed, larger
polarization effects are predicted by the TM2 model which gives lower value of the
nuclear compressibility than the HS model.

The density distribution of the antiproton in the 16O nucleus is presented in
Figure 5.4. The density of the antiproton calculated statically within the TM2
model is about half of the density of the antiproton calculated dynamically. In the
static approach nucleons are not compressed as the nuclear core is not allowed to

26



0 1 2 3 4 5
r [fm]

0

0.1

0.2

0.3

0.4

0.5

ρ co
re

 [f
m

-3
]

ξ = 0.25
ξ = 0.5
ξ = 0.75
ξ = 1
16

O

TM2

0 1 2 3 4 5
r [fm]

0

0.1

0.2

0.3

0.4

0.5

ρ co
re

 [f
m

-3
]

ξ = 0.25
ξ = 0.5
ξ = 0.75
ξ = 1
16

O

HS

Figure 5.3: The density of nucleons in 16Op̄ for different values of the parameter ξ
in comparison with the density of 16O within the TM2 (top) and the HS (bottom)
model.

be polarized by the extra antiproton. In the case of the antiproton density we can
again see the effect of saturation. But now, it occurs for the value of ξ = 0.5. Then
the antiproton density rapidly decreases, and for ξ = 1 it becomes more flat in the
center. This is an indication that shell effects control the structure of the nuclear
system with an antiproton and consequently the p̄ density distribution. For the HS
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Figure 5.4: The density of antiproton in 16Op̄ for different values of the parameter ξ
in comparison with the density of the 1s1/2 proton in 16Op, for the TM2 (top) and
the HS (bottom) model. The p̄ density in 16Op̄ calculated statically for ξ = 1 is
shown for illustration.

model, the difference between the dynamic and static approaches is not so large.
There is a larger increase in the antiproton density for ξ = 0.25 then for the TM2
model. The saturation value is again at ξ = 0.5. The decrease of the antiproton
density in the HS model is more pronounced than within the TM2 model.
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In Figure 5.5, the densities of protons and neutrons in the 16Op̄ nucleus are dis-
played separately as a function of r. The saturation of the proton and neutron
densities is again obvious . The density of protons is higher than the density of neu-
trons. This can be explained by the fact that protons feel in addition the Coulomb
and isovector attraction from the antiproton. The densities are higher within the
TM2 model because of lower compressibility of the nuclear matter than in the HS
model.

The difference between proton and neutron densities is more obvious from Figure
5.6 where the difference △ρ = ρp − ρn is plotted as function of r. The largest
difference is between the proton and neutron densities in the case of ξ = 0.75 for
both parametrizations. The figure shows that protons are more concentrated in the
center of 16Op̄ than neutrons. On the contrary, the difference between the proton
and neutron densities in 16O (dotted line) is negative because the central density of
neutrons is higher than the central density of protons. This is another example of
the sizeable rearrangement of the nuclear core of the 16Op̄.

The energies of the antiproton are displayed in Figure 5.7. The energy of the
antiproton increases gradually as the potential increases with the parameter ξ. The
antiproton is more bound within the HS model because this model gives stronger
mean fields than TM2, and, consequently, a deeper potential for the antiproton.
But the difference between both models is relatively small. For ξ = 1, the single
particle energy of the antiproton reaches the value of 1212.38 MeV within the TM2
model and 1240.76 MeV within the HS model. The static approach gives for ξ = 1

the value of 755.85 MeV and 765.15 MeV in the TM2 and HS model, respectively.
Figure 5.7 illustrates again the important role of the rearrangement of the nuclear
core and the necessity of performing dynamical calculations.

The single-particle energies of nucleons in a nucleus with the antiproton increase
as well. Figure 5.8 shows the energy levels for protons and neutrons in the 16Op̄

system, calculated for ξ = 1. Protons in the 1s1/2 state are bound most strongly
since they feel in addition stronger attraction due to the Coulomb and isovector field.
On the contrary, neutrons feel a repulsive isovector field due to the antiproton since
they have the same isospin projection. As a result, they are less bound than protons
in 16Op̄. Both models predict a considerable increase of the proton and neutron level
spacing between the s and p levels. This huge s-p level spacing is a consequence of a
much deeper and narrower potential well in 16Op̄ than in ordinary 16O nucleus. The
nucleon p states are affected by the presence of the antiproton in a nucleus much less
than the s state. It is due to the smaller range of the nuclear potential and, in the
case of 1p1/2, also due to the spin-orbit interaction. The spin-orbit splitting of the
1p3/2 and 1p1/2 states in 16Op̄ is much larger than in 16O. The spin-orbit interaction
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is proportional to the sum of the absolute values of the scalar and vector potentials.
In the case of 16Op̄, this sum is much larger than in the ordinary 16O nucleus. As a
result, the 1p1/2 state in 16Op̄ lies even higher than in 16O.

The total binding energy of 16Op̄ reaches the value of 1259.88 MeV within the
TM2 model and the value of 1247.21 MeV within the HS model. For comparison,
the binding energy of the 16O nucleus is 128.6 MeV and 90.16 MeV within the TM2
and HS model, respectively. The increase of the binding energy is higher for the HS
model because of the stronger mean fields involved. But the differences are not so
large. We can conclude that the both models give similar results.
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Figure 5.5: The density of protons (left) and neutrons (right) in 16Op̄ for different
values of the parameter ξ in comparison with the density of protons and neutrons
in 16O within the TM2 (top) and the HS (bottom) model.
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Chapter 6

Discussion and conclusions

In this work the interaction of the antiproton with a nucleus was studied. The
goal was to examine the influence of the strongly interacting antiproton on the po-
larization of a nucleus within the relativistic mean field theory. For this purpose,
the 16O nucleus was considered.The coupling constants for the antiproton were ob-
tained using the G-parity transformation of the proton coupling constants. The
densities of the core nucleons and their single-particle energies, as well as the densi-
ties and single-particle energy of the antiproton inside the nucleus were calculated.
Two RMF models were used–the linear model HS and the nonlinear model TM2.
Dynamical as well as static calculations were performed in order to illustrate the
effect of the polarization of the nuclear core caused by the antiproton.

Large polarization effects on the core nucleons were found. The presence of
the antiproton in a nucleus causes compression of the nuclear core. The maximum
density in 16Op̄ reaches approximately three times the nuclear density in 16O. The
extent of the rearrangement of the nucleons depends on the applied parametrization
of the RMF model. The models used in this work give different values of nuclear
compressibility. The linear model HS gives larger nuclear compressibility than the
nonlinear TM2 model. Therefore, the HS model predicts lower central densities of
the core nucleons in 16Op̄ than TM2. On the other hand, the sizeable changes in the
single particle energies of the antiproton as well as nucleons are larger for the HS
model because the linear models yield larger meson mean fields than the nonlinear
ones. The difference in the total binding energy between 16O and 16Op̄ is for the
HS model △BHS = 1157.05 MeV in absolute value. Within the TM2 model, this
difference is lower, △BTM2 = 1131.28 MeV. To conclude, both models give similar
results.

In further studies, it will be desirable to use other sets of parameters for the RMF
model which are suitable for the description of nuclear matter at high densities. Such
parametrization is, e.g., the FSU-gold parametrization [29] or the model of Kotulič
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Bunta and Gmuca [30] which parametrizes the Dirac-Brueckener-Hatree-Fock EOS
of asymmetric nuclear matter. These models contain extra cross-coupling term
which characterizes the interaction between the ω and ρ mesons.

It is also desirable to perform calculations for other nuclei and to study the
dependence of observed effects on the mass number A. We can assume that the
polarization of the core nucleons due to the presence of the antiproton will decrease
as A increases.

In the present work, the annihilation (absorption) of the antiproton in nuclear
matter was not considered. Of course, it must be involved in every realistic model.
One should consider a complex potential whose imaginary part describes the absorp-
tion of antiproton. The information about the magnitude of the real and imaginary
parts of the complex potential can be obtained from experiments with antiprotonic
atoms [3, 21, 15]. Another question is the life time of the antiproton in nuclear
matter. Whether it is possible that the antiproton exists long enough to cause the
compression of nuclear matter. The life time of antiproton inside nuclear matter at
normal density is about 2 fm. The estimated life time of deeply bound antiproton
inside the dense nuclear matter is about 20 fm [1].

In the further study, we plan to revise the fits of the energy shifts and widths in
antiprotonic atoms. This will enable us to determine the value of the parameter ξ for
the antiproton coupling constants and the imaginary part of the p̄-nucleus potential.
Consequently, we will be able to perform more realistic calculations of antiprotonic
nuclei.
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Appendix A

Notation and conventions

We adhere to the convention of Serot and Walecka [26]. Natural physical units
are chosen with ~ = c = 1. Contravariant xµ and covariant xµ four vectors are
written as

x ≡ xµ = (t, x⃗), xµ = (t,−x⃗) (A.1)

∂µ ≡ ∂

∂xµ
=

(
∂

∂t
,−∇

)
, ∂µ ≡ ∂

∂xµ
=

(
∂

∂t
,∇
)

(A.2)

The Dirac equation for a free particle of mass M reads

(iγµ∂
µ −M)ψ = (i/∂ −M)ψ = 0, (A.3)

where we use the Feynman “slash” notation /a = aµγ
µ. The gamma matrices

γµ = (γ0, γ⃗) obey
γµγν + γνγµ = {γµ, γν} = 2gµν , (A.4)

where gµν is a metric tensor given by

gµν =


1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1

 , (A.5)

and in the standard (Dirac-Pauli) realization are given as

γ0 =

(
1 0

0 1

)
, γ⃗ =

(
σ⃗ 0

0 σ⃗

)
, (A.6)
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with Pauli matrices defined by

σ1 =

(
0 1

1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0

0 −1

)
. (A.7)

The nucleon wave functions are considered as isospin doublets, i.e.

ψi =

(
ψp

ψn

)
, (A.8)

where ψp and ψn denotes proton and neutron wave functions, respectively.
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