Precision Decay-Pion Spectroscopy of Hyperhydrogen

Patrick Achenbach U Mainz

Sept. 2014

Experimental Considerations

Formation of hyperhydrogen on light nuclei

- first detection of hyperfragments in a spectrometer
- limited momentum resolution

[H. Tamura et al. Phys. Rev. C 40 (1989)]

Strangeness Physics at the Mainz Microtron

Sept. 2014 P Achenbach, U Mainz

Hypernuclear decay-pion spectroscopy in counter experiments

Hypernuclear ground-state masses

$$M_{\rm HYP} = \sqrt{M_{\rm ncl}^2 + p_{\pi^-}^2} + \sqrt{M_{\pi^-}^2 + p_{\pi^-}^2}$$

pion momentum resolution ~ 100-150 keV/c → mass resolution ~100 keV/c² (FWMH)

The Mass A = 4 System

The A = 4 isospin doublet

- Nucleon-hyperon interaction can be studied by strange mirror pairs
- Coulomb corrections are < 50 keV for the ${}^{4}_{\Lambda}$ H ${}^{4}_{\Lambda}$ He pair

World data on 4 H

World data on A = 4 system

Total: $B = 2.42 \pm 0.04 \text{ MeV}$ [M. Juric et al. NP B52 (1973)]

World data on A = 4 system

Modern calculations on A = 4 system

Calculation	Interaction	$B_{\Lambda}(^{4}_{\Lambda}H_{gs})$	$B_{\Lambda}(^{4}_{\Lambda}He_{gs})$	ΔB_{Λ} (⁴ $_{\Lambda}$ He- ⁴ $_{\Lambda}$ H)
A. Nogga, H. Kamada and W. Gloeckle, PRL 88, 172501 (2002)	SC97e	1.47	1.54	0.07
	SC89	2.14	1.80	0.34
H. Nemura. Y. Akaishi and Y. Suzuki, PRL 89, 142504 (2002)	SC97d	1.67	1.62	-0.05
	SC97e	2.06	2.02	-0.04
	SC97f	2.16	2.11	-0.05
	SC89	2.55	2.47	-0.08
E. Hiyama, M. Kamimura, T. Motoba, T. Yamada and Y. Yama PRC 65, 011301 (R) (2001)	AV8	2.33	2.28	-0.05

World data average

$2.04{\pm}0.04 \quad 2.39{\pm}0.03 \quad 0.35{\pm}0.06$

With precise spectroscopy details of NY-interaction can be inferred

- ⁴ A g.s. re-measured at MAMI in pion-decay spectroscopy
- ⁴ He g.s. can possibly be re-measured in pion-decay spectroscopy
- ⁴ A ex.s. can possibly be re-measured in He(e,e'K)H spectroscopy
- ${}^4_{\Lambda}$ He ex.s. can be re-measured in γ -ray spectroscopy at JPARC

Experiments at MAMI

Decay-pion spectroscopy at MAMI

Primary Be	am		
Energy	1.5 GeV		

Target		
Material	9Be	
Thickness	125 μm	
Tilt angle	54 deg	

Kaos	
Cent. Mom	+900 MeV/c
Detector	MWPC, TOF, AC

Spek-A, C	
Cent. Mom	- 115/ -125 MeV/c
Detector	DC, TOF, GC

to beam dump kaons pions pions electron beam

Strangeness Physics at the Mainz Microtron

Sept. 2014 P Achenbach, U Mainz

Kaos spectrometer changed into zero-degree tagger

without absorber

- Suppression of large positron flux with 25 X₀ lead absorber wall
- Much cleaner spectra for all hadrons

Reaction identification

with cut on gas Cherenkov signal for electron rejection

- established clean tag on strangeness production at zero-degree
- decay-pion detection with Spectrometer A & C (dp/p <10⁻⁴)
- more than 1000 pion-kaon-coincidences from weak decays of hyperons

Hyperhydrogen peak search

local excess observed inside the hyperhydrogen search region

Binding energy extraction

Sept. 2014 P Achenbach, U Mainz

World data on A = 4 system

World data on A = 4 system

MAMI experiment confirmed Λ separation energy of ${}_{\Lambda}{}^{4}$ H: B $_{\Lambda} \sim 2.14 \pm 0.1$ MeV (MAMI 2014 prelim.)

- Decay-pion spectroscopy gives access to masses of light hypernuclei
- Important to understand consistently the A = 4 and A = 7 systems
- Pioneering experiment followed by experiments with dedicated setup:
 - clean tag on strangeness production at zero-degree
 - clean pion sample from weak decays of hyperons
 - hyperhydrogen-4 identified as the dominant detectable fragment
 - experiment continued with order of magnitude luminosity increase

These are key experiments to get information about charge symmetry breaking (CSB)

Backup

Light hyperisotopes

Hyper-	Bingungsenergie	Targets	Γ_{π^-}/Γ	Zerfallspion-	dB_{Λ}/dp_{π}	möglicher	Resonanz-
fragment	B _A [MeV]			impuls [MeV/c]		Zerfallskanal	breite
³ _A H	0, 13 ± 0.05 [21]	⁴ He, ^{6,7} Li, ⁹ Be		114,37	0,675	³ He + π	
⁴ / _A H	2, 04 ± 0, 04 [21]	⁴ He, ^{6,7} Li, ⁹ Be	1,00+0,18 [22]	133,03	0,725	⁴ He + π	
			$\Gamma_{\pi^{-}}^{4}$ He/ $\Gamma = 0,69^{+0,12}_{-0,10}$ [22]				
⁶ ΛH	4,0 ± 1,1 [4]	⁷ Li, ⁹ Be		135,27	0,720	⁶ He + π ⁻	
⁴ _A He	2, 39 ± 0, 03 [21]	^{6,7} Li, ⁹ Be	0, 34 ± 0, 06 [22]	98,14	0,601	³ He + p +π	6,03 MeV
⁵ _A He	3, 12 ± 0, 02 [21]	^{6,7} Li, ⁹ Be	0, 340 ± 0, 016 [23]	99,27	0,601	p + ⁴ He + π	1,5 MeV
			0, 44 ± 0, 11 [24]				
			0, 332 ± 0, 069 [25]				
⁶ He	4, 18 ± 0, 10 [21]	^{6,7} Li, ⁹ Be		108,48	0,633	6Li + π	
⁷ AHe	5,68±0,03±0,25 [26]	⁷ Li, ⁹ Be		114,78	0,653	$^{7}Li + \pi^{-}$	
⁸ _A He	7, 16 ± 0, 70 [27]	⁹ Be		116,48	0,656	⁸ Li + π ⁻	
δLi	5, 89 ± 0, 37 [28]	⁹ Be		101,68	0,607	$p + p + {}^{4}He + \pi^{-}$	92 keV
ζLi	5, 58 ± 0, 03 [21]	°Be	0, 353 ± 0, 059 [25]	108,11	0,629	⁷ Be + π	
⁸ ∧Li	6, 80 ± 0, 03 [21]	⁹ Be		124,20	0,681	${}^{4}\text{He} + {}^{4}\text{He} + \pi^{-}$	5,57 eV
۸Li	8,50±0,12[21]	⁹ Be		121,31	0,670	⁹ Be + π ⁻	

Tabelle 1: Liste der wichtigsten Parameter der möglichen Hyperfragmente an leichten Targets ($\Lambda \leq 9$). Aus B_{Λ} und den in [20] gegebenen Massen gewöhnlicher Kerne sind die Zerfallspionenimpulse berechnet. Die Zerfallsbreiten für π^- -Zerfälle (Γ_{π^-}/Γ) sind für die Kerne, für die sie bekannt sind, angegeben Für $^4_{\Lambda}$ H ist zusätzlich auch die Wahrscheinlichkeit für einen π^- -Zweikörperzerfall bekannt. Für alle Hyperfragmente, die in einen ungebundenen Zustand zerfallen, ist der wahrscheinlichste π^- -Zerfallskanal angegeben und zusätzlich die Resonanzbreite. Diese stammt aus [29].