Few-Body Methods

Calibration

redictions for LQCD (

▲ロト ▲ 同 ト ▲ 国 ト → 国 - の Q ()

Conclusions

Effective Field Theory for Lattice nuclei

Nir Barnea

The Racah institute for Physics The Hebrew University, Jerusalem, Israel

SPHERE MEETING 2014 September 9-11, 2014, Prague, Czech Republic

ew-Body Method

Collaboration

Jerusalem, Israel D. Gazit, J. Kirscher האוניברסיטה העברית בירושלים The Hebrew University of Jerusalem

UNIVERSITY OF TRENTO - Italy

・ ロ ト ・ 雪 ト ・ 目 ト ・ 日 ト

э

Orsay, France U. van Kolck

▲ロト ▲ 同 ト ▲ 国 ト → 国 - の Q ()

Conclusions

LQCD - The Single Baryon Case

Lattice QCD

- QCD is the fundamental theory for nuclear physics.
- It is formulated in terms of quarks and gluons.
- At low energy QCD is non-perturbative → lattice simulations (LQCD).
- Neutron and proton masses are predictions.
- Same for pion masses.

Xui-Lei Ren et al., PRD 87 074001 (2013) L. Alvarez-Ruso et al., ArXiv hep-ph: 1304.0483 (2013)

LQCD - The Single Baryon Case

Lattice QCD

- QCD is the fundamental theory for nuclear physics.
- It is formulated in terms of quarks and gluons.
- At low energy QCD is non-perturbative → lattice simulations (LQCD).
- Neutron and proton masses are predictions.
- Same for pion masses.

Xui-Lei Ren *et al.*, PRD **87** 074001 (2013) L. Alvarez-Ruso *et al.*, ArXiv hep-ph: 1304.0483 (2013)

・ロト ・ 御 ト ・ ヨ ト ・ ヨ ト

LQCD - The Single Baryon Case

Lattice QCD

- QCD is the fundamental theory for nuclear physics.
- It is formulated in terms of quarks and gluons.
- At low energy QCD is non-perturbative → lattice simulations (LQCD).
- Neutron and proton masses are predictions.
- Same for pion masses.

Xui-Lei Ren *et al.*, PRD **87** 074001 (2013) L. Alvarez-Ruso *et al.*, ArXiv hep-ph: 1304.0483 (2013)

LQCD - Multi Baryon Configurations

Deutron (10) and dineutron (27) simulations

Triton simulations with different lattice sizes $(24^3 \times 48, 32^3 \times 48, 48^3 \times 64)$

- LQCD simulations with $SU_f(3)$ symmetry
- Large pion mass $m_{\pi} = 800 \text{ MeV}$
- Results with $m_{\pi} = 510$ MeV are already available
- Also the 2-body scattering parameters a_s, r_{eff} @800 MeV

NPLQCD Collaboration, PRD 87 034506 (2013)

Conclusions

LQCD - Few-Body Baryon Spectra

LQCD - Few-Body Baryon Spectra

NPLQCD Collaboration, PRD 87 034506 (2013)

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

LQCD - Few-Body Baryon Spectra

NPLQCD Collaboration, PRD 87 034506 (2013)

The Evolution of the Nuclear Spectrum with m_{π}

NPLQCD Collaboration, PRD 87 034506 (2013)

T. Yamazaki, K. Ishikawa, Y. Kuramashi, and A. Ukawa, Phys. Rev. D 86 (2012) 074514.

EFT in Nuclear Physics

Effective Field Theory

- At this point LQCD simulations for A ≥ 2 nuclei are still away from the physical point.

ų	m	
	đ	

▲□▶▲□▶▲□▶▲□▶ ▲□▶ ● □ ● ● ●

dictions for LQCD Concl

EFT in Nuclear Physics

Effective Field Theory

- At this point LQCD simulations for *A* ≥ 2 nuclei are still away from the physical point.
- Currently no reliable NN interactions can be derived from lattice simulations.
- Contemporary nuclear theory is based on Effective Field Theory \longrightarrow phenomenology.
- The quarks and gluons degrees of freedom are replaced by baryons and mesons.

 $\mathcal{L}_{QCD}(q,G) \longrightarrow \mathcal{L}_{Nucl}(N,\pi,\ldots)$

- The *L_{Nucl}(N, π,...)* is constructed to retain QCD symmetries.
- $\mathcal{L}_{Nucl}(N, \pi, ...)$ is an expansion in low momentum *Q*.
- Contains all terms compatible with QCD up to a given order.
- The low-energy coupling constants (LECs) are explicit function of the cutoff Λ.

	N N 1	1
2	Ś	
	d	

EFT in Nuclear Physics

Effective Field Theory

- At this point LQCD simulations for $A \ge 2$ nuclei are still away from the physical point.
- Currently no reliable NN interactions can be derived from lattice simulations.
- Contemporary nuclear theory is based on Effective Field Theory \longrightarrow phenomenology.
- The quarks and gluons degrees of freedom are replaced by baryons and mesons.

 $\mathcal{L}_{QCD}(q,G) \longrightarrow \mathcal{L}_{Nucl}(N,\pi,\ldots)$

- The *L_{Nucl}(N, π,...)* is constructed to retain QCD symmetries.
- $\mathcal{L}_{Nucl}(N, \pi, ...)$ is an expansion in low momentum Q.
- Contains all terms compatible with QCD up to a given order.
- The low-energy coupling constants (LECs) are explicit function of the cutoff A.

Ų	~1	1
	d	

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

EFT in Nuclear Physics

Effective Field Theory

- At this point LQCD simulations for *A* ≥ 2 nuclei are still away from the physical point.
- Currently no reliable NN interactions can be derived from lattice simulations.
- Contemporary nuclear theory is based on Effective Field Theory \longrightarrow phenomenology.
- The quarks and gluons degrees of freedom are replaced by baryons and mesons.

 $\mathcal{L}_{QCD}(q,G) \longrightarrow \mathcal{L}_{Nucl}(N,\pi,\ldots)$

- The *L_{Nucl}*(*N*, *π*,...) is constructed to retain QCD symmetries.
- $\mathcal{L}_{Nucl}(N, \pi, ...)$ is an expansion in low momentum *Q*.
- Contains all terms compatible with QCD up to a given order.
- The low-energy coupling constants (LECs) are explicit function of the cutoff Λ.

	M	
2	S	
	d	

redictions for LQCD Con

Conclusions

EFT in Nuclear Physics

Effective Field Theory

- At this point LQCD simulations for *A* ≥ 2 nuclei are still away from the physical point.
- Currently no reliable NN interactions can be derived from lattice simulations.
- Contemporary nuclear theory is based on Effective Field Theory \longrightarrow phenomenology.
- The quarks and gluons degrees of freedom are replaced by baryons and mesons.

 $\mathcal{L}_{QCD}(q,G) \longrightarrow \mathcal{L}_{Nucl}(N,\pi,\ldots)$

- The *L_{Nucl}*(*N*, *π*,...) is constructed to retain QCD symmetries.
- $\mathcal{L}_{Nucl}(N, \pi, ...)$ is an expansion in low momentum *Q*.
- Contains all terms compatible with QCD up to a given order.
- The low-energy coupling constants (LECs) are explicit function of the cutoff Λ.

	<u>M 1</u>	1
2	2.5	
	C	

EFT in Nuclear Physics

Effective Field Theory

- At this point LQCD simulations for *A* ≥ 2 nuclei are still away from the physical point.
- Currently no reliable NN interactions can be derived from lattice simulations.
- Contemporary nuclear theory is based on Effective Field Theory \longrightarrow phenomenology.
- The quarks and gluons degrees of freedom are replaced by baryons and mesons.

$$\mathcal{L}_{QCD}(q,G) \longrightarrow \mathcal{L}_{Nucl}(N,\pi,\ldots)$$

- The *L_{Nucl}*(*N*, *π*,...) is constructed to retain QCD symmetries.
- $\mathcal{L}_{Nucl}(N, \pi, ...)$ is an expansion in low momentum *Q*.
- Contains all terms compatible with QCD up to a given order.
- The low-energy coupling constants (LECs) are explicit function of the cutoff Λ.

U	<u>~1</u>	1
2 M	d	

EFT in Nuclear Physics

Effective Field Theory

- At this point LQCD simulations for *A* ≥ 2 nuclei are still away from the physical point.
- Currently no reliable NN interactions can be derived from lattice simulations.
- Contemporary nuclear theory is based on Effective Field Theory \longrightarrow phenomenology.
- The quarks and gluons degrees of freedom are replaced by baryons and mesons.

$$\mathcal{L}_{QCD}(q,G) \longrightarrow \mathcal{L}_{Nucl}(N,\pi,\ldots)$$

- The $\mathcal{L}_{Nucl}(N, \pi, ...)$ is constructed to retain QCD symmetries.
- $\mathcal{L}_{Nucl}(N, \pi, ...)$ is an expansion in low momentum *Q*.
- Contains all terms compatible with QCD up to a given order.
- The low-energy coupling constants (LECs) are explicit function of the cutoff Λ.

11	
	d

EFT in Nuclear Physics

Effective Field Theory

- At this point LQCD simulations for $A \ge 2$ nuclei are still away from the physical point.
- Currently no reliable NN interactions can be derived from lattice simulations.
- Contemporary nuclear theory is based on Effective Field Theory \longrightarrow phenomenology.
- The quarks and gluons degrees of freedom are replaced by baryons and mesons.

$$\mathcal{L}_{QCD}(q,G) \longrightarrow \mathcal{L}_{Nucl}(N,\pi,\ldots)$$

- The *L_{Nucl}*(*N*, *π*,...) is constructed to retain QCD symmetries.
- $\mathcal{L}_{Nucl}(N, \pi, ...)$ is an expansion in low momentum *Q*.
- Contains all terms compatible with QCD up to a given order.
- The low-energy coupling constants (LECs) are explicit function of the cutoff $\Lambda.$

	<u>M 1</u>	1
2	2.5	
	C	

Effective Field Theory potentials

Low Eenergy Constants

- There are 2 free parameters in LO, 7 at NLO, ...
- NNN and NNNN forces come in naturally at orders N2LO and N3LO.
- The NNN force contains 2 free parameters

	Two-nucleon force	Three-nucleon force	Four-nucleon force
Q٥	XH	_	—
Q²	X4444	—	—
Q3	44	HH HX XK	-
Q4	X H K K	₩ work in progress	H41 H41 -

$$V = -\left(\frac{g_A}{2f_\pi}\right)^2 \frac{(\sigma_1 \cdot q)(\sigma_2 \cdot q)}{q^2 + m_\pi^2} \tau_1 \cdot \tau_2 + C_S + C_T \sigma_1 \cdot \sigma_2 + V_{NLO} + V_{N2LO} + \dots$$

D. R. Entem and R. Machleidt, PRC **68**, 041001(R) (2003). Epelbaum *et al.*, EPJA **19**, 401 (2004), NPA **747**, 362 (2005).

Effective Field Theory potentials

Low Eenergy Constants

- There are 2 free parameters in LO, 7 at NLO, ...
- NNN and NNNN forces come in naturally at orders N2LO and N3LO.
- The NNN force contains 2 free parameters

$\chi^2/{\rm datum}$ for the reproduction of the
1999 np database

Bin (MeV)	# of data	N ³ LO	NNLO	NLO	AV18
0-100	1058	1.06	1.71	5.20	0.95
100-190	501	1.08	12.9	49.3	1.10
190-290	843	1.15	19.2	68.3	1.11
0-290	2402	1.10	10.1	36.2	1.04

	Two-nucleon force	Three-nucleon force	Four-nucleon force
Q٥	XH	_	—
Q²	X4444	_	_
Q3	村村	HH HX XK	—
Q4	X H K K - H K K H -	work in progress	+44 +44 -

$$V = -\left(\frac{g_A}{2f_{\pi}}\right)^2 \frac{(\sigma_1 \cdot q)(\sigma_2 \cdot q)}{q^2 + m_{\pi}^2} \tau_1 \cdot \tau_2$$

+ $C_S + C_T \sigma_1 \cdot \sigma_2$
+ $V_{NLO} + V_{N2LO} + \dots$

D. R. Entem and R. Machleidt, PRC **68**, 041001(R) (2003). Epelbaum *et al.*, EPJA **19**, 401 (2004), NPA **747**, 362 (2005).

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲□ ● ● ●

Conclusions

EFT for Lattice Nuclei

Energy Scales

- Nucleon mass M_n , and mass difference $\Delta = M_\Delta M_n$
- The pion mass m_{π} , pion exchange momentum $q_{\pi} = m_{\pi}/\hbar c$, and energy

$$E_{\pi} = \frac{\hbar^2 q_{\pi}^2}{M_n} = \frac{m_{\pi}}{M_n} m_{\pi}$$

• Nuclear binding energy *B*/*A*

Scale	Nature	LQCD@ m_{π} =500MeV	LQCD@ m_{π} =800MeV
M_n	940 MeV	1300 MeV	1600 MeV
Δ	300 MeV	300 MeV	180 MeV
m_{π}	140 MeV	500 MeV	800 MeV
E_{π}	20 MeV	200 MeV	400 MeV
B/A	10 MeV	15 Mev	25 MeV

Conclusions

- For the Natural case $\mathcal{L} \longrightarrow \mathcal{L}_{EFT}(N, \pi)$
- For lattice nuclei at $m_{\pi} \ge 400 \text{MeV} E_{\pi} \gg B/A$
- In this case *t*EFT is the natural theory *L* → *L*_{EFT}(*N*)

The nucleon Δ mass difference

Nucleon mass - n,p

L. Alvarez-Ruso *et* al., ArXiv hep-ph: 1304.0483 (2013)

996

Conclusions

π EFT for Lattice Nuclei

• We write all possible terms in \mathcal{L} ordered by the number of derivatives

$$\mathcal{L} = N^{\dagger} \left(i \partial_0 + \frac{\vec{\nabla}}{2M} \right) N - a_1 N^{\dagger} N N^{\dagger} N - a_2 N^{\dagger} \sigma N \cdot N^{\dagger} \sigma N - a_3 N^{\dagger} \tau N \cdot N^{\dagger} \tau N - a_4 N^{\dagger} \sigma \tau N \cdot N^{\dagger} \sigma \tau N - \dots - d_1 N^{\dagger} \tau N \cdot N^{\dagger} \tau N N^{\dagger} N$$

- Higher order terms include more derivatives.
- Naively, the order goes as the number of derivatives.
- The 3-body term appears at LO to avoid the Thomas collapse.
- Due to Fermi symmetry the number of terms can be cut by half.
- The coefficients depend on the cutoff Λ .

Application to AFDMC

- The potential need be local.
- Avoid 3-body spin-isospin operators.

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○ ○

Conclusions

π EFT for Lattice Nuclei

• We write all possible terms in \mathcal{L} ordered by the number of derivatives

$$\mathcal{L} = N^{\dagger} \left(i \partial_0 + \frac{\vec{\nabla}}{2M} \right) N - a_1 N^{\dagger} N N^{\dagger} N - a_2 N^{\dagger} \sigma N \cdot N^{\dagger} \sigma N - a_3 N^{\dagger} \tau N \cdot N^{\dagger} \tau N - a_4 N^{\dagger} \sigma \tau N \cdot N^{\dagger} \sigma \tau N - \dots - d_1 N^{\dagger} \tau N \cdot N^{\dagger} \tau N N^{\dagger} N$$

- Higher order terms include more derivatives.
- Naively, the order goes as the number of derivatives.
- The 3-body term appears at LO to avoid the Thomas collapse.
- Due to Fermi symmetry the number of terms can be cut by half.
- The coefficients depend on the cutoff Λ .

Application to AFDMC

- The potential need be local.
- Avoid 3-body spin-isospin operators.

*π***EFT Potential at NLO**

• At LO the *†*EFT potential takes the form

$$V_{LO}^{2b} = a_1 + a_2 \, \boldsymbol{\sigma}_1 \cdot \boldsymbol{\sigma}_2 + a_3 \, \boldsymbol{\tau}_1 \cdot \boldsymbol{\tau}_2 + a_4 (\boldsymbol{\sigma}_1 \cdot \boldsymbol{\sigma}_2) (\boldsymbol{\tau}_1 \cdot \boldsymbol{\tau}_2)$$

• The leading order also contains a 3-body term of the form

$$V_{LO}^{3b} = D_1 \boldsymbol{\tau}_1 \cdot \boldsymbol{\tau}_2 \quad \text{or} \qquad V_{LO}^{3b} = D_1$$

• At NLO the *t*EFT potential takes the form

$$\begin{array}{lll} V^{2b}_{NLO} &=& b_1q^2 + b_2q^2\,\sigma_1\cdot\sigma_2 + b_3q^2\,\tau_1\cdot\tau_2 + b_4q^2(\sigma_1\cdot\sigma_2)(\tau_1\cdot\tau_2) \\ &+& b_5k^2 + b_6k^2\,\sigma_1\cdot\sigma_2 + b_7k^2\,\tau_1\cdot\tau_2 + b_8k^2(\sigma_1\cdot\sigma_2)(\tau_1\cdot\tau_2) \\ &+& b_9i\frac{1}{2}(\sigma_1+\sigma_2)(k\times q) + b_{10}\,\tau_1\cdot\tau_2i\frac{1}{2}(\sigma_1+\sigma_2)(k\times q) \\ &+& b_{11}(\sigma_1\cdot q)(\sigma_2\cdot q) + b_{12}\,\tau_1\cdot\tau_2(\sigma_1\cdot q)(\sigma_2\cdot q) \\ &+& b_{13}(\sigma_1\cdot k)(\sigma_2\cdot k) + b_{14}\,\tau_1\cdot\tau_2(\sigma_1\cdot k)(\sigma_2\cdot k) \end{array}$$

- The incoming particle have relative momentum *p*, the outgoing *p*'.
- The momentum transfer q = p' p, and k = (p' + p)
- Nonlocalities are associated with *k*.
- The power counting changes for a shallow s-wave dimer.

J. Kirscher, H. W. Griesshammer, D. Shukla, H. M. Hofman, arXiv: 0903.5583 A. Gezerlis, I. Tews, E. Epelbaum, S. Gandolfi, K. Hebeler, A. Nogga, A. Schwenk, PRL **111**, 032501

P'

V

Conclusions

-P'

-P

*π***EFT Potential at NLO**

• At LO the #EFT potential takes the form

$$V_{LO}^{2b} = a_1 + a_2 \,\boldsymbol{\sigma}_1 \cdot \boldsymbol{\sigma}_2 + a_3 \,\boldsymbol{\tau}_1 \cdot \boldsymbol{\tau}_2 + a_4 (\boldsymbol{\sigma}_1 \cdot \boldsymbol{\sigma}_2) (\boldsymbol{\tau}_1 \cdot \boldsymbol{\tau}_2)$$

• The leading order also contains a 3-body term of the form

$$V_{LO}^{3b} = D_1 \boldsymbol{\tau}_1 \cdot \boldsymbol{\tau}_2 \quad \text{or} \qquad V_{LO}^{3b} = D_1$$

• At NLO the *t*EFT potential takes the form

$$\begin{array}{lll} V^{2b}_{NLO} &=& b_1q^2 + b_2q^2\,\sigma_1\cdot\sigma_2 + b_3q^2\,\tau_1\cdot\tau_2 + b_4q^2(\sigma_1\cdot\sigma_2)(\tau_1\cdot\tau_2) \\ &+& b_5k^2 + b_6k^2\,\sigma_1\cdot\sigma_2 + b_7k^2\,\tau_1\cdot\tau_2 + b_8k^2(\sigma_1\cdot\sigma_2)(\tau_1\cdot\tau_2) \\ &+& b_9i\frac{1}{2}(\sigma_1+\sigma_2)(k\times q) + b_{10}\,\tau_1\cdot\tau_2i\frac{1}{2}(\sigma_1+\sigma_2)(k\times q) \\ &+& b_{11}(\sigma_1\cdot q)(\sigma_2\cdot q) + b_{12}\,\tau_1\cdot\tau_2(\sigma_1\cdot q)(\sigma_2\cdot q) \\ &+& b_{13}(\sigma_1\cdot k)(\sigma_2\cdot k) + b_{14}\,\tau_1\cdot\tau_2(\sigma_1\cdot k)(\sigma_2\cdot k) \end{array}$$

- The incoming particle have relative momentum *p*, the outgoing *p*'.
- The momentum transfer q = p' p, and k = (p' + p)
- Nonlocalities are associated with *k*.
- The power counting changes for a shallow s-wave dimer.

J. Kirscher, H. W. Griesshammer, D. Shukla, H. M. Hofman, arXiv: 0903.5583 A. Gezerlis, I. Tews, E. Epelbaum, S. Gandolfi, K. Hebeler, A. Nogga, A. Schwenk, PRL **111**, 032501

*π***EFT Potential at NLO**

• At LO the #EFT potential takes the form

$$V_{LO}^{2b} = a_1 + a_2 \, \boldsymbol{\sigma}_1 \cdot \boldsymbol{\sigma}_2 + a_3 \, \boldsymbol{\tau}_1 \cdot \boldsymbol{\tau}_2 + a_4 (\boldsymbol{\sigma}_1 \cdot \boldsymbol{\sigma}_2) (\boldsymbol{\tau}_1 \cdot \boldsymbol{\tau}_2)$$

• The leading order also contains a 3-body term of the form

$$V_{LO}^{3b} = D_1 \boldsymbol{\tau}_1 \cdot \boldsymbol{\tau}_2 \quad \text{or} \qquad V_{LO}^{3b} = D_1$$

• At NLO the *t*EFT potential takes the form

$$\begin{array}{lll} V^{2b}_{NLO} &=& b_1q^2 + b_2q^2\,\sigma_1\cdot\sigma_2 + b_3q^2\,\tau_1\cdot\tau_2 + b_4q^2(\sigma_1\cdot\sigma_2)(\tau_1\cdot\tau_2) \\ &+& b_5k^2 + b_6k^2\,\sigma_1\cdot\sigma_2 + b_7k^2\,\tau_1\cdot\tau_2 + b_8k^2(\sigma_1\cdot\sigma_2)(\tau_1\cdot\tau_2) \\ &+& b_9i\frac{1}{2}(\sigma_1+\sigma_2)(k\times q) + b_{10}\,\tau_1\cdot\tau_2i\frac{1}{2}(\sigma_1+\sigma_2)(k\times q) \\ &+& b_{11}(\sigma_1\cdot q)(\sigma_2\cdot q) + b_{12}\,\tau_1\cdot\tau_2(\sigma_1\cdot q)(\sigma_2\cdot q) \\ &+& b_{13}(\sigma_1\cdot k)(\sigma_2\cdot k) + b_{14}\,\tau_1\cdot\tau_2(\sigma_1\cdot k)(\sigma_2\cdot k) \end{array}$$

- The incoming particle have relative momentum *p*, the outgoing *p*'.
- The momentum transfer q = p' p, and k = (p' + p)
- Nonlocalities are associated with *k*.
- The power counting changes for a shallow s-wave dimer.

J. Kirscher, H. W. Griesshammer, D. Shukla, H. M. Hofman, arXiv: 0903.5583 A. Gezerlis, I. Tews, E. Epelbaum, S. Gandolfi, K. Hebeler, A. Nogga, A. Schwenk, PRL 111, 032501

Lattice QCD EFT for Lattice N

clei EFT Potential at NLO

Few-Body Metho

Calibration

Predictions for LQCD Conclu

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○ ○

Due to antisymmetrization of the nuclear wave function

$$V_{LO}^{2b} = C_1^{LO} + C_2^{LO} \,\sigma_1 \cdot \sigma_2$$

• The leading order also contains a 3-body term of the form

$$V_{LO}^{3b} = D_1^{LO} \boldsymbol{\tau}_1 \cdot \boldsymbol{\tau}_2 \qquad \text{or} \qquad V_{LO}^{3b} = D_1^{LO}$$

• Using the freedom to choose these parameters we set

$$\begin{split} V_{\text{NLO}}^{2b} &= \ C_1^{\text{NLO}} q^2 + C_2^{\text{NLO}} q^2 \, \boldsymbol{\sigma}_1 \cdot \boldsymbol{\sigma}_2 + C_3^{\text{NLO}} q^2 \, \boldsymbol{\tau}_1 \cdot \boldsymbol{\tau}_2 + C_4^{\text{NLO}} q^2 (\boldsymbol{\sigma}_1 \cdot \boldsymbol{\sigma}_2) (\boldsymbol{\tau}_1 \cdot \boldsymbol{\tau}_2) \\ &+ C_5^{\text{NLO}} i \frac{1}{2} (\boldsymbol{\sigma}_1 + \boldsymbol{\sigma}_2) (\boldsymbol{k} \times \boldsymbol{q}) + C_6^{\text{NLO}} (\boldsymbol{\sigma}_1 \cdot \boldsymbol{q}) (\boldsymbol{\sigma}_2 \cdot \boldsymbol{q}) \\ &+ C_7^{\text{NLO}} \, \boldsymbol{\tau}_1 \cdot \boldsymbol{\tau}_2 (\boldsymbol{\sigma}_1 \cdot \boldsymbol{q}) (\boldsymbol{\sigma}_2 \cdot \boldsymbol{q}) \end{split}$$

- The antisymmetric potential V_{NLO} contains
 - 1. LO 2-body: 2 parameters.
 - 2. LO 3-body: 1 parameter.
 - 3. NLO: 7 parameters.
- At the moment we consider only LO.

Coordinate space

• We introduce gaussian cutoff in *q*

$$F_{\Lambda}(q) = e^{-q^2/\Lambda^2} \Longrightarrow F_{\Lambda}(r) = \left(\frac{\Lambda}{\sqrt{4\pi}}\right)^3 e^{-\Lambda^2 r^2/4}$$

• The potential matrix elements can be evaluated now

$$V(\mathbf{r},\mathbf{r}') = N\langle \mathbf{r} | \int d\mathbf{k} d\mathbf{q} V(\mathbf{k},\mathbf{q}) f_{\Lambda}(\mathbf{q}) | \mathbf{r}' \rangle$$

= N' V(-i\nabla_y, -i\nabla_x) e^{-\Lambda^2 x^2/4} \delta(\mathbf{y})

where

$$x = \frac{1}{2}(r+r')$$
; $y = \frac{1}{2}(r'-r)$

• The LO potential contains no momentum dependence therefore

$$V_{LO}^{2b}(r) = \left(C_1^{LO} + C_2^{LO} \,\sigma_1 \cdot \sigma_2\right) e^{-\Lambda^2 r^2/4}$$

- With our choice of parameterization also V_{NLO} is local.
- The 3-body term takes the form

$$V_{LO}^{3b} = D_1^{LO} \boldsymbol{\tau}_1 \cdot \boldsymbol{\tau}_2 e^{-\Lambda^2 (r_{13}^2 + r_{23}^2)} \quad \text{or} \quad V_{LO}^{3b} = D_1^{LO} e^{-\Lambda^2 (r_{13}^2 + r_{23}^2)}$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

The Hamiltonian

At leading order the coordinate space Hamiltonian is

$$\begin{split} H &= -\sum_{i} \frac{\hbar^{2}}{2M_{n}} \nabla_{i}^{2} + \sum_{i < j} \left(C_{1}^{LO}(\Lambda) + C_{2}^{LO}(\Lambda) \, \boldsymbol{\sigma}_{i} \cdot \boldsymbol{\sigma}_{j} \right) e^{-\Lambda^{2} r_{ij}^{2}} \\ &+ \sum_{i < j < k} \sum_{cyc} D_{1}^{LO}(\Lambda) \left(\boldsymbol{\tau}_{i} \cdot \boldsymbol{\tau}_{j} \right) e^{-\Lambda^{2} (r_{ik}^{2} + r_{jk}^{2})} \end{split}$$

In the 3-body term the notation \sum_{cyc} stands for cyclic permutation of particles (*ijk*).

Few-body arsenal

- 1. Numerov, A = 2
- 2. The Effective Interaction Hypershperical Harmonics (EIHH) method, $3 \le A \le 6$
- 3. The Resonating Group Method (RGM), $A \le 6$
- 4. The Auxiliary Field Diffusion Monte-Carlo (AFDMC) method, $A \ge 2$

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ 臣 - のへで

The "Experimental" data

There are 4 input parameters in our model:

1. The nucleon mass M_n

Dis disconstruction [M-37]

2. LECs: $C_1^{LO}(\Lambda, m_\pi)$, $C_2^{LO}(\Lambda, m_\pi)$, $D_1^{LO}(\Lambda, m_\pi)$

binding energies [wev]			
	Nature	Yamazaki	NPLQCD
π	139.6	510.0	805.0
n	939.6	1320.0	1634.0
р	938.3	1320.0	1634.0
nn	-	7.4 ± 1.4	15.9 ± 3.8
D	2.224	11.5 ± 1.3	19.5 ± 4.8
³ H	8.482	20.3 ± 4.5	53.9 ± 10.7
³ He	7.718	20.3 ± 4.5	53.9 ± 10.7
⁴ He	28.30	43.0 ± 14.4	107.0 ± 24.2

Scattering data @800MeV [fm]

NPLQCD Collaboration, PRD 87 034506 (2013), hep-lat/1301.5790v1 T. Yamazaki, K. Ishikawa, Y. Kuramashi, and A. Ukawa, Phys. Rev. D 86 (2012) 074514.

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 ● のへぐ

The "Experimental" data

There are 4 input parameters in our model:

- 1. The nucleon mass M_n
- 2. LECs: $C_1^{LO}(\Lambda, m_\pi)$, $C_2^{LO}(\Lambda, m_\pi)$, $D_1^{LO}(\Lambda, m_\pi)$

	Nature	Yamazaki	NPLQCD
π	139.6	510.0	805.0
n	939.6	1320.0	1634.0
р	938.3	1320.0	1634.0
nn	-	7.4 ± 1.4	15.9 ± 3.8
D	2.224	11.5 ± 1.3	19.5 ± 4.8
^{3}H	8.482	20.3 ± 4.5	53.9 ± 10.7
³ He	7.718	20.3 ± 4.5	53.9 ± 10.7
⁴ He	28.30	43.0 ± 14.4	107.0 ± 24.2

Binding energies [MeV]

Scattering data @800MeV [fm]

	Nature	NPLQCD
π	139.6	805.0
a ₃₁	5.423 ± 0.005	1.82 ± 0.22
r_{31}	1.73 ± 0.02	0.91 ± 0.11
<i>a</i> ₁₃	-23.715 ± 0.015	2.33 ± 0.33
r ₁₃	2.73 ± 0.03	1.13 ± 0.10

NPLQCD Collaboration, PRD 87 034506 (2013), hep-lat/1301.5790v1 T. Yamazaki, K. Ishikawa, Y. Kuramashi, and A. Ukawa, Phys. Rev. D 86 (2012) 074514.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

• The 2-body potential is diagonal in the *S*, *T* basis.

$$\begin{split} V^{LO}_{S,T}(r;\Lambda) &= \langle S,T|V^{LO}(r;\Lambda)|S,T\rangle \\ &= \left\{ C^{LO}_1(\Lambda) + [2S(S+1)-3]C^{LO}_2(\Lambda) \right\} F_{\Lambda}(r) \\ &\equiv C^{LO}_{ST}(\Lambda)F_{\Lambda}(r) \end{split}$$

- $C_{ST}^{LO}(\Lambda)$ are fitted to the D, nn B.E.

$$a_{\rm s} \approx 1/\sqrt{m_{\rm N}B}$$

・ロット (同) ・ (日) ・ 日) ・ 日 ・

• The 2-body potential is diagonal in the *S*, *T* basis.

$$\begin{split} V^{LO}_{S,T}(r;\Lambda) &= \langle S,T|V^{LO}(r;\Lambda)|S,T \rangle \\ &= \left\{ C^{LO}_1(\Lambda) + [2S(S+1)-3]C^{LO}_2(\Lambda) \right\} F_{\Lambda}(r) \\ &\equiv C^{LO}_{ST}(\Lambda)F_{\Lambda}(r) \end{split}$$

- $C_{ST}^{LO}(\Lambda)$ are fitted to the D, nn B.E.
- Summing the bubble diagrams

We expect to get

$$a_s \approx 1/\sqrt{m_N B}$$

$$a_{S=0,T=1}^{LO} = 1.2 \pm 0.12 \text{ fm}$$

 $a_{S=1,T=0}^{LO} = 1.1 \pm 0.11 \text{ fm}$

$$a^{LO}_{S=0,T=1} = 2.33 \pm 0.33 \text{ fm}$$

 $a^{LO}_{S=1,T=0} = 1.82 \pm 0.22 \text{ fm}$

(日) ъ

• The 2-body potential is diagonal in the *S*, *T* basis.

$$\begin{split} V_{S,T}^{LO}(r;\Lambda) &= \langle S,T|V^{LO}(r;\Lambda)|S,T\rangle \\ &= \left\{C_1^{LO}(\Lambda) + [2S(S+1)-3]C_2^{LO}(\Lambda)\right\}F_{\Lambda}(r) \\ &\equiv C_{ST}^{LO}(\Lambda)F_{\Lambda}(r) \end{split}$$

- $C_{ST}^{LO}(\Lambda)$ are fitted to the D, nn B.E.
- Summing the bubble diagrams

· We expect to get

$$a_{\rm s} \approx 1/\sqrt{m_N B}$$

• For LQCD@ $m_{\pi} = 800 MeV$

EFT

$$a^{LO}_{S=0,T=1} = 1.2 \pm 0.12 \text{ fm}$$

 $a^{LO}_{S=1,T=0} = 1.1 \pm 0.11 \text{ fm}$

NPLQCD

$$a^{LO}_{S=0,T=1} = 2.33 \pm 0.33 \text{ fm}$$

 $a^{LO}_{S=1,T=0} = 1.82 \pm 0.22 \text{ fm}$

< ロ > < 同 > < 回 > < 回 >

- The 2-body LECs are monotonic in Λ
- · They seems to be also monotonic in m_{π}
- Only weak dependence on m_π
- For $\Lambda \approx 2 3 \text{ fm}^{-1}$ the potential is roughly a constant

(日) э

ew-Body Methods

Calibration

Predictions for LQCD (

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Conclusions

The 2-body scattering length

Few-Body Methods

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ 臣 - のへで

Conclusions

Calibration of D₁

⁴He binding energy without NNN force

Λ	EIHH	AFDMC
$[fm^{-1}]$	[MeV]	[MeV]
2.0	-256.8	-256.9
4.0	-478.3	-478.2
6.0	-767.1	-766.4
8.0	-1122.9	-1120.8
LQCD	-107.0 ± 24.2	

- The span in the binding energies is reflected in the parameters
- We shall use only the central values

Predictions for LQCD Co

Conclusions

Calibration of D₁

⁴He binding energy without NNN force

Δ	EIHH	AFDMC
$[fm^{-1}]$	[MeV]	[MeV]
2.0	-256.8	-256.9
4.0	-478.3	-478.2
6.0	-767.1	-766.4
8.0	-1122.9	-1120.8
LQCD	-107.0 ± 24.2	

- The span in the binding energies is reflected in the parameters
- We shall use only the central values

ヘロト 人間 ト 人 ヨト 人 ヨトー

æ –

Few-Body Methods

Predictions for LQCD Conc

Conclusions

Calibration of *D*₁

⁴He binding energy without NNN force

Λ	EIHH	AFDMC
$[fm^{-1}]$	[MeV]	[MeV]
2.0	-256.8	-256.9
4.0	-478.3	-478.2
6.0	-767.1	-766.4
8.0	-1122.9	-1120.8
LQCD	-107.0 ± 24.2	

- The span in the binding energies is reflected in the parameters
- We shall use only the central values

ヘロト 人間 ト 人 ヨト 人 ヨトー

æ

 m_{π} dependence

- For the various m_{π} 's D_1 presents different Λ dependence.
- D_1 is **NOT** monotonic in m_{π}
- This can be an indication for a limit cycle.

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 – 釣�?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Predictions/Postdictions

Possible predictions/postdictions

- The nuclear land scape **non-physical** m_{π}
- Form factors
- Scattering parameters
- ...

Predictions/Postdictions

The binding energy of ⁴He

Λ	EIHH	AFDMC
$[fm^{-1}]$	[MeV]	[MeV]
2.0	-89.2(1)	-87.7(1)
4.0	-93.6(1)	-93.3(2)
6.0	-99.7(3)	-99.2(2)
8.0	-105.0(12)	-110.3(2)
LQCD	-107.0 ± 24.2	

- The ⁴He energy comes in accord with the LQCD simulations.
- It has residual cutoff dependence.
- The radii of D, ³He, ⁴He exhibits strong cutoff dependence.
- These issues might be artifacts of our "local" formalism.

イロト イ理ト イヨト イヨト

3

Predictions/Postdictions

The binding energy of ⁴He

Λ	EIHH	AFDMC
$[fm^{-1}]$	[MeV]	[MeV]
2.0	-89.2(1)	-87.7(1)
4.0	-93.6(1)	-93.3(2)
6.0	-99.7(3)	-99.2(2)
8.0	-105.0(12)	-110.3(2)
LQCD	-107.0 ± 24.2	

- The ⁴He energy comes in accord with the LQCD simulations.
- It has residual cutoff dependence.
- The radii of D, ³He, ⁴He exhibits strong cutoff dependence.
- These issues might be artifacts of our "local" formalism.

Sac

э

The Tjon lines

Comments

- The Tjon line is the observed correlation between the triton and ⁴He binding energies.
- It was discovered to be a universal property of bosons with large scattering length.

A. Nogga, H. Kamada, W. Glokle, ArXiv/nucl-th/0004023v2 (2000).

L. Platter, H.-W. Hammer, U.-G. Meiner, Phys. Lett. B 607, 254 (2005).

The Tjon lines

Comments

- The Tjon line is the observed correlation between the triton and ⁴He binding energies.
- It was discovered to be a universal property of bosons with large scattering length.

A. Nogga, H. Kamada, W. Glokle, ArXiv/nucl-th/0004023v2 (2000).

L. Platter, H.-W. Hammer, U.-G. Meiner, Phys. Lett. B 607, 254 (2005).

Conclusions

The Phillips line

Comments

- The Phillips line is the correlation between the triton binding energy and the *nd* doublet scattering length.
- Again it was proven to be a universal feature.

V. Efimov, Yad. Fiz. 47, 29 (1988).

P. F. Bedaque and U van Kolck, Phys. Lett. B 428, 221 (1998).

Predictions for LQCD

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Conclusions

Few more predictions

Binding energies of the Light nuclei

nuclei	LQCD	EFT $\Lambda = 2 \text{ fm}^{-1}$
D	-19.5 ± 4.8	-19.5
nn	-15.9 ± 3.8	-15.9
³ H, ³ He	$\textbf{-53.9} \pm 10.7$	-53.9
³ n, ³ p		unbound
⁴ He	-107.0 \pm 24.2	-89.2
${}^{4}\mathrm{He}J^{\pi}=2^{+}$		-66 (?)
⁵ He		-98.2
⁶ Li		-121.(3)

Saturation Energy on the Lattice

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = 釣�(♡)

Summary and Conclusions

- Lattice QCD simulations of few-nucleon systems open up a new front in nuclear physics.
- /tEFT is the appropriate theory to study these Lattice Nuclei, down to rather small pion masses.
- Fitted to recent LQCD data we found that \neq EFT@LO reproduces the ⁴He binding energy for $m_{\pi} = 500,800$ MeV within error bars.
- The LECs depend weakly on m_{π} .
- A challange for LQCD: the nd scattering length.
- At LO we see problems with the nuclear radii and 2-body scattering lengths.
- Analysis of the $s \neq 0$ sector is underway.