Σ⁻ production in kaon absorptions by FINUDA

Alessandra Filippi – INFN Torino, Italy

Sphere meeting, Prague, Sept. 10, 2014

Outline

- Introduction: hyperon production in single/two nucleon kaon absorptions
- Free Σ production in FINUDA: signal extraction in Σ[±]π[∓] vs Σ⁻p reactions
 - Data features
 - production rates
- Σ⁻p: global fit to the data ⁶Li, ⁷Li (⁹Be, ¹³C, ¹⁶O)
 - Method: binned likelihood fits
 - Basic hypotheses (Quasi-Free dynamics)
 - Ingredients
 - Backgrounds and contaminations
 - Results and fits quality
 - Add-ons
- Conclusions

3

K⁻_{stop} absorption by one vs many nucleons

Σ^{-} signal extraction in FINUDA (⁶Li target)

- One charged pion, one neutron
- The π^{-} from the Σ^{-} decay has the largest momentum
- Σ^+ can decay at rest, Σ^- are always absorbed by the hit nucleus
- Study of the decay pion & the prompt particle (raw spectra)

particle	Momentum resolution (σ)	Det+rec efficiency
proton	1%	75%
π-	0.6%	73%
neutron	5%	3%

p momentum

Σ^{-} signal identification

reject events with unphysical missing mass
track fitting
vertex selection
Σ⁻ decay angle

 $n\pi^+\pi^-$

 π⁺π⁻ production/decay kinematic constraints

- reject events with unphysical missing mass
- track fitting
- vertex selection
- Λ rejection

Missing mass studies (K⁻⁶Li – (final state particles))

- pure QF $\Sigma^{-}\pi^{+}$ reaction: very little missing energy (~4%)
 - exclusive measurement (no missing π , N)
 - peak: ~3 MeV above physical threshold
 - width: $\sigma \sim 9$ MeV

 $n\pi^+\pi^-$

npπ

- large amount of unphysical events: neutron rescattering, reconstruction errors, misidentifications (wrong n, n/γ , ...)
 - missing mass resolution: σ ~ 10 MeV
 - inclusive Σ^-p reaction (all physical data) vs exclusive QF Σ^-p ("g.s. region")
 - QF reactions identifications: $\Sigma^{-}p_{\pi}$

"Exclusive" QF Σ p absorption

- Σ⁻p production recoiling against a nuclear system in its minimal mass configuration occurs when the absorption is *exactly* on a (pn) pair
- Many nucleon absorptions can also occur leaving the recoiling system in a fragmented/excited configuration with larger mass/energy
- Important effect especially for heavy nuclei (energy difference > 40 MeV/c²), but not negligible for lighter ones
- Missing mass resolution: 9-12 MeV/c²
 - The width of the missing mass band chosen for the selection is optimized to exclude the overlap of the fartest configurations
 - Unavoidable overlap with closer energy configurations: included in the rate calculation
 - "Ground state": minimal mass state within the experimental resolution (i.e., ~3σ)

Acceptance corrections

- Simulations of three particles with flat momenta in the relevant kinematic range of the reaction
 - O(10⁹) events simulated
- Event-by-event correction: each event is assigned a weight according to its location in phase space (9 coordinates/particle)
- Critical correction at edges: large statistical+systematic error
 - Cuts to reduce the total uncertainty at the phase space borders

Σ^{-} p: acceptance corrected spectra, Σ^{-} region selection – ⁶Li

Events selected in the ⁴He missing mass band distribute as expected by the QF Σ -p reaction

Σ^{-} p: acceptance corrected spectra proton and Σ^{-} momenta in all targets

Similar trends for both p and $(n\pi)$ momentum in all targets: QF Σ p reaction almost at rest

$\Sigma^{-}p$ emission rates in p-shell nuclei

- Emission rates: from the number of events in the $\Sigma^{\text{-}}$ peak, background subtracted
 - both for the inclusive and the exclusive sample
 - Inclusive measurement: integrated over the full phase space volume
 - corrected for the fraction of Σ -'s lost for nuclear capture (PLB 704 (2011), 474)
 - No correction for pion attenuation nor $\Sigma\Lambda$ conversion
- Measured rates are in agreement with older (few) data
 - New measurements for A > 6

$\Sigma^{\pm}\pi^{\mp}$ vs $\Sigma^{-}p$ emission rates: comparison

• $\Sigma^{\pm}\pi^{\mp}$ rates

- Remarkable decrease between ⁶Li-⁷Li and ¹²C-¹³C pairs
- less K⁻A stop centers available for these final states
- Σ⁻p "exclusive" rates
 - Same behavior: ⁶Li-⁷Li
 - Reduced probability of 2N vs 1N absorptions
- Signature of nuclear shell structure: one more neutron in external shell
- Surface behavior of interactions: little dependence on A (except ⁶Li – cluster structure)
- Σ⁻p inclusive reaction: about 1/3 of Σ[±]π[∓]

$\Sigma^{-}p$: a closer look to the data

Acceptance corrected invariant mass spectra of the $(n\pi)$ system, selected in the $(n\pi)$ mass band of the Σ (background included)

The distributions must be fitted taking into account several reactions and several other observables: GLOBAL FIT

$\Sigma^{-}p$ spectra global fit – the method

- Binned maximum likelihood fit to 11 1D experimental distributions
 - Wide redundance (and correlations)
 - Independent kinematic features (momenta, angles, energy/mass spectra) taken into account in one shot
- To be fitted: one single histogram (11 histograms in a row)

$\Sigma^{-}p$ spectra global fit – the method

- Fit ingredients: Monte Carlo histograms of several reactions producing $\Sigma^- p$ or $(n\pi^- p)$ in the final state, reconstructed through the same chain and acceptance corrected
 - Fitting several observables is crucial to take into account all the kinematic feature of each reaction
- Fit outputs:
 - fractions of each reaction
 - Goodness of fit estimators (give an indication on the quality of the hypothesis)
 - Histogram χ^2
 - Maximum (-minimum) (log) likelihood
- Minimization engine: MINUIT through TFractionFitter (or Roofit)

Σ^{-} p spectra global fit – the model

Two classes of Quasi-Free reactions are being considered:

- reactions with (Σ⁻p) pairs in the final state, recoiling against a nucleus in its ground state (or fragmented configuration)
 - $K_{stop}^{-}AZ \rightarrow \Sigma^{-}p^{A-2}(Z-1)$
 - $K_{stop}^{-}AZ \rightarrow \Sigma(1385)^{-}p^{-A-2}(Z-1) \rightarrow \Sigma^{-}p^{-}\pi^{0}A^{-2}(Z-1)$
 - $K_{stop}^{-}AZ \rightarrow \Sigma^{-}p \pi^{0}A^{-2}(Z-1)$
 - $K_{stop}^{-} AZ \rightarrow \Sigma p \pi^{+} A^{-2}(Z-2)$ (on pp pair)
 - $K_{stop}^{-} AZ \rightarrow \Sigma p^{-} A^{-2}(Z-1) + p$ rescattering
 - $K_{stop}^{-}AZ \rightarrow \Sigma_{pn}^{-}A^{-3}(Z-2)$ (on 3N or np pair in ³H substructure)
 - reactions leading to $(n\pi p)$ in the final state, leaking through the selection criteria and entering the Σ -mass window
 - $K_{stop}^{-} ZA \rightarrow \Sigma^{+}\pi^{-}A^{-1}(Z-1)$ (π^{+}/p misidentif.)
 - $K_{stop}^{-} ZA \rightarrow \Sigma^{0} \pi^{0} A^{-1}(Z-1)$ (y/n misidentif.)
 - $K_{stop}^{-} ZA \rightarrow \Sigma^{+}\pi^{-} n^{A-2}(Z-1)$ (2N absorption)
 - $K_{stop}^{-} ZA \rightarrow \Lambda n^{A-2}(Z-1)$
 - $K_{stop}^{-} {}^{Z}A \rightarrow \Sigma^{0}n^{A-2}(Z-1) \rightarrow \Lambda n\gamma^{A-2}(Z-1)$
 - $K_{stop}^{-} ZA \rightarrow \Sigma^{0}n^{A-2}(Z-1) \rightarrow \Lambda np^{A-3}(Z-2)$
 - $K_{stop}^{-} ZA \rightarrow \Sigma^{0}n^{A-2}(Z-1) \rightarrow \Lambda nn^{A-3}(Z-1)$
 - $K_{stop}^{-} Z A \rightarrow \Sigma^{-} n^{A-2} Z \rightarrow \Lambda nn^{A-2} Z$

Σ Λ conv. react

$\Sigma^{-}p$ spectra global fit – study of backgrounds

- Large systematic errors expected
 - Larger background contamination due to $n/\pi^0/\gamma$ misidentification
 - Similar detection+reconstruction efficiency for all neutrals:

 $-\epsilon_{n} = 3.5 \times 10^{-2}$

 $-~\epsilon_{\pi0}$ = (2.16 \pm 0.01) \times 10^{-2}

- ϵ_{γ} = (2.33 \pm 0.01) \times 10 $^{\text{-2}}$

- Kinematic cuts reduce the contamination of each background reaction to the level of $10^{-7}/K_{stop}$
- The only sizeable contribution from $(np\pi^{-})$ background reactions given by one-nucleon absorption: $K_{stop}^{-} {}^{z}A \rightarrow \Sigma^{+}\pi^{-} {}^{A-1}(Z-1)$
- No inverse $\Lambda\Sigma$ conversion taken into account (suppressed)
- Incoherent background component: mixture of QF reactions + conversion and/or rescattering not leading to Σ p in the final state

⁶Li: fit with QF reactions only, A_{g.s.}

4 main reactions describe most of the spectra – incoherent background at 15-20% level

- Not sensitive enough to separate $\Sigma^{-}p\pi^{0}$, $\Sigma(1385)^{-}p$ and $\Sigma^{-}p\pi^{-}$ contributions
- Sizeable contribution from Σ pn final state Imperfect fit at 2150 and 2300 MeV/c²

 $\chi_{R}^{2} = 1.42$

⁹Be: fit with QF reactions, $A_{g.s.} \chi_{R}^2 = 1.56$

- 3 main reactions describe most of the spectra incoherent background at 20% level
- pion momentum fit not satisfactory
- Sizeable contribution from Σ pn final state Missing strength at 2300 MeV/c²

⁷Li, ¹³C, ¹⁶O: fit with QF reactions only, A_{g.s.}

 $\Sigma^{-}p$ invariant mass π -p invariant mass 4 main reactions ٠ 7Li describe most of the 8000 Entries/10 MeV/c spectra - incoherent 6000 2 7000 background at 15-20% 6000 5000 level 5000 4000 Sizeable contribution • 4000 3000 from Σ pn final state -3000 2000 **Missing strength at** 2000 1000 2150 and 2300 MeV/c² 1000 2 2.2 2.3 2.35 2.25 1.15 1.35 1.2 1.25 1.3 1.4 1.45 (∑`p) invariant mass. GeV/c. mass prot-pion (MeV) $\chi_{\rm R}^2 = 1.24$ 2 main reactions 13 3500 3500 Entries/10 MeV/c s/10 MeV/c describe most of the 3000 3000 spectra 2500 2500 **Sizeable contribution** 2000 2000 LOW Statistics from Σ pn final state -1500 1500 Missing strength at ~2320 MeV/c² 1000 1000 5.04 500 $\chi_{\rm R}^2 = 0.61$ 1 1.05 1.1 1.15 1.2 1.25 1.3 1.35 1.4 1.45 1. invariant mass prot-pion (MeV) 2.3 2.35 (Σ[°]p) invariant mass, GeV/c 16 Entries/10 MeV/c 3 main reactions s/10 MeV/c describe most of the spectra Sizeable contribution LOW statistics from Σ^{-} pn final state - $\chi_{\rm R}^2 = 0.83$ 2.3 2.35 1.15 1.2 1.25 1.3 1.35 (Y`n) invariant mass. GeV/c invariant mass prot-pion (MeV)

Add-on #1: QF reactions with recoiling fragmented nucleus

1st test: add components with a **maximally fragmented system** produced in Σ⁻p QF

⁶Li, ⁷Li: fit with QF + recoiling fragmented configuration

(meaningful contributions for lighter targets – heavier: too displaced)

⁶Li: QF reaction recoiling against a totally fragmented system ~10%, g.s.:13%

- ⁷Li: QF reaction recoiling against a totally fragmented system ~5%, g.s.:15%
- Clear improvement of the ($\Sigma^{-}p$) mass region at 2320 MeV/c², still imperfect for ($\pi^{-}p$)

Add-on #2: extra component needed?

- Purpose: cusp effect at threshold? More exotic component?
- Additional hypothesis: a [K⁻pn] resonant state decaying into Σ^- p
- Parameterized through a Breit-Wigner distribution, with mass $m_{\Sigma-p}$ and width $\Gamma_{\Sigma-p}$ as floating parameters
- Two approaches:
 - Best fit search over a discrete 2D grid over $m_{\Sigma^{\text{-p}}}$ and width $\Gamma_{\Sigma^{\text{-p}}}$
 - For each $(m_{\Sigma^{-p}}, \Gamma_{\Sigma^{-p}})$ hypothesis a dedicated simulation must be performed
 - Very time consuming
 - modeling of phase space $(n\pi^{-}p)$ events imposing proper kinematic constraints
 - $(n\pi^{-}) \rightarrow \Sigma^{-}$
 - Back-to-back Σ^{-} p angle
 - Missing mass in the proper range
 - $(\Sigma^{-}p) \rightarrow$ Breit-Wigner with given mass and width, floating on a discrete grid
 - Fast localization of relative and absolute likelihood minima to have a rough indication of the region to be finer-tuned

$\Sigma^{-}p$ fits with additional resonant amplitude

- Once the correct minimum region has been spotted, a complete simulation may be performed to look after the effective best fit solution
- General observations:
 - for all targets the fits are **poorly sensitive to the width** of the resonant signal: narrow widths are preferred, all of them within the experimental resolution
 - Two minima: one below 2200 MeV/c², the second (absolute) around 2350 MeV/c²

Fits with QF (g.s. recoil) + [K⁻pn] resonant state

Summary and outlook

- Progress in the study of spectral composition in two-nucleon kaon absorptions on some p-shell nuclei: study of Σ^- emission
- K⁻[pn] $\rightarrow \Sigma^{-}p$ in several targets
 - Capture rate evaluations (useful for background estimations)
 - Detailed study of QF contributions to experimental spectra: global fits with QF reactions
 - Imperfect fits: several tests for add-on's done and planned
 - Fragmentation/excited recoiling nucleus effect? YES, needed!
 - 3N absorption quite sizeable: try to include 4N (α) absorption
 - Resonance in the (Σ -p) system? significance < 3σ (not promising)
 - Cusp effect at ΣN and/or $\Sigma N\pi$ threshold?
 - More complex $\Sigma/p/\pi$ rescatterings?
- New and interesting information on K⁻(np) absorption dynamics in nuclei