Hyperfragments from the lightest *p*-shell hypernuclei Recent progress and the next steps

- L. Majling, 1 O. Majlingova 2 and P. Bydžovsky 1
- ¹ Nuclear Physics Institute, Řež near Prague
- ² Czech Technical University, Prague

SPHERE Meeting Prague 10. IX. 2014

AGENDA

- 1. Motivation Experiment MAMI, JLab
- 2. Approach Shell Model
- 3. Extension $N_{\min}+2$
- 4. Suggestions

æ

Example : closed shell nuclei

¹²_AB : M. lodice *et al.*, PRL **99**, 052501 (2007)

¹⁶_AN : F. Cusanno *et al.*, PRL **103**, 202501 (2009)

L Majling SPHERE 2014

Example : Spectrum of $^{9}_{\Lambda}Be$

Spectrum of ${}^9_\Lambda$ Be measured using the (π^+, K^+) reaction. From O. Hashimoto and H. Tamura

Deciphering spectrum of $^{9}_{\Lambda}$ Be

⁸ Be :			
J^{π} ; T	$E_{\rm ex}$	shell model	"hole"
0 ⁺ ; 0	0.0	<i>s</i> ⁴ <i>p</i> ⁴ [44] S	p^{-1}
2 ⁺ ; 0	3.0	<i>s⁴ p⁴</i> [44] D	p^{-1}
2+; 0+1	16.7	<i>s</i> ⁴ <i>p</i> ⁴ [431]D	ρ^{-1}
2-;0	18.9	s ³ p ⁵ [44] P	s^{-1}
(1,2)-; 1	24.0	<i>s</i> ³ <i>p</i> ⁵ [431]P	s^{-1}
		1 .	

<ロト <部ト < 注ト < 注ト

æ

Jefferson Lab Hall A Collaboration arXiv:1405.5839

Pochodzalla, Acta Phys.Polon. (2011):

	(⁶ Li)	7∧Li	⁸ ∆Li	⁹ ΛLi
	3n	2n	<i>n</i>	Λ
	19.0	12.2	3.7	8.5
⁴ _Λ He	⁵ ЛНе	⁶ ЛНе	⁷ ΛHe	⁸ AHe
<i>tnn</i>	<i>tn</i>	<i>t</i>	<i>d</i>	<i>p</i>
31.5	9.9	9.7	13.0	13.8
³ _A H ⁶ He 18.2	⁴ _Λ Η ⁵ He 11.8	(⁵ _A H) ⁴ He	⁶ дН ³ Не 38.5	(⁷ _A H) 2p

aP ► < E

Seminal papers Gal, Soper, Dalitz, AP **63** (1971), **72** (1972) **113** (1978) $\Psi(^{A+1}_{\Lambda}Z) = \Psi(^{A}Z) \cdot \psi^{\Lambda}$ "weak coupling"

for *p*-shell hypernuclei: $\underbrace{|s^4 \ p^{A-4} : J_A^{\pi} T_A}_{A} \otimes s_{\Lambda} : J >$

Cohen Kurath,

Discrete part of spectra ($0\hbar\omega$ excitations) : Millener, Lecture Notes in Physics, vol. 724, 2007, Springer EXCITED nuclear states:

 $\begin{array}{c|c} \mathsf{LS \ coupling} \\ |0s^{ks}[f_s] & 1p^{kp}[f_p] & \ell^{k\ell}[f_\ell] : & \underline{[f]} & \underline{(\lambda\mu)} & : J > \\ & & TS & L \\ Wigner(1939) & & SU(4) & SU(3) & & Elliott(1968) \end{array}$

 $ks + kp + k\ell = A$ $\ell = 2d, 2s; 3f, 3p; ...$

Excited states of *p*-shell nuclei

$0\hbar\omega_N~(k)$:			
$ 0s^{4}[4] \ 1p^{k}[f_{p}]$		$: [f_A](\lambda \mu) >$	$= \Phi_k^{(A)}[f_A](\lambda\mu) \cdot \Psi_0(R_A)$
		$[f_A] = [4f_p]$	
$1\hbar\omega_{N}\;(k+1)$:			
$ 0s^{4}[4] \ 1p^{k-1}[f_{p}]$	2d [1]	: $[f_A](\lambda \mu) >$	$\Phi_k^{(A)}[f_A](\lambda\mu)\cdot\Psi_1(R_A)$
$ 0s^{3}[3] \ 1p^{k+1}[f'_{p}]$: $[f_A](\lambda \mu) >$	$\int \Phi_{k+1}^{(A)}[f_A](\lambda\mu) \cdot \Psi_0(R_A)$
		$[f_A] = [4f_p],$	$[3f'_{p}]$
$2\hbar\omega_N\;(k+2)$:			
$ 0s^{4}[4] \ 1p^{k-1}[f_{p}]$	3f [1]	: $[f_A](\lambda \mu) >$	$\Phi_k^{(A)}[f_A](\lambda\mu)\cdot\Psi_2(R_A)$
$ 0s^{4}[4] \ 1p^{k-2}[f'_{p}]$	$2d^2[f_d]$: $[f_A](\lambda \mu) >$	$\Phi_k^{(A)}[f_A](\lambda\mu)\cdot\Psi_2(R_A)$
$ 0s^{3}[3] \ 1p^{k} \ [f_{p}'']$	2d [1]	: [f_A] ($\lambda\mu$) >	$\Phi_{k+1}^{(\mathcal{A})}[f_{\mathcal{A}}](\lambda\mu)\cdot\Psi_{1}(R_{\mathcal{A}})$
$ 0s^2[2] \ 1p^{k+2}[f_p''']$: $[f_A](\lambda \mu) >$	$\Phi_{k+2}^{(A)}[f_A](\lambda\mu)\cdot\Psi_0(R_A)$
		$[f_{\mathcal{A}}] = [4f_{\mathcal{P}}],$	$[3f'_p], \ [2f''_p]$

Due to NON-CENTRAL forces, the wave function for the $^4\text{He}~J^{\pi}=0^+$ ground state is a mixture of $^1\mathrm{S}_0,~~^3\mathrm{P}_0,~$ and $~^5\mathrm{D}_0$ states

Recent calculations:

ref.	interaction	$^{11}S_0$	¹³ P ₀	$^{15}\mathrm{D}_{0}$
[1]	AV8':	85.7 %	0.4 %	13.9 %
[2]	AV18 + UIX:	83.2 %	0.8 %	16.0 %

[1] PR C 64, 044001 ('01) K. Kamada *et al.*: Benchmark test calculation of a 4N bound state

[2] PR C 65 054003 ('02) A. Nogga *et al.*: The α particle based on modern forces

$$^{15}D_0$$
: $|0s^2 \ 1p^2 : [22] >$

Excited states of *p*-shell HYPERNUCLEI:

 $\hbar\omega: \hbar\omega_{k} + \hbar\omega_{\Lambda}$ $\Phi_{\nu}^{(A)} \cdot \varphi_{0}^{\Lambda}(R_{A} - r_{\Lambda})$ $(\varphi_0^{\Lambda} \equiv 0 s_{\frac{1}{2}}^{\Lambda})$ 0 + 00 0+1 $\Phi_{k}^{(A)} \cdot \varphi_{1}^{\Lambda}$ $(arphi_1^{\Lambda}\equiv 1
ho_{rac{3}{2}}^{\Lambda},\ 1
ho_{rac{1}{2}}^{\Lambda})$ 1 $\Phi_{k+1}^{(A)} \cdot \varphi_0^{\Lambda}$ 1 + 0 $\Phi_k^{(A)} \cdot \varphi_2^{\Lambda}$ $(\varphi_2^{\Lambda} \equiv 2d_{\frac{5}{2}}^{\Lambda}, \ 2d_{\frac{3}{2}}^{\Lambda}, \ 2s_{\frac{1}{2}}^{\Lambda})$ 2 0 + 2 $\Phi_{k+1}^{(A)} \cdot \varphi_1^{\Lambda}$ 1+1 $\Phi_{k+2}^{(A)} \cdot \varphi_0^{\Lambda}$ 2 + 0

N	⁶ He	$\Phi_N^{(6)}$	[<i>f</i> ₆]				$^{7}_{\Lambda}\mathrm{He}$	
2	$s^4 p^2$	$\Phi_2^{(6)}$	[42],			s _A	p_{Λ}	d_{Λ}
3	s ⁴ p d	$\Phi_3^{(6)}$	[42],				s _A	p_{Λ}
3	$s^3 p^3$	$\Phi_{3}^{(6)}$	[42],	[<u>3</u> 3],			s _A	p_{Λ}
4	s ⁴ p f	$\Phi_4^{(6)}$	[42],					sΛ
4	$s^4 d^2$	$\Phi_{4}^{(6)}$	[42],					sΛ
4	$s^3 p^2 d$	$\Phi_{4}^{(6)}$	[42],	[33],				S∧
4	$s^2 p^4$	$\Phi_{4}^{(6)}$	[42],	[33],	[<u>2</u> 22]			sΛ

æ

<ロト <部ト < 注ト < 注ト

Spectrum of $^{6}_{\Lambda}$ Li

deciphering:

$$p^{-1}s_{\Lambda}$$
 $p^{-1}p_{\Lambda}$ $s^{-1}s_{\Lambda}$
[41] [41] [32]

The (\mathbf{K}^-, π^-) spectrum of the ⁶_ALi production.

Cluster wave function in Shell Model

$$\Phi_{NA}^{(A)}[f_A](\lambda\mu)_A = \sum_{a} g^a g^b \phi_{na}^{(a)}[f_a](\lambda\mu)_a \phi_{nb}^{(b)}[f_b](\lambda\mu)_b \varphi_{\nu}(r_{a,b})$$

$$g^a(g^b): \text{ coefficient of fractional parentage for a (b) particles}$$

constrains:

$$na + nb + \nu = N_A$$

$$[f_a] + [f_b] = [f_A]$$

$$(\lambda \mu)_a + (\lambda \mu)_b + (\nu 0) = (\lambda \mu)_A$$

$$L_a + L_b = L_A$$

Hyper FRAGMENTS

Transformation of Jacobi coordinates:

$$=(rac{m_A+1}{m_A}rac{m_b}{m_b+1})^{rac{
u}{2}}$$

æ

P

Hyperfragments from $^{7}_{\Lambda}$ He

$\rm E_{th}$			$[f_c]$
2.82	$^{6}_{\Lambda}\mathrm{He}$	+ <i>n</i>	[41]
3.08	$^{5}_{\Lambda}\mathrm{He}$	+2n	[4]
5.23	$^{6}\mathrm{He}$	$+\Lambda$	[42]
6.95	$^{5}\mathrm{He}$	$+ \Lambda n$	[41]
15.49	${}^4_{\Lambda} \mathbf{H}$	+t	[3]
15.49 21.41	$^4_{\Lambda} H$	+ t + 3n	[3] [3]
15.49 21.41 23.66	$^4_{\Lambda} H$ $^4_{\Lambda} He$ $^3_{\Lambda} H$	+ t + 3n + tn	[3] [3] [2]

æ

- 《圖》 《문》 《문》

Hyperfragments from $^{9}_{\Lambda}$ Li

E_{thr}	d	ecay	/	$[f_i][f_k] = T_1 T_2$
3.7	п	+	⁸ ∆Li	$[43][1]$ $\frac{1}{2}\frac{1}{2}$
8.5	⁸ Li	+	٨	[431] 1 0
9.7	t	+	6∧He ↓	[3][41] $\frac{1}{2}\frac{1}{2}$
9.9	tn	+	$^{5}_{\Lambda}$ He	$[3][1][4]$ $\frac{1}{2}\frac{1}{2}0$
11.8	⁵ He	+	$^4_{\Lambda} \mathbf{H}$	[41][3] $\frac{1}{2}\frac{1}{2}$
12.2	2 <i>n</i>	+	7∧Li	[2][42] 1 0
13.0	d	+	$^7_{\Lambda}$ He	[2][42] 0 1
13.8	р	+	$^8_{\Lambda}$ He	$[1][421]$ $\frac{1}{2}\frac{3}{2}$
18.2	⁶ He	+	$^3_{\Lambda} \mathbf{H}$	[42][2] 1 0
31.5	tnn	+	$^4_{\Lambda}$ He	$[3][1][1][3] \frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}$
38.5	³ He	+	${}^{6}_{\Lambda}\mathbf{H}$	[3][32] <u>122</u> (D) (D) (D) (D)

æ

Some SUGGESTIONS for next steps:

- see for ${}^{4}_{\Lambda}$ H in other *p*-shell targets;
- see for ${}^{3}_{\Lambda}$ H in *p*-shell targets;
- ⁷Li is a source of ${}^{6}_{\Lambda}$ H hyperfragment.