Modelling the Kaon Production

Dalibor Skoupil, Petr Bydžovský

Nuclear Physics Institute of the ASCR Řež, Czech Republic

SPHERE Meeting 2014 September 9 - 11, 2014, Prague, Czech Republic

- Thanks to a rising value of α_s with decreasing energy the perturbation theory in QCD is not suited for small energies \rightarrow introduction of effective theories and models
- Models for description of elementary electroproduction of hyperons provide a useful tool in hypernuclear-physics calculations
- New precise data from LEPS, GRAAL and particularly from CLAS collaborations are available for tuning free parameters of the models
- Constituent Quark Model predicts more excited nucleon states than observed in the pion production experiments → "missing resonance" problem (some of these unobserved resonances can possibly play a role in the strangeness production channels)

$e + N \rightarrow e' + K + Y$

• 6 channels: N = p, n; $K = K^+$, K^0 ; $Y = \Lambda$, Σ^0 , Σ^+

• One-photon-exchange approximation allows the separation of leptonic and hadronic part of the process

Final state only with $K^+\Lambda$ discussed

- in the other channels, due to the production of Σ hyperon there should be Δ resonances included
- for n(γ, K⁰)Λ channel no data are available (experiments are running on deuteron targets)

 $p(p) + \gamma(k) \rightarrow K^+(p_K) + \Lambda(p_\Lambda)$

- In the case of photoproduction we study the reaction in the hadronic plane
- The threshold of the $p(\gamma, K^+)\Lambda$ process is $E_{\gamma}^{lab}=0.911\,{
 m GeV}$
- In the lowest order, the reaction is described through the exchange of intermediate states (resonances)
 - Since there is no dominant resonance, it is needed to consider a number of resonances with mass \leq 2 GeV (*third resonance region*)

- Resonance region dominated by resonant contributions (*N**)
- Many non-resonant contributions (exchange of p, K, Λ; K* and Y*)
 ⇒ background

Electroproduction cross section

$$\frac{\mathrm{d}^{3}\sigma}{\mathrm{d}E_{e'}\mathrm{d}\Omega_{e'}\mathrm{d}\Omega_{K}^{c.m.}} = \Gamma \Big[\sigma_{T} + \varepsilon \sigma_{L} + \varepsilon \sigma_{TT} \cos(2\varphi_{K}) + \sqrt{2\varepsilon_{L}(\varepsilon+1)} \sigma_{LT} \cos\varphi_{K} \Big]$$

Single-polarisation observables

Hyperon polarisation

$$P = \frac{\sigma^{(\lambda_{\Lambda} = +1)} - \sigma^{(\lambda_{\Lambda} = -1)}}{\sigma^{(\lambda_{\Lambda} = +1)} + \sigma^{(\lambda_{\Lambda} = -1)}}$$

Target polarisation

$$T = \frac{\sigma^{(\lambda_{p}=+1)} - \sigma^{(\lambda_{p}=-1)}}{\sigma^{(\lambda_{p}=+1)} + \sigma^{(\lambda_{p}=-1)}}$$

Beam asymmetry

$$\Sigma = \frac{\sigma^{(\perp)} - \sigma^{(\parallel)}}{2\sigma_{unpol}}$$

Double-polarisation observables

Beam-recoil polarisation

• γ and Λ polarised

Beam-target polarisation

• γ and p polarised

Target-recoil polarisation

• p and Λ polarised

Observable	No. of data	Collaboration	Year
cross section $d\sigma/d\Omega$	56	SLAC	1969
	720	SAPHIR	2004
	1377	CLAS	2006
	12	LEPS	2007
	2066	CLAS	2010
beam asymmetry Σ	9	SLAC	1979
	45	LEPS	2003
	54	LEPS	2006
	4	LEPS	2007
	66	GRAAL	2007
target polarisation T	3	BONN	1978
	66	GRAAL	2008
hyperon polarisation P	7	DESY	1972
	233	CLAS	2004
	66	GRAAL	2007
	1707	CLAS	2010
C_x, C_z	320	CLAS	2007
$O_{\rm x}, O_{\rm z}$	132	GRAAL	2008

Ways of Describing the $p(\gamma, K^+)\Lambda$ Reaction

• Constituent Quark Model

- no need to introduce the resonances, they emerge naturally as excited states of the system
- "missing resonance" problem
- Chiral Perturbation Theory
 - limited to energies approximately 100 MeV above threshold
 - \rightarrow cannot describe physics in the resonance region
 - $\bullet\,$ contributions from resonances with spin higher than 3/2 cannot be reproduced

• Coupled-channel Analysis

- takes into account different intermediate processes occuring between the initial and final state (*e.g.* rescattering, final-state interaction)
- Regge-plus-resonance Model
 - description in the energy range from threshold up to $E_{\gamma}^{lab}pprox$ 16 GeV
 - the nonresonant part of the amplitude modeled by exchanges of $K^+(494)$ and $K^{*+}(892)$ trajectories
- Isobar Model

Isobar Model

- Use of effective hadron Lagrangian
- Satisfactory agreement with the data in the energy range $E_{\gamma}^{lab}=0.91-2.5\,{\rm GeV}$
- Coupling constants and SU(3)_f symmetry breaking

$$-4.4 \leq rac{g_{
m KLN}}{\sqrt{4\pi}} \leq -3.0, \ \ 0.8 \leq rac{g_{
m K\SigmaN}}{\sqrt{4\pi}} \leq 1.3$$

- Problem of large Born contributions (avoided in the RPR approach); solutions:
 - introduction of hyperon resonances in the *u*-channel (destructive interference with other background terms; Saclay-Lyon model)
 - introduction of hadronic form factors (Kaon-MAID model)
 - ignoring the ranges for $g_{K \wedge N}$ and $g_{K \Sigma N}$

Isobar Model Contributing Diagrams

Amplitude constructed as a sum of tree-level Feynman diagrams (higher-order contributions – rescattering, FSI – included by means of effective values of the coupling constants)

- background part: Born terms involving an off-shell proton (*s*-channel), kaon exchange (*t*) and hyperon exchange (*u*); non-Born terms: the exchange of (axial) vector kaon resonances (*t*) and hyperon resonances (*u*)
- resonant part: s- channel Feynman diagrams with nucleon resonances in the intermediate state

Isobar Model Considered Resonances: An Overview

	mass [MeV]	width [MeV]	spin	isospin	parity	Kaon-MAID	Saclay-Lyon	Gent IM	RPR-2007	RPR-2011A	RPR-2011B
K*(892)	892	50	1	1/2	-	\checkmark	\checkmark	\checkmark			
K ₁ (1270)	1270	90	1	1/2	+	\checkmark	\checkmark	\checkmark			
P ₁₁ (1440)	1440	300	1/2	1/2	+		\checkmark				
S ₁₁ (1535)	1535	150	1/2	1/2	-					\checkmark	\checkmark
S ₁₁ (1650)	1655	150	1/2	1/2	-	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark
P11(1710)	1710	100	1/2	1/2	+	\checkmark		\checkmark	\checkmark		\checkmark
P ₁₁ (1900)	1895	200	1/2	1/2	+					\checkmark	
P ₁₃ (1720)	1720	250	3/2	1/2	+	\checkmark	\checkmark	√	 ✓ 	\checkmark	\checkmark
D ₁₃ (1895)	1895	370	3/2	1/2	-	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark
P ₁₃ (1900)	1900	250	3/2	1/2	+				√	\checkmark	
D15(1675)	1675	150	5/2	1/2	-		\checkmark				
F ₁₅ (1680)	1685	130	5/2	1/2	+					\checkmark	
F ₁₅ (2000)	2000	140	5/2	1/2	+					\checkmark	
Λ(1405)	1405	50	1/2	0	-		~				
Λ(1600)	1600	150	1/2	0	+						
Λ(1800)	1800	300	1/2	0	-						
Λ(1810)	1810	150	1/2	0	+		\checkmark				
Λ(1520)	1520	16	3/2	0	-						
Λ(1890)	1890	100	3/2	0	+						
Σ(1660)	1660	100	1/2	1	+		\checkmark				
Σ(1750)	1750	90	1/2	1	-						
Σ(1670)	1670	60	3/2	1	-						

A number of contributing resonances results in several versions:

- Saclay-Lyon: hyperon resonances $\Lambda(1407)$, $\Lambda(1670)$, $\Lambda(1810)$, $\Sigma(1660)$; nucleon resonances $P_{11}(1440)$, $P_{13}(1720)$, $F_{15}(1680)$; no hadronic form factors
- *Kaon-MAID*: nucleon resonances only $S_{11}(1650)$, $P_{11}(1710)$, $P_{13}(1720)$ a $D_{13}(1895)$ "missing" resonance (both models include exchange of $K^*(890)$ and $K_1(1270)$)
- Gent Isobar Model, Adelseck-Saghai model, Mart et al., etc.

fig. from P. Vancraeyveld: Bayesian inference of the resonance content of $p(\gamma, K^+)\Lambda$, MESON 2012

Isobar Model Form Factors in the Isobar Model

- Hadrons have internal structure, vertices can not be treated as point-like interactions ⇒ use of form factors
- Effectively, the FF ensures that the resonant diagram does not contribute far form the mass pole of the exchanged particle
- With the FF the cut-off dependence is introduced to the cross section → the use of Gaussian and dipole FF creates an artificial cut-off value dependent peak
- The Gent group proposed a **multi-dipole-Gauss** FF as a solution
 - for $J_R = 1/2$ it reduces to the Gauss FF
 - for higher spin, the FF effectively increases the multiplicity of the propagator pole ensuring that the N^* resonates at $s = m_R^2$

Dalibor Skoupil (NPI Řež)

Modelling the Kaon Production

• The Rarita-Schwinger propagator for the spin-3/2 fields

$$S_{\mu\nu}(q) = \frac{q+m}{q^2 - m^2 + imf} P_{\mu\nu}^{(3/2)} - \frac{2}{3m^2} (q+m) P_{22,\mu\nu}^{(1/2)} + \frac{1}{\sqrt{3m}} \left(P_{12,\mu\nu}^{(1/2)} + P_{21,\mu\nu}^{(1/2)} \right)$$

- Formerly, inconsistent spin-3/2 \mathcal{L}_{int} were used \rightarrow propagation of unphysical spin-1/2 modes
- A consistent theory for interacting spin-3/2 fields formulated by V. Pascalutsa (Phys. Rev. D 58 (1998) 096002)
 → propagation of spin-3/2 modes only (spin-1/2 modes cancel in the amplitude)
- Pascalutsa's spin-3/2 formalism introduced to $N^*(3/2)$ as well as to $Y^*(3/2)$
- The spin-3/2-resonance coupling constants have different normalization factors in both prescriptions

$$G_{inc} \sim rac{g_{K\Lambda R} \, g_{\gamma pR}}{m_R}; \ \ G_{cons} \sim rac{g_{K\Lambda R} \, g_{\gamma pR}}{m_R^2 m_K (m_R + m_i)}, \ \ m_i \equiv m_p \ ext{or} \ m_\Lambda$$

Spin-3/2 modes operator

$$P^{(3/2)}_{\mu\nu} = g^{\mu\nu} - \frac{1}{3}\gamma^{\mu}\gamma^{\nu} - \frac{1}{3u}(qq^{\nu}\gamma^{\mu} + q^{\mu}\gamma^{\nu}q)$$

- *u* can be zero in the physical region
 ⇒ potentially dangerous term
- *u* vanishes in the amplitude

fig. from PhD Thesis of L. De Cruz

 $-f\varepsilon_{\mu\nu\lambda\rho}i\gamma_{5}\gamma^{\lambda}q^{\mu}p_{K}^{\rho}(q\!\!+\!m_{R})\frac{1}{3u}(q\!q^{\beta}\gamma^{\nu}\!+\!q^{\nu}\gamma^{\beta}q)[g_{1}q^{\alpha}(k_{\alpha}\varepsilon_{\beta}\!-\!k_{\beta}\varepsilon_{\alpha})\!+\!g_{2}q(k_{\beta}\varepsilon\!\!-\!k\!\!/\varepsilon_{\beta})]$

$$= \frac{-fg_2}{3} \varepsilon_{\mu\nu\lambda\rho} i\gamma_5 \gamma^\lambda q^\mu p_K^\rho (q + m_R) [\gamma^\nu k (q \cdot \varepsilon) - \gamma^\nu \varepsilon (q \cdot k)]$$

Isobar Model Fitting Procedure

Resonance selection

- K*: K*(892), K₁(1272)
- N^* : $S_{11}(1535)$, $S_{11}(1650)$, $P_{11}(1900)$, $P_{13}(1720)$, $P_{13}(1900)$, $D_{13}(1900)$, $F_{15}(1680)$, $F_{15}(2000)$...inspired by RPR2011 choice
 - inconsistent N*(3/2) \mathcal{L}_{int} : $\chi^2/n.d.f. \approx 2.7$; consistent: $\chi^2/n.d.f. \approx 1.8$
 - no $N^*(5/2) \Rightarrow \chi^2/n.d.f. \approx 2.2$; with $N^*(5/2) \Rightarrow \chi^2/n.d.f. \approx 1.8$
- Y*: Λ(1405), Λ(1600), Λ(1800), Λ(1810), Σ(1660), Σ(1750), Λ(1520), Λ(1890), Σ(1670)
 - interchanging $Y^*(1/2)$ with $Y^*(3/2)$ leads to reducing the Y^* coupling constant values by a factor of 10

20 to 25 free parameters:

- K* have vector and tensor couplings
- spin-1/2 resonance → 1 parameter; spin-3/2 and 5/2 resonance → 2 parameters
- 2 cut-off parameters for form factor

Around 3400 data points

- cross section (CLAS 2005 & 2010; LEPS, Adelseck-Saghai: Phys. Rev. C 42 (1990) 108)
- hyperon polarisation (CLAS 2010)
- beam asymmetry (LEPS)

Isobar Model Fitting Procedure

1	n96	n103	n65	n75	f1	f1 (inc)	f3	f4
g(S ₁₁ (1535))	0.39	0.55	0.51	0.43	0.51	0.57	0.45	0.44
g(S ₁₁ (1650))	-0.25	-0.28	-0.26	-0.22	-0.26	-0.28	-0.28	-0.27
g ₁ (P ₁₃ (1720))	0.08	0.08	0.09	0.07	0.09	0.05	0.10	0.10
g ₂ (P ₁₃ (1720))	0.01	0.01	0.01	0.01	0.01	0.66	0.01	0.01
$g_1(D_{13}(1895))$	0.06	0.08	0.10	0.14	0.10	0.10	0.10	0.11
$g_2(D_{13}(1895))$	0.04	0.04	0.06	0.08	0.06	0.05	0.06	0.06
$g(P_{11}(1900))$	0.27	0.18	0.11	0.15	0.11	0.05	0.28	0.32
$g_1(P_{13}(1900))$	0.10	0.09	0.09	0.08	0.09	0.12	0.07	0.07
g ₂ (P ₁₃ (1900))	0.04	0.03	0.03	0.02	0.03	0.68	0.03	0.03
g1(F15(2000))	—	—	-1.27	-1.34	-1.28	0.33	-0.73	-1.15
g ₂ (F ₁₅ (2000))	—	—	-0.83	-1.05	-0.83	-0.03	-0.51	-0.71
g ₁ (F ₁₅ (1680))	—	—	-2.63	-4.12	-2.56	0.12	-2.07	-2.99
g ₂ (F ₁₅ (1680))	—	—	-0.49	-1.93	-0.43	0.12	-0.92	-1.42
g(A(1405))	12.07	15.54	14.01	3.84	14.92	1.40	—	14.58
g(A(1600))	—	— —	—	-38.38		—		— —
g(A(1800))	-24.69	-28.81	-50.00	-50.00	-48.57	-49.99	39.89	—
g(A(1810))	50.00	90.00	50.00	50.00	49.89	46.70	—	—
g ₁ (A(1520))	—	—	—	—	—	—	-4.19	—
g ₂ (A(1520))	—	—	—	—			-1.69	—
g1((1890))	—	—	—	—		—	4.59	7.96
g ₂ (A(1890))	— —	—	—	—			-0.83	-1.04
g(Σ(1660))	-42.50	-76.89	-43.01	—	-42.97	-49.99	-7.67	-0.47
g(Σ(1750))	— —	—	15.60	45.48	11.66	68.78	—	—
$g_1(\Sigma(1670))$	—	—	—	—		—	9.89	3.62
g ₂ (Σ(1670))		—	—	—			4.00	1.30
\wedge_{bgr}	1.11	1.15	1.19	1.19	1.19	1.08	1.12	1.07
∧ _{res}	1.67	1.65	1.39	1.54	1.38	2.50	1.59	1.49
$\chi^2/n.d.f.$	2.22	2.15	1.77	1.66	1.77	2.71	1.76	1.77

One of the best results ightarrow model f4 with $\chi^2/n.d.f.=1.77$

- Resonances:
 - K*: K*+(892), K₁(1272)
 - N^* : $S_{11}(1535)$, $S_{11}(1650)$, $P_{11}(1900)$, $P_{13}(1720)$, $D_{13}(1895)$, $P_{13}(1900)$, $F_{15}(1680)$, $F_{15}(2000)$
 - Y*: Λ(1405), Σ(1660), Λ(1890), Σ(1670)
- Hadronic form factor of dipole shape

$$F_{dipole}(x) = \frac{\Lambda^4}{\Lambda^4 + (x - m_x^2)^2}$$

- cut-off parameter for background terms: $\Lambda_{\textit{bgr}} = 1.0671\,\text{GeV}$
- cut-off parameter for resonances: $\Lambda_{\text{res}}=1.4942\,\text{GeV}$

- For $\theta_K < 40^\circ$ predictions of the models differ (more apparent at larger energy)
- Factors concerning model behaviour for small angles:
 - hadron form factor (cut-off dependence: the lower the cut-off value the harder the cross-section suppression)
 - relative sign between vector and tensor coupling of kaon resonances
 - hyperon spin-1/2 resonances
 - nucleon spin-3/2 resonances with consistent formalism
- The lack of experimental data in the very-forward-angle region does not allow to test reliably the models

Dalibor Skoupil (NPI Řež)

Modelling the Kaon Production

SPHERE 2014 18 / 22

Figure : Forward-angle prediction of the background part of the model f4. The only significant contribution for $\theta_K^{c.m.} \leq 20^\circ$ stems from $Y^*(1/2)$.

Figure : Forward-angle prediction of N^* with spin 1/2, 3/2 and 5/2.

Figure : Contributions of background, different N^* and their combination with background terms to the cross-section prediction in the forward-angle region.

Dalibor Skoupil (NPI Řež)

Modelling the Kaon Production

- Main features of isobar models discussed
 - new consistent formalism for spin-3/2 resonances
 - unphysical lower-spin components vanish
 - the choice of contributing resonances and their role
 - consistent formalism for $N^*(3/2)$ gives lower χ^2 values
 - introducing $Y^*(3/2)$ leads to lower Y^* coupling constants
- Forward-angle predictions of the models (important for calculations of hypernuclei production cross sections) differ significantly
 - new precise data for $\theta_K^{c.m.} = 0 20^\circ$ and $W = 2 3 \,\text{GeV}$ needed to test the models and properly understand the reaction mechanism in this region

Back Up Isobar Model: Contributions of N^* and Background to the Cross Section

- Apart from background and resonant terms, the interference terms also contribute to the cross section
- Schematically:

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega} \sim |\mathbb{M}_{\textit{bgr}}|^2 + \mathrm{Re}\mathbb{M}_{\textit{bgr}}\mathbb{M}_{\textit{res}}^* + |\mathbb{M}_{\textit{res}}|^2$$

Dalibor Skoupil (NPI Řež)

Modelling the Kaon Production

Back Up Isobar Model: Reaction Amplitude

 Reaction amplitude consists of several s-, t- and u- channel (non-)Born contributions, i. e.

$$\mathbb{M} = \sum_{x} \mathbb{M}_{x}, ext{ where } x \equiv s, t, u, N^{*}, K^{*}, Y^{*}$$

• Each contribution can be written in the compact form

$$\mathbb{M}(p, p_{\Lambda}, k) = \bar{u}_{\Lambda}(p_{\Lambda})\gamma_5\left(\sum_{j=1}^{6} \mathcal{A}_j(s, t, u)\mathcal{M}_j\right)u_p(p),$$

where A_j are scalar amplitudes and M_j are gauge-invariant operators, *i. e.* $k_\mu M_i^\mu = 0$, of the form

$$\begin{split} \mathcal{M}_1 &= \frac{1}{2} \left[\not\!k \not\!\!\!\! \not \! \! \! - \not\!\!\!\! \not \!\!\! \not \!\!\! k \right], & \mathcal{M}_2 &= (p \cdot \varepsilon) - (k \cdot p) \frac{(k \cdot \varepsilon)}{k^2}, \\ \mathcal{M}_3 &= (p_\Lambda \cdot \varepsilon) - (k \cdot p_\Lambda) \frac{(k \cdot \varepsilon)}{k^2}, & \mathcal{M}_4 &= \not\!\!\! \not = (k \cdot p) - \not\!\!\!\! k (p \cdot \varepsilon), \\ \mathcal{M}_5 &= \not\!\!\! \not = (k \cdot p_\Lambda) - \not\!\!\! k (p_\Lambda \cdot \varepsilon), & \mathcal{M}_6 &= \not\!\!\! k (k \cdot \varepsilon) - \not\!\!\! \not = k^2. \end{split}$$

- Gauge invariance related to the principle of charge conservation
- Contributions from the *u*-channel Born and all non-Born terms are gauge invariant
- Problem arises for the *s* and *t* channel Born terms which are not individually gauge invariant:

$$\mathbb{M}_{Bs} = \bar{u}_{\Lambda}(p_{\Lambda})\gamma_{5} \left[\mathcal{A}_{1}\mathcal{M}_{1} + \mathcal{A}_{2}\mathcal{M}_{2} + \mathcal{A}_{4}\mathcal{M}_{4} + \mathcal{A}_{6}\mathcal{M}_{6} + \mathrm{i}eg_{\kappa\Lambda\rho}\frac{(k\cdot\varepsilon)}{k^{2}} \right] u_{\rho}(\rho),$$
$$\mathbb{M}_{Bt} = \bar{u}_{\Lambda}(p_{\Lambda})\gamma_{5} \left[\mathcal{A}_{2}\mathcal{M}_{2} + \mathcal{A}_{3}\mathcal{M}_{3} - \mathrm{i}eg_{\kappa\Lambda\rho}\frac{(k\cdot\varepsilon)}{k^{2}} \right] u_{\rho}(\rho),$$

- Gauge non-invariant term is canceled in the total amplitude
- \bullet Another problem emerges while introducing form factors at hadron vertex \to addition of contact term needed

 Using de Swart's convention for the unbroken SU(3)_f symmetry, one can determine the two main KYN couling constants as

$$g_{K\Lambda N} = \frac{-1}{\sqrt{3}} (3 - 2\alpha_D) g_{\pi NN}, \quad g_{K\Sigma N} = (2\alpha_D - 1) g_{\pi NN}$$

• It is known that the SU(3)_f symmetry is not exact, assuming the symmetry breaking at the level of 20% one gets the following ranges for the coupling constants (taking experimental value $g_{\pi NN}^2/4\pi = 14.4$ and $\alpha_D = 0.644$)

$$-4.4 \le rac{g_{K \wedge N}}{\sqrt{4\pi}} \le -3.0, \ \ 0.8 \le rac{g_{K \Sigma N}}{\sqrt{4\pi}} \le 1.3$$

• While introducing form factors, the gauge non-invariant terms in *s*and *t*-channel will no longer cancel

$$\mathbb{M}_{s-el} = F_s e \, g_{K\Lambda p} \bar{u}_{\Lambda}(p_{\Lambda}) \gamma_5 \frac{\not p + \not k + m_p}{s - m_p^2} \gamma^{\mu} u_p(p) \varepsilon_{\mu},$$

$$\mathbb{M}_{t} = F_{t} e g_{K \wedge p} \bar{u}_{\Lambda}(p_{\Lambda}) \gamma_{5} \frac{(2p_{K} - k)^{\mu}}{t - m_{K}^{2}} u_{p}(p) \varepsilon_{\mu}$$

• The remedy is to introduce a contact term of the form

$$\mathbb{M}_{contact} = eg_{K\Lambda p} \bar{u}_{\Lambda} \gamma_5 \left[\frac{2p^{\mu} + \not{k} \gamma^{\mu}}{s - m_p^2} (\hat{F} - F_s) + \frac{2p_K^{\mu}}{t - m_K^2} (\hat{F} - F_t) \right] u_p \varepsilon_{\mu}$$

• This ensures the gauge invariance:

$$k_{\mu}(\mathbb{M}_{s-el}^{\mu}+\mathbb{M}_{t}^{\mu}+\mathbb{M}_{contact}^{\mu})=0$$

Considered Λ*:

	mass [GeV]	width [GeV]	spin	isospin	parity
S ₀₁ (1405) 'L1'	1.405	0.050	1/2	0	-1
P ₀₁ (1600) 'L2'	1.600	0.150	1/2	0	1
S ₀₁ (1670) 'L3'	1.670	0.035	1/2	0	-1
<i>S</i> ₀₁ (1800) 'L4'	1.800	0.300	1/2	0	-1
P ₀₁ (1810) 'L5'	1.810	0.150	1/2	0	1

- Claim: dual role of Λ*
 - reducing the χ^2 value
 - keeping the hadronic cut-off parameter reasonably hard

Back Up Isobar Model: The Role of Hyperon Resonances

Λ^*	Λ_{bgr} [GeV]	$\chi^2/\text{n.d.f.}$	Λ*	Λ_{bgr} [GeV]	$\chi^2/n.d.f.$
no Λ*	0.55	1.38	L2+L3+L4	1.09	1.10
L1	0.64	1.29	L3+L4+L5	0.78	1.12
L2	0.90	1.26	L1+L3+L4	0.54	1.03
L3	0.66	1.42	L1+L4+L5	0.73	1.13
L4	0.65	1.49	L2+L4+L5	0.78	1.18
L5	0.87	1.25	L1+L3+L5	0.73	1.15
L1+L2	0.77	1.18	L1+L2+L5	0.75	1.16
L1+L3	0.62	1.41	L1+L2+L3	0.99	1.03
L1+L4	0.65	1.19	L2+L3+L5	0.76	1.17
L1+L5	0.75	1.15	L1+L2+L4	0.76	1.14
L2+L3	0.76	1.17	L1+L2+L3+L4	0.74	1.11
L2+L4	0.77	1.19	L2+L3+L4+L5	0.79	1.13
L2+L5	0.81	1.32	L1+L3+L4+L5	1.25	1.03
L3+L4	0.67	1.40	L1+L2+L4+L5	0.77	1.18
L3+L5	0.77	1.15	L1+L2+L3+L5	1.10	1.42
L4+L5	1.23	1.10	L1+L2+L3+L4+L5	0.98	1.12

Back Up Isobar Model: The Role of Hyperon Resonances

- Cross-section predictions of fit without L2 differ significantly from predictions of other fits
 - the difference caused mainly by the value of $\Lambda_{bgr} = 1.25$ (background terms weakly regularised) \rightarrow strong cut-off dependence

Hadronic form factors

- dipole: $F_{dipole}(x) = \frac{\Lambda^4}{\Lambda^4 + (x m_x^2)^2}$
- Gaussian: $F_{Gauss}(x) = \exp\left(-\frac{(x-m_x^2)^2}{\Lambda^4}\right)$
- Multi-dipole-Gauss:

$$F_{mG}(x) = \left[\frac{m_x^2 \tilde{\Gamma}^2}{(x - m_x^2)^2 + m_x^2 \tilde{\Gamma}^2}\right]^{J - 1/2} F_{Gauss}(x), \ \tilde{\Gamma}(J) = \frac{\Gamma}{\sqrt{2^{(1/2J) - 1}}}$$

HFF introduced by the method of Davidson and Workman

$$F = F_s(s) + F_t(t) - F_s(s)F_t(t)$$

- Framework for the high-energy ($E_{\gamma}^{lab} > 4 \, {\rm GeV}$) forward-angle kinematical region
- Instead of the exchange of single particles, the reaction dynamics is governed by the exchange of entire **Regge trajectories**
 - This is achieved by replacing the usual Feynman propagator of a single particle with a Regge one

$$rac{1}{t-m_X^2} o \mathcal{P}^X_{Regge}(lpha_X(t))$$

• The Regge amplitude can then be written as

$$\mathbb{M}_{Regge} = \beta_X \mathcal{P}_{Regge}^X(\alpha_X(t))$$

• The focus on the forward-angle kinematical region implies the exchange of kaonic trajectories in the *t*-channel

Back Up Regge Model: Regge Trajectories and Propagators

- Regge trajectory ≡ set of mesons sharing the same internal quantum numbers
- The *K*(494) and *K*^{*}(892) trajectories are dominant contributions to the high-energy amplitudes

 $\alpha_{K^+}(t) = 0.70 \, \text{GeV}^{-2}(t - m_{K^+}^2)$

$$\alpha_{K^*}(t) = 1 + 0.85 \, \text{GeV}^{-2}(t - m_{K^*(892)}^2)$$

• Corresponding Regge propagators are

$$\mathcal{P}_{Regge}^{K(494)}(s,t) = \frac{(s/s_0)^{\alpha_K(t)}}{\sin(\pi\alpha_K(t))} \frac{\pi\alpha'_K}{\Gamma(1+\alpha_K(t))} \left\{ \begin{array}{c} 1\\ e^{-i\pi\alpha_K(t)} \end{array} \right\}$$
$$\mathcal{P}_{Regge}^{K^*(892)}(s,t) = \frac{(s/s_0)^{\alpha_K^*(t)-1}}{\sin(\pi(\alpha_K^*(t)-1))} \frac{\pi\alpha'_K^*}{\Gamma(\alpha_K^*(t))} \left\{ \begin{array}{c} 1\\ e^{-i\pi(\alpha_K^*(t)-1)} \end{array} \right\}$$

Back Up Regge Model: Gauge Invariance Restoration

- Exchange of the *K*⁺(494) in the *t*-channel breaks gauge invariance
 - in the typical effective-Lagrangian theory, the Born terms do not individually obey gauge invariance, but their sum does
 - in addition to the K⁺(494) and K^{*+}(892) trajectory exchanges, the Regge amplitude should also include a contribution from the Reggeized electric part of the *s*-channel Born term

Regge amplitude

$$\mathbb{M}_{\textit{Regge}} = \mathbb{M}_{\textit{Regge}}^{\textit{K}^+} + \mathbb{M}_{\textit{Regge}}^{\textit{K}^{*+}} + \mathbb{M}_{\textit{Feyn}}^{\textit{p,el}} \cdot \mathcal{P}_{\textit{Regge}}^{\textit{K}^+} \cdot (s - m_p^2)$$

Back Up Regge-plus-resonance Model

- Description in the energy range from threshold up to $E_{\gamma}^{lab} \approx 16 \, {
 m GeV}$
- The nonresonant part of the amplitude modeled by exchanges of $K^+(494)$ and $K^{*+}(892)$ trajectories \rightarrow only three free parameters of background: $g_{K\Lambda p}, G_{K^*}^v, G_{K^*}^t$
 - the resonant part described by adding resonant *s*-channel diagrams with standard Feynman propagators
 - in the high-energy regime, all resonant contributions vanish (thanks to inclusion of a form factor at $K\Lambda R$ vertices) and only the Regge part of the amplitude remains

$$\mathcal{M}_{RPR} = \sum_{\mathcal{K}} \left(\begin{array}{c} \gamma & (\gamma K \mathcal{K}) & \zeta \\ \gamma & (\gamma K \mathcal{K}) & \zeta \\ \uparrow \alpha_{\mathcal{K}}(t) \\ p \\ p \\ (p \mathcal{K}Y) & Y \end{array} \right)_{Regge} + \sum_{R} \left(\begin{array}{c} \gamma & \zeta & \zeta \\ (\gamma p R) & \varphi \\ p \\ p \\ P \\ \end{array} \right)_{Feyn}$$

 $\bullet\,$ The unreasonably large Born contribution is absent $\to\,$ no hadronic form factors for the background needed

Dalibor Skoupil (NPI Řež)

Back Up

Regge-plus-resonance Model: Comparison with Isobar Models

- Bayesian analysis inspired us to construct new RF models assuming nucleon resonances S₁₁(1535), S₁₁(1650), P₁₁(1710), P₁₃(1720), D₁₃(1895) selected in the analysis
- Attention to the behaviour of the models in the forward-angle region have been paid
- Both models fitted to LEPS and CLAS cross sect data:
 - RPR-1 fitted to the whole angular range
 - RPR-2 fitted only to the forward-angle data $(\theta_K < 90^\circ)$
- Prediction of the models differ significantly for ka angles smaller than 40° (more apparent at larger energy)