

Status of the FOPI pp Beamtime

- Motivation
- Particle Reconstruction
- Inclusive Reconstruction
- Exclusive Reconstruction with kinematical Refit
 - Summary and Outlook

Motivation

Kaonic bound states

N* - Resonances

Production Mechanism: $p + p \rightarrow p + K^+ + \Lambda$

The Experiment

The Experiment

 σ (Start – RPC) : 200 ps S(Start – PLAWA) : 400 ps p-beam@3.1 GeV Target: 2cm Liquid Hydrogen 80 Million LVL2 Trigger Events

6

SilViO

Robert Münzer Leann

Leannis Meeting – Prag – May 2012

7

SiAViO

Silicon A-Vertexing and Identification Online

Polar angle of particles from \land decay

(pK⁺ Λ / K⁺ in RPC acceptance)

Particle Selection

Particle Identification

Kaon Identification

Calibration not final

Inclusive Reconstruction

Robert Münzer Leannis Meeting – Prag – May 2012

Robert Münzer Leannis Meeting – Prag – May 2012

Exlcusive Reconstruction

Modify Particle Track Parameters (mom, phi, theta) within error

to fulfill contraints.

Results: New Particle Track Parameters , χ^2

Diploma Thesis D. Pleiner

Vertex Constraints: Intersection p and π

Robert Münzer Leannis Meeting – Prag – May 2012

Vertex Constraints: Intersection p and K⁺

Vertex Constraints: Primary & Secondary Vertex

Exlcusive Reconstruction pp – Simulation (URQMD)

$$\begin{array}{l} \mathsf{E}_{\text{secproton}} \ + \ \mathsf{E}_{\text{pion}} \ + \ \mathsf{E}_{\text{primproton}} \ + \ \mathsf{E}_{\text{kaon}} \ = \ \mathsf{E}_{\text{beam}} \ + \ \mathsf{E}_{\text{target}} \\ \mathsf{p}_{\text{secproton}} \ + \ \mathsf{p}_{\text{pion}} \ + \ \mathsf{p}_{\text{primproton}} \ + \ \mathsf{p}_{\text{kaon}} \ = \ \mathsf{p}_{\text{beam}} \ + \ \mathsf{p}_{\text{target}} \end{array}$$

clus

Invariant mass (p, π)

Conservation + Mass Constraint

$$E_{secproton} + E_{pion} + E_{primproton} + E_{kaon} = E_{beam} + E_{target}$$

$$p_{secproton} + p_{pion} + p_{primproton} + p_{kaon} = p_{beam} + p_{target}$$

$$\{ (E,p)_{secproton} + (E,p)_{pion} \}^2 = M(\Lambda)^2$$

J

Invariant mass (p, π)

Missing Mass(p)

Exlcusive Reconstruction Data

Data

Energy & Momentum Contraint

N*

Systematical Errors

Robert Münzer

Leannis Meeting – Prag – May 2012

HELMHOLTZ GEMEINSCHAFT

Summary & Outlook

- Inclusive Lambda-Routine:
 - Lambda are visible in Semi Forward Kombination
 - Reduction Compareable with Simulations
- Exclusive Reconstruction tested with simulation
 - Event Selection: Refit is sensitive to Different Channels
 - Additional Constraints (Vertex) has to be tested.
 - Resolution can be improved signal: N* signal as a crosscheck
- Refit with Data
 - Pval Cut reduced Background of Exclusive Lambda.
 - N*- signal visble : Crosscheck of analysis
 - Problem: Systematical Errors
- New Calibration
 - Finished recently. Has to be tested.

Backup

Different Regions

<u>clus</u> ТЛП ES MU **Event Selection** Available tracks 5 4 2 3 1 Pi-Rough PID cand Cand cand cand cand 2 3 1 1 5 4 2 3 1

ТЛП

LMU

.ES∙

Lambda Preselection

Preselectio Option 2: 75% of Lambda Kombination are select

Main Fit

TUΠ

clus

Purity

ТШП

MU

HELMHOLTZ GEMEINSCHAFT

Purity

ТШ

MU

HELMHOLTZ GEMEINSCHAFT

clus

Missing Mass (p, K)

Different Contraints

Invariant Mass (p,π)

Invariant mass (p, π)

Missing Mass (p)

HELMHOLTZ GEMEINSCHAFT

Missing Mass(p)

Missing Mass(p)

Missing Mass (p, K)

HELMHOLTZ GEMEINSCHAFT

Different Contraints

Exlcusive Reconstruction Data

Data

Energy & Momentum Contraint

77

Data

Absolutely Preliminary

Refit

$$L(\vec{\alpha},\vec{\lambda}) = (\vec{\alpha} - \vec{\alpha}_0)^T \mathbf{V}_{\vec{\alpha}_0}^{-1} (\vec{\alpha} - \vec{\alpha}_0) + 2\vec{\lambda}^T \vec{H}(\vec{\alpha})$$

$$\chi^{2} = (\vec{\alpha} - \vec{\alpha}_{0})^{T} \mathbf{V}_{\vec{\alpha}_{0}}^{-1} (\vec{\alpha} - \vec{\alpha}_{0}) = \sum_{l}^{6n} \frac{(\alpha_{l} - \alpha_{0,l})^{2}}{\sigma_{\alpha_{l}}^{2}}$$

Refit

$$L(\vec{\alpha},\vec{\lambda}) = (\vec{\alpha} - \vec{\alpha}_0)^T \mathbf{V}_{\vec{\alpha}_0}^{-1} (\vec{\alpha} - \vec{\alpha}_0) + 2\vec{\lambda}^T \vec{H}(\vec{\alpha})$$

$$L(\vec{\alpha},\vec{\lambda}) = (\vec{\alpha} - \vec{\alpha}_0)^T \mathbf{V}_{\vec{\alpha}_0}^{-1} (\vec{\alpha} - \vec{\alpha}_0) + 2\vec{\lambda}^T (\mathbf{D}\delta\vec{\alpha} + \vec{d})$$

$$\chi^2 = (\mathbf{D}\delta\vec{\alpha}_0 + \vec{d})^T \mathbf{V}_D^{-1} (\mathbf{D}\delta\vec{\alpha}_0 + \vec{d})$$

