K-d scattering and properties of kaonic deuterium

N.V. Shevchenko Nuclear Physics Institute, Řež, Czech Republic <u>K-d elastic scattering: three-body coupled-channel AGS equations</u> (Faddeev equations in Alt-Grassberger-Sandhas form)

$$U_{ij}^{\alpha\beta} = \delta_{\alpha\beta} (1 - \delta_{ij}) (G_0^{\alpha})^{-1} + \sum_{k,\gamma=1}^3 (1 - \delta_{ik}) T_k^{\alpha\gamma} G_0^{\gamma} U_{kj}^{\gamma\beta}, \quad i, j = 1, 2, 3$$

 $\pi\Sigma$ channel included directly \Rightarrow particle channels :

$$\alpha = 1: |\overline{K}_1 N_2 N_3\rangle, \quad \alpha = 2: |\pi_1 \Sigma_2 N_3\rangle, \quad \alpha = 3: |\pi_1 N_2 \Sigma_3\rangle$$

Input: two-body *T*-matrices :

$$T^{NN}, T^{\Sigma N}$$
, and $T^{\pi N}$ are one-channel (usual) *T*-matrices;
 $T^{KK}: \overline{KN} \to \overline{KN}, \quad T^{K\pi}: \pi\Sigma \to \overline{KN},$
 $T^{\pi K}: \overline{KN} \to \pi\Sigma, \quad T^{\pi\pi}: \pi\Sigma \to \pi\Sigma$ - elements of 2-channel $T^{\overline{KN}-\pi\Sigma}$

<u>Quantum numbers</u>: spin S = 1, orbital momentum L = 0, isospin I = 1/2Two identical nucleons - antisymmetrization \Rightarrow system of 10 integral equations Coupled-channel $\overline{K}N - \pi \Sigma$ interaction

J. Révai, N.V.S., Phys. Rev. C 79 (2009) 035202; new fits A phenomenological potential with one- and two-pole structure of $\Lambda(1405)$ resonance, equally properly reproducing:

• Measured 1s K⁻p level shift and width:

$$\Delta E_{1s}^{KEK} = -323 \pm 63 \pm 11 \text{ eV}, \quad \Gamma_{1s}^{KEK} = 407 \pm 208 \pm 100 \text{ eV}$$

$$\Delta E_{1s}^{DEAR} = -193 \pm 37 \pm 6 \text{ eV}, \quad \Gamma_{1s}^{DEAR} = 249 \pm 111 \pm 30 \text{ eV}$$

$$\Delta E_{1s}^{SIDD} = -283 \pm 36 \pm 6 \text{ eV}, \quad \Gamma_{1s}^{SIDD} = 541 \pm 89 \pm 22 \text{ eV}$$

• Cross-sections of $K^- p \to K^- p$ and $K^- p \to MB$ reactions,

• Threshold branching ratios
$$\gamma$$
 and $R_{\pi \Sigma} = \frac{R_c}{1 - R_n (1 - R_c)}$,

Isospin-breaking effects:

- 1. Kaonic hydrogen: direct inclusion of *Coulomb interaction*
- 2. Using of the *physical masses*:

$$m_{K^{-}}, m_{\overline{K}^{0}}, m_{p}, m_{n}$$
 instead of $m_{\overline{K}}, m_{N}$

Comparison with experimental data, cross-sections:

one-pole potential: with physical masses (blue solid line) with averaged masses (blue dashed line)

two-pole potential: with physical masses (red solid line) with averaged masses (red dashed line)

Experimental and theoretical 1s Kp level shift and width:

Pole positions

1-pole, KEK	2-pole, KEK	1-pole, SIDD	2-pole,SIDD
1409 – <i>i</i> 36 MeV	1409 – <i>i</i> 36 MeV 1381 – <i>i</i> 105 MeV	1426 – <i>i</i> 48 MeV	1414 – <i>i</i> 58 MeV 1386 – <i>i</i> 104 MeV

Elastic $\pi\Sigma - \pi\Sigma$ cross sections for 1- and 2-pole SIDDHARTA potentials

Two-term NN potential (TSA)

P. Doleschall, private communication, 2009

$$V_{NN} = \sum_{i=1}^{2} |g_i\rangle \lambda_i \langle g_i| \rightarrow$$
$$T_{NN} = \sum_{i,j=1}^{2} |g_i\rangle \tau_{ij} \langle g_j$$

Reproduces:

Argonne V18 NN phase shifts (with sign change)

$$a^{A}(np) = -5.402 \text{ fm}, r_{eff}^{A}(np) = 1.754 \text{ fm},$$

 $a^{B}(np) = -5.413 \text{ fm}, r_{eff}^{B}(np) = 1.760 \text{ fm},$
and $E_{deu} = -2.2246 \text{ MeV}.$

 $\Sigma N(-\Lambda N)$ interaction J. Révai, N.V.S., 2009

Isospin and spin-dependent $T_{I,S}^{\Sigma N}(k,k';z)$ corresponds to

 $V_{I,S}^{\Sigma N}(k,k') = \lambda_{I,S}^{\Sigma N} g_{I,S}^{\Sigma N}(k) g_{I,S}^{\Sigma N}(k')$ with $g_{I,S}^{\Sigma N}(k) = \frac{1}{k^2 + \left(\beta_{I,S}^{\Sigma N}\right)^2}$

 $K^{-}d$ calculation: spin-triplet only

 $\widehat{\underbrace{\mathsf{P}}}_{\mathsf{L}}^{\mathsf{200}} \xrightarrow{100}_{\mathsf{L}}^{\mathsf{100}} \xrightarrow{\Sigma^+ \mathsf{p}} \Sigma^+ \mathsf{p}$

300

300

All parameters were *fitted* to reproduce experimental cross-sections

<u>I=3/2</u>

Real parameters, one-channel case

<u>I=1/2</u>

- 1. Two-channel $\Sigma N \Lambda N$ potential, real parameters
- 2. One-channel (exact) optical ΣN potential, complex energy-dependent strength

<u>*K*</u>^{-*d*} scattering lengths (fm)

from coupled-channels Faddeev-type (AGS) calculations

N.V. Shevchenko, Phys. Rev. C 85, 034001 (2012); arXiv:1201.3173, v2 [nucl-th]

<u>Experiment</u>: measuring of kaonic deuterium atom 1s level shift and width (SIDDHARTA, SIDDHARTA-2) \rightarrow Calculation of the parameters, corresponding to the obtained K⁻ d scattering length

<u>*K*</u> -*d* scattering amplitudes as a $k \cot \delta(k)$ function

<u>K⁻d</u> effective ranges (fm)

1-pole, KEK	2-pole, KEK	1-pole, SIDD	2-pole,SIDD
0.55 <i>– i</i> 1.15	0.62 – <i>i</i> 1.19	0.68 – <i>i</i> 1.33	0.67 – <i>i</i> 1.35

Strong characteristics of kaonic deuterium

Step 1. Optical two-body K⁻ d potential is constructed, it reproduces nearthreshold K⁻d scattering amplitudes, obtained in the three-body calculation (scattering length and effective range are reproduced as well)

$$V_{K^{-}d}^{S}(k,k') = \lambda_{1,K^{-}d} g_{1}(k)g_{1}(k') + \lambda_{2,K^{-}d} g_{2}(k)g_{2}(k')$$

with $g_{i}(k) = \frac{1}{\beta_{i,K^{-}d}^{2} + k^{2}}, \quad i = 1,2$

Step 2. Energy of the *ls* level of kaonic deuterium is calculated, Coulomb interaction was directly included into the Lippmann-Schinger equation:

$$H = H_0 + V_{K^- d}^S(k, k') + V^{Coul} \implies E_{1s}^{S+Coul}$$

Step 3. 1s level shift and width caused by strong interaction are obtained:

$$\Delta E_{1s} = E_{1s}^{Coul} - \operatorname{Re}(E_{1s}^{S+Coul})$$

Strong interaction shift and width

Corrected Deser formula
$$(\mu_{K^-p} \to \mu_{K^-d}, a_{K^-p} \to a_{K^-d})$$
: ~ 30% error in width!

$$\Delta E_{1s}^{K^-d} - i \frac{\Gamma_{1s}^{K^-d}}{2} = -2\alpha^3 \mu_{K^-d}^2 a_{K^-d} [1 - 2\alpha \mu_{K^-d} a_{K^-d} (\ln \alpha - 1)]$$

$\overline{KN} - \pi \Sigma$ pole positions (MeV)

1-pole, KEK	2-pole, KEK	1-pole, SIDD	2-pole,SIDD
1409 – <i>i</i> 36	1409 – <i>i</i> 36 1381 – <i>i</i> 105	1426 – <i>i</i> 48	1414 – <i>i</i> 58 1386 – <i>i</i> 104

<u> $K^{-}d$ scattering lengths</u> (fm)

1-pole, KEK	2-pole, KEK	1-pole, SIDD	2-pole,SIDD
- 1.49 + <i>i</i> 0.98	– 1.57 + <i>i</i> 1.11	- 1.48 + <i>i</i> 1.22	- 1.51 + <i>i</i> 1.23

Kaonic deuterium 1s level shifts (Re) and half-widths (Im) (eV)

1-pole, KEK	2-pole, KEK	1-pole, SIDD	2-pole,SIDD
– 767 + <i>i</i> 405	– 809 + <i>i</i> 451	– 781 + <i>i</i> 505	– 794 + <i>i</i> 506

<u>Summary</u>

- $K^{-}d$ scattering amplitudes were calculated for the four versions of $\overline{KN} - \pi \Sigma$ potential up to three-body \overline{KNN} break-up threshold
- The potentials reproduce SIDDHARTA (and KEK) data on kaonic hydrogen *1s* level shift and width and have one or two poles for the $\Lambda(1405)$ resonance
- The corresponding to the $K^- d$ scattering amplitudes 1s level shift and width of kaonic deuterium are calculated:

$$\Delta E_{1s}^{1,SIDD} = -781 \ eV, \ \Gamma_{1s}^{1,SIDD} = 1010 \ eV$$
$$\Delta E_{1s}^{2,SIDD} = -794 \ eV, \ \Gamma_{1s}^{2,SIDD} = 1012 \ eV$$

• Kaonic deuterium characteristics are strongly correlated to the K⁻ d scattering length, they seems to be insensitive to the number of poles forming $\Lambda(1405)$ resonance