

Search for hyper-triton in Ni+Ni collisions at 1.91A GeV

Yapeng Zhang

FOPI collaboration, Heidelberg University SPHERE & JSPS Meeting, Prague, Czech 04.09.2010-06.09.2010

Outline

- \geq 1. Introduction
- ➤ 2. FOPI detector
- > 3. Cut quantities and evaluation results.
- ➤ 4. Background and signal simulation

for $_{\Lambda}t \rightarrow \pi^{-}+^{3}He$ in Ni+Ni at 1.91A GeV.

- > 5. Yield ratios of $_{\Lambda}t^*/t$ and $_{\Lambda}t^*/^3He$ in certain phase space region.
- \geq 6. Summary and outlook.

1. Introduction

Nucleus which contains at least one hyperon (Λ , Σ , Ξ , Ω).

Hypertriton ($_{\Lambda}$ t) production in HIC

M. Juric et al. Nucl. Phys. B 52 (1973), p. 1

Signal at 2 σ **level,1.35x10⁹ central collisions** E864:T.A.Armstrong et al. PRC70, 024902(2004)

Weak mesonic decay	B.R.
$_{\Lambda}t \rightarrow ^{3}He + \pi^{-}$	~35%
$_{\Lambda}t \rightarrow d + p + \pi^{-}$	~55%

M.Derrick et al. PRD,1,66 (1970); H.Kamada et al. PRC57,1595 (1998);

2. FOPI detector

- Angular coverage close to 4π .
- Over-all time resolution of RPC barrel : 88ps (RPC=68ps).
- Identification of p, d, t, ³He, ⁴He, $\pi \pm$, K[±].
- Reconstruction of strange resonances (ϕ , K^{*, Λ}, Σ ^{*}).

Detector performance

3. Cut quantities for $_{\Lambda}t \rightarrow \pi^{-}+^{3}He$

Π^{-3} He invariant mass reconstruction

Π^{-3} He invariant mass reconstruction

Π^{-3} He invariant mass reconstruction

Reconstructed invariant mass of Π^{-3} He pairs from K⁺ candidate tagged events in Ni+Ni collisions at 1.91AGeV

S/B can be improved by a factor of ~10.

However, K⁺ identification is necessary over large portion of phase space.

4. $_{\Lambda}t \rightarrow \pi^{-}+^{3}He$ background simulation

MC background with selection cuts as used for data analysis

Signal event simulation

Signal event generator:

- 1) QMD, Ni+Ni 1.93A GeV.
- 2) Thermal ³He. (Temperature=110 MeV, Beta=0.35, y_{source} =0.18) MC (³He / π ⁻)= 0.018.
- 3) $_{\Lambda}$ t flat pt-y distribution: $p_t \in [0.5, 1.5]$ GeV/c, $y_{lab} \in [0.1, 0.5]$, Mass=2.991 GeV, lifetime=245 ps.

MC with selection cuts as used for data analysis

5. Yield ratios of $_{\Lambda}t^*/t$ and $_{\Lambda}t^*/^3He$

Ni + Ni @ 1.91A GeV $p_t \in [0.5, 1.5] \text{ GeV/c}, y_{lab} \in [0.1, 0.5]$ $_{\Lambda}t^*/t = 1.6x10^{-4}/0.0085^{*}0.65$ $= 1.2x10^{-2}$ $_{\Lambda}t^*/^{3}\text{He}=2.25x10^{-4}/0.0085^{*}0.65$ $= 1.7x10^{-2}$

Thermal calculation: Ni+Ni T=60 MeV, μ_{b} =783.3 MeV $_{\Lambda}t/t = 2x10^{-3}$ (BR,~0.35) $_{\Lambda}t/^{3}$ He=2.2x10⁻³ (BR,~0.35) (Anton Andronic)

6. Summary

- 1) Invariant mass of π^{-3} He pairs shows an excess near the mass of $_{\Lambda}$ t under specific selection criteria.
- 2) Reconstruction of hypertriton was investigated using full GEANT simulation with QMD and thermal ³He as background event generator. No artificial excess was found.
- 3) Reconstruction efficiency of $_{\Lambda}t$ was determined by signal MC to about 0.85%.
- 4) Yield ratio of $_{\Lambda}t^*/t$ and $_{\Lambda}t^*/^3$ He in Ni+Ni at 1.91A GeV is estimated in the phase space region: $p_t \in [0.5, 1.5] \text{ GeV/c}, y_{lab} \in [0.1, 0.5], \text{ we get}$ $_{\Lambda}t/t=1.2x10^{-2}, _{\Lambda}t/^3\text{He}=1.7x10^{-2}.$

Outlook

- 1) Extend analysis to full solid angle for ³He.
- 2) Understand reconstruction efficiency by MC in detail.
- 3) Extend analysis to other data sets,

Ni+Ni@1.93AGeV (S261), Ni+Ni@1.91AGeV (S325), Ni+Pb@1.91AGeV (S338), Ru+Ru@1.91AGeV (S338).

- 4) Determine the lifetime of $_{\Lambda}$ t.
- 5) Investigate three body decay: $_{\Lambda}t \rightarrow \pi + d + p$.
- 6) Look for heavier hypernuclei: ${}^{4}{}_{\Lambda}$ H, ${}^{4}{}_{\Lambda}$ He, ${}^{5}{}_{\Lambda}$ He.

Thanks for your attention!

Lifetime of $_{\Lambda}t$

arXiv:1003.2030 [nucl-ex] (Star – collaboration)